Skip to main content

5-HT Receptors Coupled to Adenylate Cyclase

  • Chapter
The Serotonin Receptors

Part of the book series: The Receptors ((REC))

Abstract

More than 25 years ago, Mansour et al. (1960) measured an increase in adenylate cyclase activity in a particulate preparation from the flatworm, Fasciola hepatica, in response to 5-HT. Until that time, adenylate cyclase activity had been measured mostly in canine tissues, in response to either epinephrine or glucagon (Sutherland and Rail, 1960). The results with 5-HT and the flatworm suggested that cyclic AMP is a more general second messenger than was previously suspected. Despite this auspicious beginning, the study of 5-HT receptors coupled to adenylate cyclase has lagged behind the study of other receptors coupled to adenylate cyclase. The purposes of this review are to identify those tissues in which 5-HT receptors may be either positively or negatively coupled to adenylate cyclase and to assess the pharmacological data concerning these receptors. Wherever possible, the physiological roles of 5-HT receptor-mediated changes in cyclic AMP accumulation will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abboud, H. E., Shah, S., and Dousa, T. P. (1979) Effects of dexamethasone on cyclic nucleotide accumulation in glomeruli. J. Lab. Clin. Med. 94, 708–716.

    PubMed  CAS  Google Scholar 

  • Abrahams, S. L., Northup, J. K., and Mansour, T. E. (1976) Adenosine cyclic 3151-monophosphate in the liver fluke, fasciola hepatica. 1. Activation of adenylate cyclase by 5-hydroxytryptamine. Mol. Pharmacol. 12, 49–58.

    PubMed  CAS  Google Scholar 

  • Adler, S. (1977) Serotonin and the kidney, ch. 3 in Serotonin in Health and Disease, (W.B. Essman, ed.) Spectrum Publications, New York, pp. 99–137.

    Google Scholar 

  • Affolter, H., Erne, P., Burgisser, E., and Pletscher, A. (1984) Ca2+ as messenger of 5-HT2-receptor stimulation in human blood platelets. Naunyn-Schmiedeb. Arch. Pharmacol. 325, 337–342.

    Article  CAS  Google Scholar 

  • Agarwal, K. C. and Steiner, M. (1976) Effect of serotonin on cyclic nucleotides of human platelets. Biochem. Biophys. Res. Commun. 69, 962–969.

    Article  PubMed  CAS  Google Scholar 

  • Ahn, H. and Makman, M. H. (1977) Neurotransmitter-sensitive adenylate cyclase in the hypothalami of guinea pig, rat and monkey. Brain Res. 138, 125–138.

    Article  PubMed  CAS  Google Scholar 

  • Ahn, H. and Makman, M. H. (1978a) Stimulation of adenylate cyclase activity in monkey anterior limbic cortex by serotonin. Brain Res. 153, 636–640.

    Article  PubMed  CAS  Google Scholar 

  • Ahn, H. and Makman, M. H. (1978b) Serotonin-sensitive adenylate cyclase activity in monkey anterior limbic cortex: antagonism by molindone and other antipsychotic drugs. Life Sci. 23, 507–512.

    Article  PubMed  CAS  Google Scholar 

  • Albano, J. D. M., Brown, B. L, Ekins, R. P., Tait, S. A. S., and Tait, J. F. (1974) The effects of potassium, 5-hydroxytryptamine, adrenocorticotrophin and angiotensin II in the concentration of adenosine 3151-cyclic monophosphate in suspensions of dispersed rat adrenal zona glomerulosa and zona fasciculata cells. Biochem. J. 142, 391–400.

    PubMed  CAS  Google Scholar 

  • Andrade, R., Malenka, R. C., and Nicoll, R. A. (1986) A G protein couples serotonin and GABAb receptors to the same channels in hippocampus. Science 234, 1261–1265.

    Article  PubMed  CAS  Google Scholar 

  • Baines, A. J. and Bennett, V. (1986) Synapsin I is a microtubule-bundling protein. Nature 319, 145–147.

    Article  PubMed  CAS  Google Scholar 

  • Barbaccia, M. L., Brunello, N., Chuang, D. M., and Costa, E. (1983) Serotonin-elicited amplication of adenylate cyclase activity in hippocampal membranes from adult rat. J. Neurochem. 40, 1671–1679.

    Article  PubMed  CAS  Google Scholar 

  • Benfey, B. G., Cohen, J., Kunos, G., and Vermes-Kunos, I. (1974) Dissociation of 5-hydroxytryptamine effects on myocardial contractility and cyclic AMP accumulation. Br. J. Pharmacol. 50, 581–585.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J. (1981) Electrophysiological evidence for the existence of separate receptor mechanisms mediating the action of 5-hydroxytryptamine, Mol. Cell. Endocrin. 23, 91–104.

    Article  CAS  Google Scholar 

  • Berridge, M. J. (1982) Regulation of cell secretion: the integrated action of cyclic AMP and calcium. Handb. Exp. Pharmacol. 58, 389–463.

    Google Scholar 

  • Berridge, M. J. (1984) Inositol triphosphate and diacylaglycerol as second messengers. Biochem. J. 220, 345–360.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J. and Heslop, J. P (1981) Separte 5-hydroxytryptamine receptors on the salivary gland of the blowfly are linked to the generation of either cyclic adenosine 3151-monophosphate or calcium signals. Br. J. Pharmacol. 73, 729–738.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J. and Lipke, H. (1979) Changes in calcium transport across Calliphora salivary glands induced by 5-hydroxytryptamine and cyclic nucleotides. J. Exp. Biol. 78, 137–148.

    CAS  Google Scholar 

  • Berry-Kravis, E. and Dawson, G. (1983) Characterization of an adenylate cyclase-linked serotonin (5-HT1) receptor in a neuroblastoma x brain expiant hybrid cell line (NCB-20). J. Neurochem. 40, 977–985.

    Article  PubMed  CAS  Google Scholar 

  • Berry-Kravis, E. and Dawson, G. (1985a) Evidence for [D-Ala2,D-Leu5]-enkephalin-induced supersensitivity to 5-hydroxytryptamine in a neuroblastoma x brain hybrid cell line (NCB-20). J. Neurochem. 45, 1731–1738.

    Article  PubMed  CAS  Google Scholar 

  • Berry-Kravis, E. and Dawson, G. (1985b) Possible role of gangliosides in regulating an adenylate cyclase-linked 5-hydroxytryptamine (5-HT1) receptor. J. Neurochem. 45, 1739–1747.

    Article  PubMed  CAS  Google Scholar 

  • Biondi, C., Belardetti, F., Brunelli, M., and Trevisani, A. (1982) Modulation of cyclic AMP levels by neurotransmitters in excitable tissues of the leech Hirudo Medicinalis Comp. Biochem. Physiol. 72C, 33–37.

    Article  CAS  Google Scholar 

  • Birnbaumer, L., Codina, J., Mattera, R., Yatani, A., Scherer, N., Toro, M., and Brown, A. M. (1987) Signal transduction by G proteins, in Molecular Biology and the Kidney (R. Robinson and D. K. Granner, eds.) (in press).

    Google Scholar 

  • Blazynski, C., Ferrendelli, J. A., and Cohen, A. I. (1985) Indoleamine-sensitive adenylate cyclase in rabbit retina: characterization and distribution. J. Neurochem. 45, 440–447.

    Article  PubMed  CAS  Google Scholar 

  • Bockaert, J., Dumuis, A., Bouhelal, R., Sebben, M., and Cory, R. N. (1987) Piperazine derivatives including the putative anxiolytic drugs, buspirone and ipsapirone, are agonists at the 5-HT1A receptors negatively coupled with adenylate cyclase in hippocampal neurons. Naunyn-Schmiedeb. Arch. Pharmacol. 335, 588–592.

    CAS  Google Scholar 

  • Bourgoin, S., Artaud, F., Bockaert, J., Hery, F., Glowinski, J., and Hamon, M. (1978) Paradoxical decrease of brain 5-HT turnover by metergoline, a central 5-HT receptor blocker. Naunyn-Schmiedeb. Arch. Pharmacol. 302, 313–321.

    Article  CAS  Google Scholar 

  • Bourgoin, S., Artaud, F., Enjalbert, A., Hery, F., Glowinski, J. and Hamon, M. (1977a) Acute changes in central serotonin metabolism induced by the blockade or stimulation of serotoninergic receptors during ontogenesis in the rat. J. Pharmacol. Exper. Therap. 202, 519–531.

    CAS  Google Scholar 

  • Bourgoin, S., Enjalbert, A., Adrien, J., Hery, F., and Hamon, M. (1977b) Midbrain raphé lesion in the newborn rat: II. Biochemical alterations in serotoninergic innervation. Brain Res. 127, 111–126.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, P. B., Engel, G., Feniuk, W., Fozard, J. R., Humphrey, P. P. A., Middlemiss, D. N., Mylecharane, E. J., Richardson, B. P., and Saxena, P. R. (1986) Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25, 563–576.

    Article  PubMed  CAS  Google Scholar 

  • Browning, M. D., Huganir, R., and Greengard, P. (1985) Protein phosphorylation and neuronal function. J. Neurochem. 45, 11–23.

    Article  PubMed  CAS  Google Scholar 

  • Buonassisi, V. and Venter, J. C. (1976) Hormone and neurotransmitter receptors in an established vascular endothelial cell line. Proc. Natl. Acad. Sci. USA 73, 1612–1616.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, A. K. and Siddle, K. (1977) The effects of 5-hydroxytryptamine and other indole derivatives on the formation of adenosine 3151-cyclic monophosphate in pigeon erythrocytes. Biochem. Biophys. Acta 497, 62–74.

    PubMed  CAS  Google Scholar 

  • Cassel, D. and Pfeuffer, T. (1978) Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc. Natl. Acad. Sci. USA 75, 2669–2673.

    Article  PubMed  CAS  Google Scholar 

  • Castellucci, V. F., Kandel, E. R., Schwartz, J. H., Wilson, F. D., Nairn, A. C., and Greengard, P. (1980) Intracellular injection of the catalytic subunit of cyclic AMP-dependent protein kinase simulates facilitation of transmitter release underlying behavioral sensitization in Aplysia. Proc. Natl. Acad. Sci. USA 77, 7492–7496.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, Y. and Prusoff, W. H. (1973) Relationship between the inhibition constant (Kj) and the concentration of inhibitor which causes 50 percent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108.

    Article  PubMed  CAS  Google Scholar 

  • Chneiweiss, H., Prochiantz, A., Glowinski, J., and Premont, J. (1984) Biogenic amine-sensitive adenylate cyclases in primary culture of neuronal or glial cells from mesencephalon. Brain Res. 302, 363–370.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, W. P., DeVivo, M., Beck, S. G., Maayani, S., and Goldfarb, J. (1987) Serotonin decreases population spike amplitude in hippocampal cells through a pertussis toxin substrate. Brain Res. 410, 357–361.

    Article  PubMed  CAS  Google Scholar 

  • Daszuta, A., Pons, F., and Cadilhac, J. (1979) Effect of serotonin on cyclic AMP level in rat hypothalamus slices during development. Eur. J. Pharmacol. 56, 397–401.

    Article  PubMed  CAS  Google Scholar 

  • Davoren, P. R. and Sutherland, E. W. (1963) The effect of l-epinephrine and other agents on the synthesis and release of adenosine 3151-phosphate by whole pigeon erythrocytes. J. Biol. Chem. 238, 3009–3015.

    PubMed  CAS  Google Scholar 

  • de Chaffoy de Courcelles, D., Leysen, J. E., De Clerck, F., Van Belle, H., and Janssen, P. A. J. (1985) Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites. J. Biol. Chem. 260, 7603–7608.

    PubMed  Google Scholar 

  • Deterre, P., Paupardin-Tritsch, D., and Bockaert, J. (1986) Serotonin- and dopamine-sensitive adenylate cyclase in molluscan nervous system. Biochemical and electrophysiological analysis of the pharmacological properties and the GTP-dependence. Molec. Brain. Res. 1, 101–109.

    Article  CAS  Google Scholar 

  • Deterre, P., Paupardin-Tritsch, D., Bockaert, J., and Gerschenfeld, H. M. (1981) Role of cyclic AMP in a serotonin-evoked slow inward current in snail neurones. Nature 290, 783–785.

    Article  PubMed  CAS  Google Scholar 

  • Deterre, P., Paupardin-Tritsch, D., Bockaert, J., and Gerschenfeld, H. M. (1982) cAMP-mediated decrease in K+ conductance evoked by serotonin and dopamine in the same neuron: a biochemical and physiological single-cell study. Proc. Natl. Acad. Sci. USA 79, 7934–7938.

    Article  PubMed  CAS  Google Scholar 

  • De Vivo, M. and Maayani, S. (1985) Inhibition of forskolin-stimulated adenylate cyclase activity by 5-HT receptor agonists. Eur. J. Pharmacol. 119, 213–234.

    Google Scholar 

  • De Vivo, M. and Maayani, S. (1986) Characterization of the 5-hydroxytryp-tamine1A receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J. Pharmacol Exper. Therap. 238, 248–253.

    Google Scholar 

  • Dolphin, A. C., Goelz, S. E., and Greengard, P. (1980) Neuronal protein phosphorylation: recent studies concerning protein I, a synapse-specific phosphoprotein. Pharmacol Biochem. & Behav. 13, 169–174.

    Article  CAS  Google Scholar 

  • Dolphin, A. C. and Greengard, P. (1981a) Neurotransmitter- and neuro-modulator-dependent alterations in phosphorylation of protein I in slices of rat facial nucleus. J. Neurosci. 1, 192–203.

    PubMed  CAS  Google Scholar 

  • Dolphin, A.C. and Greengard, P. (1981b) Serotonin stimulates phosphorylation of protein I in the facial motor nucleus of rat brain. Nature 289, 76–79.

    Article  PubMed  CAS  Google Scholar 

  • Drummond, A. H., Benson, J. A., and Levitan, I. B. (1980a) Serotonin-induced hyperpolarization of an identified Aplysia neuron is medicated by cyclic AMP. Proc. Natl. Acad. Sci. USA 77, 5013–5017.

    Article  PubMed  CAS  Google Scholar 

  • Drummond, A. H., Benson, J. A., and Levitan, I. B. (1980b) d-[3H]Lysergic acid diethylamide binding to serotonin receptors in the molluscan nervous system. J. Biol. Chem. 255, 6679–6686.

    PubMed  CAS  Google Scholar 

  • Dunwiddie, T. V. and Hoffer, B. J. (1982) The role of cyclic nucleotides in the nervous system. Handb. Exper. Pharmacol. 58, 389–463.

    CAS  Google Scholar 

  • Enjalbert, A., Bourgoin, S., Hamon, M., Adrien, J., and Bockaert, J. (1978a) Postsynaptic serotonin-sensitive adenylate cyclase in the central nervous system (I). Mol. Pharmacol. 14, 2–10.

    PubMed  CAS  Google Scholar 

  • Enjalbert, A., Hamon, M., Bourgoin, S., and Bockaert, J. (1978b) Postsynaptic serotonin-sensitive adenylate cyclase in the central nervous system (II). Mol. Pharmacol. 14, 11–23.

    PubMed  CAS  Google Scholar 

  • Enyeart, J. (1981) Cyclic AMP, 5-HT, and the modulation of transmitter release at the crayfish neuromuscular junction. J. Neurobiol. 12 505–513.

    Article  PubMed  CAS  Google Scholar 

  • Euvrard, C. and Boissier, J. R. (1980) Biochemical assessment of the central 5-HT agonist activity of RU 24969 (a piperindyl indole). Eur. J. Pharmacol. 63, 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Ezrailson, E. G., Entman, M. L. and Garber, A. J. (1983) Adrenergic and serotonergic regulation of skeletal muscle metabolism in the rat, J. Biol Chem. 258, 12494–12498.

    PubMed  CAS  Google Scholar 

  • Fain, J. N., Jacobs, M. D., and Clement-Cormier, Y. C. (1973) Interrelationship of cyclic AMP, lipolysis, and respiration in brown fat cells. Am. J. Physiol. 224, 346–351.

    PubMed  CAS  Google Scholar 

  • Fillion, G., Beaudoin, D., Rousselle, J. C., Deniau, J. M., Fillion, M. P., Dray, F., and Jacob, J. (1979) Decrease of [3H]5-HT high affinity binding and 5-HT adenylate cyclase activation after kainic lesion in rat brain striatum. J. Neurochem. 33, 567–570.

    Article  PubMed  CAS  Google Scholar 

  • Fillion, G., Beaudoin, D., Rousselle, J. C., and Jacob, J. (1980) [3H]5-HT binding sites and 5-HT-sensitive adenylate cyclase in glial cell membrane fraction. Brain Res. 198, 361–374.

    Article  PubMed  CAS  Google Scholar 

  • Forn, J. and Krishna, G. (1971) Effect of norepinephrine, histamine and other drugs on cyclic 31,51-AMP formation in brain slices of various animal species. Pharmacology 5, 193–204.

    Article  PubMed  CAS  Google Scholar 

  • Franquinet, R., Le Moigne, A., and Hanoune, J. (1978) The adenylate cyclase system of planaria polycelis tenuis: activation by serotonin and guanine nucleotides. Biochem. Biophys. Acta 539, 88–97.

    PubMed  CAS  Google Scholar 

  • Fujita, K., Aguilera, G., and Catt, K. J. (1979) The role of cAMP in aldosterone production by isolated zona glomerulosa cells. J. Biol Chem. 254, 8567–8574.

    PubMed  CAS  Google Scholar 

  • Garber, A. J. (1977) Inhibition by serotonin of amino acid release and protein degradation in skeletal muscle. Mol. Pharmacol. 13, 640–651.

    PubMed  CAS  Google Scholar 

  • Gentleman, S., Abrahams, S. L., and Mansour, T. E. (1976) Adenosine cyclic 31,51-monophosphate in the liver fluke, Fasciola hepatica. II. Activation of protein kinase by 5-hydroxytryptamine. Mol. Pharmacol. 12, 59–68.

    PubMed  CAS  Google Scholar 

  • Gentleman, S. and Mansour, T. E. (1977) Control of Ca2+ efflux and cyclic AMP by 5-hydroxytryptamine and dopamine in abalone gill. Life Sci. 20, 687–694.

    Article  PubMed  CAS  Google Scholar 

  • Glaser, R. and Traber, J. (1983) Buspirone: action on serotonin receptors in calf hippocampus. Eur. J. Pharmacol. 88, 137–138.

    Article  PubMed  CAS  Google Scholar 

  • Goldenring, J. R., Lasher, R. S., Vallano, M. L., Ueda, T., Naito, S., Sternberger, N. H., Sternberger, L. A., and DeLorenzo, R. J. (1986) Association of synapsin I with neuronal cytoskeleton. J. Biol Chem. 261, 8495–8504.

    PubMed  CAS  Google Scholar 

  • Green, J. P. and Maayani, S. (1987) Nomenclature, classification and notation of receptors: 5-hydroxytryptamine receptors and binding sites as examples. In Perspectives on Receptor Classification (J. W. Black, D. H. Jenkinson, and V. P. Gerskowitch, eds.) Alan R. Liss, Inc. pp. 237–267.

    Google Scholar 

  • Gripenberg, J., Karkonen, M., and Jansson, S. E. (1974) Stimulation of adenosine 31,51-monophosphate formation in mast cells by 5-hydroxy-tryptamine and guanethidine. Acta. Physiol. Scand. 90, 648–650.

    Article  PubMed  CAS  Google Scholar 

  • Grubb, M. N. and Burks, T. F. (1974) Modification of intestinal stimulatory effects of 5-hydroxytryptamine by adrenergic amines, prostaglandin E1 and theophylline. J. Pharmacol. Exper. Therap. 189, 476–483.

    CAS  Google Scholar 

  • Grubb, M. N. and Burks, T. F. (1975) Selective antagonists of the intestinal stimulatory effects of morphine by isoproterenol, prostaglandin E1 and theophylline. J. Pharmacol. Exper. Therap. 193, 884–891.

    CAS  Google Scholar 

  • Hamon, M., Bourgoin, S., Gozlan, H., Hall, M. D., Goetz, C., Artaud, F., and Horn, A. S. (1984) Biochemical evidence for the 5-HT agonist properties of PAT (8-hydroxy-2-(di-n-propylamino)tetralin) in the rat brain. Eur. J. Pharmacol. 100, 263–276.

    Article  PubMed  CAS  Google Scholar 

  • Hamon, M., Nelson, D. L., Herbet, A., Bockaert, J., and Glowinski, J. (1980) Characteristics of serotonin receptors in the rat brain. Monogr. Neural Sci. 7, 161–175.

    PubMed  CAS  Google Scholar 

  • Hamon, M., Nelson, D. L., Mallat, M., and Bourgoin, S. (1981) Are 5-HT receptors involved in the sprouting of serotoninergic terminals following neonatal 5,7-dihydroxytryptamine treatment in the rat? Neurochem. Int. 3, 69–79.

    Article  PubMed  CAS  Google Scholar 

  • Harden, T. K. (1983) Agonist-induced desensitization of the β-adrenergic receptor-linked adenylate cyclase. Pharmacol. Rev. 35, 5–32.

    PubMed  CAS  Google Scholar 

  • Heslop, J. P. and Berridge, M. J. (1980) Changes in cyclic AMP and cyclic GMP concentrations during the action of 5-hydroxytryptamine on an insect salivary gland. Biochem. J. 192, 247–255.

    PubMed  CAS  Google Scholar 

  • Higgins, T. J. C., Allsopp, D., and Bailey, P. J. (1981a) Mechanisms of stimulation of rat cardiac muscle by 5-hydroxytryptamine. Biochem. Pharmacol. 30, 2703–2707.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, T. J. C., Bailey, P. J., and Allsopp, D. (1981b) Mechanisms of stimulation of cardiac myocyte beating rate by 5-hydroxytryptamine. Life Sci. 28, 999–1005.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, W. J. (1977) 5-Hydroxytryptamine-induced tachyphylaxis of the molluscan heart and concomitant desensitization of adenylate cyclase. J. Cyclic Nucleotide Res. 3, 293–302.

    PubMed  CAS  Google Scholar 

  • Hotta, I. and Yamawaki, S. (1986) Lithium decreases 5-HT1 receptors but increases 5-HT-sensitive adenylate cyclase activity in rat hippocampus. Biol. Psychiatry 21, 1382–1390.

    Article  PubMed  CAS  Google Scholar 

  • Huang, M., Shimizu, H., and Daly, J. (1971) Regulation of adenosine cyclic 31,51-phosphate formation in cerebral cortical slices. Mol. Pharmacol. 7, 155–162.

    PubMed  CAS  Google Scholar 

  • Johnson, R. M., Connelly, P. A., Sisk, R. B., Pobiner, B. F., Hewlett, E. L, and Garrison, J. C. (1986) Pertussis toxin or phorbol 12-myrisate 13-acetate can distinguish between epidermal growth factor- and angiotensin-stimulated signals in hepatocytes. Proc. Natl. Acad. Sci. USA 83, 2032–2036.

    Article  PubMed  CAS  Google Scholar 

  • Kakiuchi, S. and Rall, T. W. (1968a) The influence of chemical agents on the accumulation of adenosine 31,51-phosphate in slices of rabbit cerebellum. Mol. Pharmacol. 4, 367–378.

    PubMed  CAS  Google Scholar 

  • Kakiuchi, S. and Rall, T. W. (1968b) Studies on adenosine 31,51-phosphate in rabbit cerebral cortex. Mol. Pharmacol. 4, 379–388.

    PubMed  CAS  Google Scholar 

  • Kandel, E. R. and Schwartz, J. H. (1982) Molecular biology of learning: modulation of transmitter release. Science 218, 433–443.

    Article  PubMed  CAS  Google Scholar 

  • Kasschau, M. R. and Mansour, T. E. (1982) Serotonin-activated adenylate cyclase during early development of Schistosoma mansoni. Nature 296, 66–68.

    Article  PubMed  CAS  Google Scholar 

  • Katada, T. and Ui, M. (1982) Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc. Natl. Acad. Sci. USA 79, 3129–3133.

    Article  PubMed  CAS  Google Scholar 

  • Klein, M. and Kandel, E. R. (1978) Presynaptic modulation of voltage-dependent Ca2+ current: mechanism for behavioral sensitization in Aplysia californica. Proc. Natl. Acad. Sci. USA 75, 3512–3516.

    Article  CAS  Google Scholar 

  • Klein, M. and Kandel, E. R. (1980) Mechanism of calcium current modulation underlying presynaptic facilitation and behavioral sensitization in Aplysia. Proc. Natl. Acad. Sci. USA 77, 6912–6916.

    Article  PubMed  CAS  Google Scholar 

  • Lemos, J. R., Novak-Hofer, I., and Levitan, I. B. (1985) Phosphoproteins associated with the regulation of a specific potassium channel in the identified Aplysia neuron R15. J. Biol. Chem. 260, 3207–3214.

    PubMed  CAS  Google Scholar 

  • Luchins, A. R. and Makman, M. H. (1980) Presence of histamine and serotonin receptors associated with adenylate cyclase in cultured calf-aorta smooth muscle cells. Biochem. Pharmacol. 29, 3155–3161.

    Article  PubMed  CAS  Google Scholar 

  • MacDermot, J. (1979) Guanosine 51-triphosphate requirement for activation of adenylate cyclase by serotonin in a somatic cell hybrid. Life Sci. 5, 241–246.

    Article  Google Scholar 

  • MacDermot, J., Higashida, H., Wilson, S. P., Matsuzawa, H., Minna, J., and Nirenberg, M. (1979) Adenylate cyclase and acetylcholine release regulated by separate serotonin receptors of somatic cell hybrids. Proc. Natl. Acad. Sci. USA 76, 1135–1139.

    Article  PubMed  CAS  Google Scholar 

  • Madison, D. V. and Nicoll, R. A. (1982) Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299, 636–638.

    Article  PubMed  CAS  Google Scholar 

  • Mansour, T. E. (1979) Chemotherapy of parasitic worms: new biochemical strategies. Science 205, 462–469.

    Article  PubMed  CAS  Google Scholar 

  • Mansour, T. E. and Mansour, J. M. (1978) Effect of some phosphodiesterase inhibitors on adenylate cyclase from the liver fluke, Fasciola hepatica. Biochem. Pharmacol. 28, 1943–1946.

    Google Scholar 

  • Mansour, T. E., Sutherland, E. W., Rall, T. W., and Bueding, E. (1960) The effect of 5-hydroxytryptamine (serotonin) on the formation of adenosine-31,51-phosphate by tissue particles from the liver fluke, Fasciola hepatica. J. Biol. Chem. 235, 466–470.

    CAS  Google Scholar 

  • Marchand-Dumont, G. and Baguet, F. (1975) The control mechanism of relaxation in molluscan catch-muscle (ABRM). Pfluger’s Arch. 354, 87–100.

    Article  CAS  Google Scholar 

  • Markstein, R., Hoyer, D., and Engel, G. (1986) 5-HT1A-receptors mediate stimulation of adenylate cyclase in rat hippocampus. Naunyn-Schmiedeb. Arch. Pharmacol. 333, 335–341.

    Article  CAS  Google Scholar 

  • Matsukura, S., Kakita, T., Fukase, M., and Fujita, T. (1981) Adenylate cyclase of a human medullary thyroid carcinoma. Experentia 37, 523–524.

    Article  CAS  Google Scholar 

  • McLawhon, R. W., Schoon, G. S., and Dawson, G. (1981) Possible role of cyclic AMP in the receptor-mediated regulation of glycosyltransferase activities in neurotumor cell lines. J. Neurochem. 37, 132–139.

    Article  PubMed  CAS  Google Scholar 

  • McNall, S. J. and Mansour, T. E. (1984a) Novel serotonin receptors in Fasciola characterization by studies on adenylate cyclase activation and [3H]L5D binding. Biochem. Pharmacol. 33, 2787–2797.

    Google Scholar 

  • McNall, S. J. and Mansour, T. E. (1984b) Desensitization of serotonin stimulated adenylate cyclase in the liver fluke Fasciola hepatica. Biochem. Pharmacol. 33, 2799–2805.

    CAS  Google Scholar 

  • McNall, S. J. and Mansour, T. E. (1985) Forskolin activation of serotonin-stimulated adenylate cyclase in the liver fluke Fasciola hepatica. Biochem. Pharmacol. 34, 1683–1688.

    CAS  Google Scholar 

  • Middlemiss, D. K. and Fozard, J. R. (1983) 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur. J. Pharmacol. 90, 151–153.

    Article  PubMed  CAS  Google Scholar 

  • Mishra, R., Lith, N. J., Steranka, L., and Sulser, F. (1981) The noradrenaline receptor coupled to adenylate cyclase system in brain: lack of modification by changes in the availability of serotonin. Naunyn-Schmiedeb. Arch. Pharmacol. 316, 218–224.

    Article  CAS  Google Scholar 

  • Mishra, R. and Sulser, F. (1978) Role of serotonin reuptake inhibition in the development of subsensitivity of the norepinephrine (NE) receptor coupled adenylate cyclase system. Commun. Psychopharmacol. 2, 365–370.

    PubMed  CAS  Google Scholar 

  • Mueller, A. L., Hoffer, B. J., and Dunwiddie, T. V. (1981) Noradrenergic responses in rat hippocampus: evidence for mediation by α and β receptors in the in vitro slice. Brain Res. 214, 113–126.

    Article  PubMed  CAS  Google Scholar 

  • Nash, H. L., Wallis, D. I., and Ash, G. (1984) 5-HT antagonists and blockade of neuronal (5-HT) receptors on ganglion cells. Gen. Pharmacol. 15, 339–344.

    Article  PubMed  CAS  Google Scholar 

  • Nathanson, J. A. and Greengard, P. (1973) Octopamine-sensitive adenylate cyclase: evidence for a biological role of octopamine in nervous tissue. Science 180, 308–310.

    Article  PubMed  CAS  Google Scholar 

  • Nathanson, J. A. and Greengard, P. (1974) Serotonin-sensitive adenylate cyclase in neural tissue and its similarity to the serotonin receptor: a possible site of action of lysergic acid diethylamide. Proc. Natl. Acad. Sci. USA 71, 797–801.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D. L., Herbert, A., Enjalbert, A., Bockaert, J., and Hamon, M. (1980a) Serotonin-sensitive adenylate cyclase and [3H]serotonin binding sites in the CNS of the rat-I. Biochem. Pharmacol. 29, 2445–2453.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D. L., Herbert, A., Adrien, J., Bockaert, J., and Hamon, M. (1980b) Serotonin-sensitive adenylate cyclase and [3H]serotonin binding sites in the CNS of the rat-II. Biochem. Pharmacol. 29, 2455–2463.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D. L., Herbet, A., Pichat, L., Glowinski, J., and Hamon, M. (1979) In vitro and in vivo disposition of 3H-methiothepin in brain tissues. Naunyn-Schmiedeb. Arch. Pharmacol. 310, 25–33.

    Article  CAS  Google Scholar 

  • Nestler, E. J. and Greengard, P. (1983) Protein phospho ylation in the brain. Nature 305, 583–588.

    Article  PubMed  CAS  Google Scholar 

  • Neufeld, A. H., Jumblatt, M. M., Esser, K. A., Cintron, C., and Beuerman, R. W. (1984) β-adrenegic and serotonergic stimulation of rabbit corneal tissues and cultured cells. Invest. Ophthalmol. Vis. Sci. 25, 1235–1239.

    PubMed  CAS  Google Scholar 

  • Neufeld, A. H., Ledgard, S. E., Jumblatt, M. M., and Klyce, S. D. (1982) Serotonin-stimulated cyclic AMP synthesis in the rabbit corneal epithelium. Invest. Ophthalmol. Vis. Sci. 23, 193–198.

    PubMed  CAS  Google Scholar 

  • Northup, J. K. and Mansour, T. E. (1978a) Adenylate cyclase from fasciola hepatica. 1. Ligand specificity and of adenylate cyclase-couple serotonin receptors. Mol. Pharmacol. 14, 804–819.

    PubMed  CAS  Google Scholar 

  • Northup, J. K. and Mansour, T. E. (1978b) Adenylate cyclase from fasciola hepatica. 2. Role of guanine nucleotides in coupling adenylate cyclase and serotonin receptors. Mol. Pharmacol. 14, 820–833.

    PubMed  CAS  Google Scholar 

  • O’Brien, R. A., Boublik, M., and Spector, S. (1975) Immunopharmacological studies using 5-hydroxytryptamine antibody. J. Pharmacol. Exper. Therap. 194, 145–153.

    Google Scholar 

  • Pagel, J., Christian, S. T., Quayle, E. S., and Monti, J. A. (1976) A serotonin sensitive adenylate cyclase in mature rat brain synaptic membranes. Life Sci. 19, 819–824.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, G. C., Robinson, G. A., Manian, A. A., and Sulser, F. (1972) Modification by psychotropic drugs of the cyclic AMP response to norepinephrine in the rat brain in vitro. Psychopharmacologia (Beri.) 23, 201–211.

    Article  CAS  Google Scholar 

  • Palmer, G. C., Sulser, F., and Robison, G. A. (1973) Effects of neurohumoral and adrenergic agents on cyclic AMP levels in various areas of the rat brain in vitro. Neuropharmacology 12, 327–337.

    Article  PubMed  CAS  Google Scholar 

  • Pedigo, N. W., Yamamura, H. I., and Nelson, D. L. (1981) Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J. Neurochem. 36, 220–226.

    Article  PubMed  CAS  Google Scholar 

  • Premont, J., Daguet-de Montety, M. C., Herbet, A., Glowinski, J., Bockaert, J., and Prochiantz, A. (1983) Biogenic amines and adenosine-sensitive adenylate cyclases in primary cultures of striatal neurons. Develop. Brain Res. 9, 53–61.

    Article  CAS  Google Scholar 

  • Rasenick, M. M., Valley, S., Manuelidis, E. E., and Manuelidis, L. (1986) Creutzfeldt-Jakob infection increases adenylate cyclase activity in specific regions of guinea pig brain. FEBS 198, 164–168.

    Article  CAS  Google Scholar 

  • Rasmussen, H. and Barrett, P. Q. (1984) Calcium messenger system: an integrated view. Physiol. Rev. 64, 938–984.

    PubMed  CAS  Google Scholar 

  • Robertson, H. A. and Osborne, N. N. (1979) Putative neurotransmitters in the rat annelid central nervous system: presence of 5-hydroxytryptamine and octopamine-stimulated adenylate cyclases. Comp. Biochem. Physiol. [C] 64, 7–14.

    Article  CAS  Google Scholar 

  • Roch, P. and Kalix, P. (1975) Effects of biogenic amines on the concentration of adenosine 31,51-monophosphate in bovine superior cervical ganglion. Neuropharmacology 14, 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Rudman, D. (1978) Effect of melanotropic peptides on adenosine 31,51-monophosphate accumulation by regions of rabbit brain. Endocrinology 103, 1556–1561.

    Article  PubMed  CAS  Google Scholar 

  • Salzman, E. W. and Levine, L. (1971) Cyclic 31,51-adenosine monophosphate in human blood platelets. J. Clin. Invest. 50, 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Sato, A., Onaya, T., Kotani, M., Harada, A., and Yamada, T. (1974) Effects of biogenic amines on the formation of adenosine 31,51-monophosphate in porcine cerebral cortez, hypothalamus and anterior pituitary slices. Endocrinology 94, 1311–1317.

    Article  PubMed  CAS  Google Scholar 

  • Sawada, M., Ichinose, M., Ito, I., Maeno, T., McAdoo, D. J. (1984) Effects of 5-hydroxytryptamine on membrane potential, contractility, accumulation of cyclic AMP, and Ca++ movements in anterior aorta and ventricle of Aplysia. J. Neurophys. 51, 361–374.

    CAS  Google Scholar 

  • Schiebler, W., Jahn, R., Doucet, J. P., Rothlein, J., and Greengard, P. (1986) Characterization of synapsin I binding to small synaptic vesicles. J. Biol. Chem. 261, 8383–8390.

    PubMed  CAS  Google Scholar 

  • Schnellmann, R. G., Waters, S. J., and Nelson, D. L. (1984) [3H]5-Hydroxy-tryptamine binding sites: species and tissue variation. J. Neurochem. 42, 65–70.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, J. and Daly, J. W. (1973) Cyclic adenosine 31,51-monophosphate in guinea pig cerebral cortical slices. J. Biol. Chem. 248, 860–866.

    PubMed  CAS  Google Scholar 

  • Seamon, K. B. and Wetzel, B. (1984) Interaction of forskolin with dually regulated adenylate cyclase. Adv. Cyclic Nuc. Prot. Phosph. Res. 17, 91–99.

    CAS  Google Scholar 

  • Shah, S. V., Northrup, T. E., Hui, Y. S. F., and Dousa, T. P. (1979) Action of serotonin (5-hydroxytryptamine) on cyclic nucleotides in glomeruli of rat renal cortex. Kidney Int. 15, 463–472.

    Article  PubMed  CAS  Google Scholar 

  • Shenker, A., Maayani, S., Weinstein, H., and Green, J. P. (1983) Enhanced serotonin-stimulated adenylate cyclase activity in membranes from adult guinea pig hippocampus. Life Sci. 32, 2335–2342.

    Article  PubMed  CAS  Google Scholar 

  • Shenker, A., Maayani, S., Weinstein, H., and Green, J. P. (1985) Two 5-HT receptors linked to adenylate cyclase in guinea pig hippocampus are discriminated by 5-carboxamidotryptamine and spiperone. Eur. J. Pharmacol. 109, 427–429.

    Article  PubMed  CAS  Google Scholar 

  • Shenker, A., Maayani, S., Weinstein, H., and Green, J. P. (1987) Pharmacological characterization of two 5-hydroxytryptamine receptors coupled to adenylate cyclase in guinea pig hippocampal membranes. Mol. Pharmacol. 31, 357–367.

    PubMed  CAS  Google Scholar 

  • Sheppard, H. and Burghardt, C. R. (1970) The stimulation of adenylyl cyclase of rat erythrocyte ghosts. Mol. Pharmacol. 6, 425–429.

    PubMed  CAS  Google Scholar 

  • Sheppard, H. and Burghardt, C. R. (1971) The effect of alpha, beta, and dopamine receptor-blocking agents on the stimulation of rat erythrocyte adenyl cyclase by dihydroxyphenethylamines and their β-hydroxylated derivatives. Mol. Pharmacol. 7, 1–7.

    PubMed  CAS  Google Scholar 

  • Shimizu, H., Creveling, C. R., and Daly, J. (1970) Stimulated formation of adenosine 31,51-cyclic phosphate in cerebral cortex: synergism between electrical activity and biogenic amines. Proc. Natl Acad. Sci. USA 65, 1033–1040.

    Article  PubMed  CAS  Google Scholar 

  • Sills, M., Wolfe, B. B., and Frazer, A. (1984) Multiple states of the 5-hydroxy-tryptaminel receptor as indicated by the effects of GTP on [3H]5-hydroxytryptamine binding in rat frontal cortex. Mol. Pharmacol. 26, 10–18.

    PubMed  CAS  Google Scholar 

  • Skolnick, P., Huang, M., Daly, J., and Hoffer, B. (1973) Accumulation of adenosine 31,51-monophosphate in incubated slices from discrete regions of squirrel monkey cerebral cortex: effect of norepinephrine, serotonin and adenosine. J. Neurochem. 21, 237–240.

    Article  PubMed  CAS  Google Scholar 

  • Stockmeier, C. A., Martino, A. M., and Kellar, K. J. (1985) A strong influence of serotonin axons on β-adrenergic receptors in rat brain. Science 230, 323–325.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland, E. W. and Rail, T. W. (1960) The relation of adenosine-31,51-phosphate and Phosphorylase to the actions of catecholamines and other hormones. Pharmacol. Rev. 12, 265–299.

    CAS  Google Scholar 

  • Trevethick, M. A., Feniuk, W., and Humphrey, P. P. A. (1984) 5-hydroxy-tryptamine-induced relaxation of neonatal porcine vena cava in vitro. Life Sci. 35, 477–486.

    Article  Google Scholar 

  • Trevethick, M. A., Feniuk, W., and Humphrey, P. P. A. (1986) 5-carboxamidotryptamine: a potent agonist mediating relaxation and elevation of cyclic AMP in the isolated neonatal porcine vena cava. Life Sci. 38, 1521–1528.

    Article  PubMed  CAS  Google Scholar 

  • Tricklebank, M. D., Forler, C., and Fozard, J. R. (1985) The involvement of subtypes of the 5-HT1 receptor and of catecholaminergic systems in the behavioural response to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur. J. Pharmacol. 106, 271–282.

    Article  Google Scholar 

  • Tsang, D. and Lal, S. (1977) Effect of monoamine receptor agonists and antagonists on cyclic AMP accumulation in human cerebral cortex slices. Can. J. Physiol. Pharmacol. 55, 1263–1269.

    Article  PubMed  CAS  Google Scholar 

  • Tsang, D. and Lai, S. (1978) Accumulation of cyclic adenosine 31,51-mono-phosphate in human cerebellar cortex slices: effect of monoamine receptor agonists and antagonists. Brain Res. 140, 307–313.

    Article  PubMed  CAS  Google Scholar 

  • Umemura, S., Smyth, D. D., and Pettinger, W. A. (1986) α-adrenoceptor stimulation and cellular cAMP levels in microdissected fat glomeruli. Am. J. Physiol.250, F103–F108.

    PubMed  CAS  Google Scholar 

  • Vacas, M. I., Berria, M. I., Cardinali, D. P., and Lascano, E. F. (1984) Melatonin inhibits β-adrenoceptor-stimulated cyclic AMP accumulation in rat astroglial cell cultures. Neuroendocrinology 38, 176–181.

    Article  PubMed  CAS  Google Scholar 

  • Von Hungen, K. and Roberts, S. (1973) Adenylate cyclase receptors for adrenergic neurotransmitters in rat cerebral cortex. Eur. J. Biochem. 36, 391–401.

    Article  Google Scholar 

  • Von Hungen, K., Roberts, S., and Hill, D. F. (1974) Development and regional variations in neurotransmitter-sensitive adenylate cyclase systems in cell-free preparations from rat brain. J. Neurochem. 22, 811–819.

    Article  Google Scholar 

  • Von Hungen, K., Roberts, S., and Hill, D. F. (1975) Serotonin-sensitive adenylate cyclase activity in immature rat brain. Brain Res. 84, 257–267.

    Article  Google Scholar 

  • Weiss, B. and Costa, E. (1968) Selective stimulation of adenyl cyclase of rat pineal gland by pharmacologically active catecholamines. J. Pharmacol. Exper. Therap. 161, 310–319.

    CAS  Google Scholar 

  • Weiss, S. and Drummond, G. I. (1981) Dopamine- and serotonin-sensitive adenylate cyclase in the gill of Aplysia californica. Mol. Pharmacol. 20, 592–597.

    PubMed  CAS  Google Scholar 

  • Weiss, K. R., Mandelbaum, D. E., Schonberg, M., and Kupfermann, I. (1979) Modulation of buccal muscle contractility by serotonergic metacerebral cells in Aplysia: evidence for a role of cyclic adenosine monophosphate. J. Neurophysiol. 42, 791–803.

    PubMed  CAS  Google Scholar 

  • Weiss, K. R., Schonberg, M., Mandelbaum, D. E., and Kupfermann, I. (1978) Activity of an individual serotonergic neurone in Aplysia enhances synthesis of cyclic adenosine monophosphate. Nature 272, 727–728.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, S., Sebben, M., Kemp, D. E., and Bockaert, J. (1986) Serotonin 5-HT1 receptors mediate inhibition of cyclic AMP production in neurons. Eur. J. Pharmacol. 120, 227–230.

    Article  PubMed  CAS  Google Scholar 

  • Williams, B. C., McDougall, J. G., Tait, F., and Tait, S. A. S. (1981) Calcium efflux and steroid output from superfused rat adrenal cells: effects of potassium, adrenocorticotropic hormone, 5-hydroxytryptamine, adenosine 31:51-yclic monophosphate and angiotensins II and III. Clin. Sci. 61, 541–551.

    PubMed  CAS  Google Scholar 

  • Williams, B. C., Shaikh, S., and Edwards, D. R. W. (1984) The specificity of ketanserin in the inhibition of serotonin-induced steroidogenesis in the rat adrenal zona glomerulosa. J. Hypertension 2 (suppl 3), 559–561.

    CAS  Google Scholar 

  • Yatani, A., Codina, J., Brown, A. M., and Birnbaumer, L. (1987) Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein Gk. Science 235, 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura, K., Hiroshige, T., and Itoh, S. (1969) Lipolytic action of serotonin in brown adipose tissue in vitro. Japanese J. Pharmacol. 19, 176–186.

    CAS  Google Scholar 

  • Zieve, P. and Greenough, W. B. (1969) Adenyl cyclase in human platelets: activity and responsiveness. Biochem. Biophys. Res. Comm. 5, 462–466.

    Article  Google Scholar 

  • Zimmerman, D., Abboud, H. E., George, L. E., Edis, A. J., and Dousa, T. P. (1980) Serotonin stimulates adenosine 31,51-monophosphate accumulation in parathyroid adenoma. J. Clin. Endocrinol. Metab. 51, 1274–1278.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this chapter

Cite this chapter

De Vivo, M., Maayani, S. (1988). 5-HT Receptors Coupled to Adenylate Cyclase. In: Sanders-Bush, E. (eds) The Serotonin Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-4612-4560-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4560-5_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8912-8

  • Online ISBN: 978-1-4612-4560-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics