Advertisement

Famous Families of Numbers

  • John H. Conway
  • Richard K. Guy
Chapter

Abstract

Many families of numbers arise again and again in many different mathematical problems: Often they have been named after the mathematicians who investigated them. In this chapter we’ll meet Bell and Stirling, Ramanujan, Catalan, Bernoulli and Euler, Fibonacci and Lucas.

Keywords

Binary Tree Bernoulli Number Fibonacci Number Catalan Number Partition Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. I. Arnold. Bernoulli-Euler updown numbers associated with function singularities, their combinatorics and arithmetics, Duke Math. J. 63(1991): 537–555.MathSciNetCrossRefzbMATHGoogle Scholar
  2. V. I. Arnold. Snake calculus and combinatorics of Bernoulli, Euler and Springer numbers for Coxeter groups. Russian Math. Surveys 47(1992): 3–45.MathSciNetGoogle Scholar
  3. M. D. Atkinson. How to compute the series expansions of sec x and tan x. Amer. Math. Monthly 93(1986): 387–389.MathSciNetCrossRefzbMATHGoogle Scholar
  4. E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for your Mathematical Plays, Academic Press, 1982, 475–478, 501.zbMATHGoogle Scholar
  5. N. G. de Bruijn & B. J. M. Morselt. A note on plane trees. J. Combin. Theory 2(1967): 27–34.MathSciNetCrossRefzbMATHGoogle Scholar
  6. B. L. Burrows & R. F. Talbot. Sums of powers of integers. Amer. Math. Monthly 91(1984): 394–403.MathSciNetCrossRefzbMATHGoogle Scholar
  7. J. H. Conway & H. S. M. Coxeter. Triangulated polygons and frieze patterns. Math. Gaz. 57(1973): 87–94, 175–183; MR 57 # 1254–5.MathSciNetCrossRefzbMATHGoogle Scholar
  8. A. W. F. Edwards. A quick route to sums of powers. Amer. Math. Monthly 93(1986): 451–455.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Antal E. Fekete. Apropos two notes on notation. Amer. Math. Monthly 101(1994): 771–778.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Martin Gardner. Time Travel and other Mathematical Bewilderments, W. H. Freeman, New York, 1988, chapter 20, Catalan Numbers.zbMATHGoogle Scholar
  11. Johann Wolfgang von Goethe. Versuch die Métamorphosa der Pflanzen zu erklären, Gotha, 1790.Google Scholar
  12. H. W. Gould. Bell & Catalan Numbers: Research Bibliography of Two Special Number Sequences, Sixth Edition, Morgantown, WV, 1985.Google Scholar
  13. Ronald L. Graham, Donald E. Knuth & Oren Patashnik. Concrete Mathematics, A Foundation for Computer Science, Addison-Wesley, Reading, MA, 1989.zbMATHGoogle Scholar
  14. J. Karamata, Théorèmes sur la sommabilité exponentielle et d’autres sommabilités s’y rattachant. Mathematica (cluj), 9(1935): 164–178.zbMATHGoogle Scholar
  15. A. A. Kirillow. Variations on the triangular theme in S. G. Gindikin & E. B. Vinberg (editors). E. B. Dynkin Seminar on Lie Groups. Amer. Math. Soc., 1995.Google Scholar
  16. Donald E. Knuth. Two notes on notation. Amer. Math. Monthly 99(1992): 403–422.MathSciNetCrossRefzbMATHGoogle Scholar
  17. D. E. Knuth & T. J. Buckholtz. Computation of tangent, Euler and Bernoulli numbers. Math. Comput. 21(1967): 663–688.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Mark Krusemeyer. A parenthetical note (to a paper of Richard Guy). Math. Mag. 69(1996).zbMATHGoogle Scholar
  19. Michael J. Kuchinski. Catalan Structures and Correspondences. M.Sc Thesis, West Virginia University, 1977.Google Scholar
  20. Luo Jian-Jin. An Tu Ming, the first discoverer of the Catalan numbers. Neimenggu Daxue Xuebao 19(1988): 239–245; MR 90e:01007.MathSciNetzbMATHGoogle Scholar
  21. J. Millar, N. J. A. Sloane & N. E. Young. A new operation on sequences: The boustrophedon transform, J. Combin. Theory Ser. A 76(1996): 44–54.MathSciNetCrossRefzbMATHGoogle Scholar
  22. Th. Motzkin. Relations between hypersurface cross-ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products. Bull. Amer. Math. Soc. 54(1948): 352–360; MR 9: 489–490.MathSciNetCrossRefzbMATHGoogle Scholar
  23. C. D. Oakley & R. J. Wisner. Flexagons. Amer. Math. Monthly 64(1957): 143–154; MR 19: 241b.MathSciNetCrossRefzbMATHGoogle Scholar
  24. Przemyslaw Prusinkiewicz & Aristid Lindenmayer. The Algorithmic Beauty of Plants, with James S. Hanan, F. David Fracchia, Deborah R. Fowler, Martin J. M. de Boer & Lynn Mercer, Springer-Verlag, 1990.CrossRefzbMATHGoogle Scholar
  25. H. Rademacher. On the partition function p(n). Proc. London Math. Soc. (2), 43(1937): 241–254.MathSciNetzbMATHGoogle Scholar
  26. Ibrahim A. Salama & Lawrence L. Kupper. A geometric interpretation for the Eulerian numbers. Amer. Math. Monthly 93(1986): 51–52.MathSciNetCrossRefzbMATHGoogle Scholar
  27. J. O. Shallit, E2972. Another appearance of the Catalan numbers. Amer. Math. Monthly 89(1982): 698; solution David M. Wells, 93(1986): 217–218.MathSciNetCrossRefGoogle Scholar
  28. Ian Stewart. Mathematical Recreations: Daisy, Daisy, give me your answer, do. Sci. Amer. 272#1(Jan 1995): 96–99.CrossRefGoogle Scholar
  29. Peter Guthrie Tate. Proc. Royal Soc. Edinburgh VII(1870–71): 391–394.Google Scholar
  30. Helmut Vogel. A better way to construct the sunflower head. Math. Biosciences. 44(1979): 179–189.CrossRefGoogle Scholar
  31. D’Arcy Wentworth Thompson. On Growth and Form, Cambridge Univ. Press, 1952.Google Scholar
  32. C. W. Wardlaw. Organization and Evolution in Plants. Longmans Green, 1965.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • John H. Conway
  • Richard K. Guy

There are no affiliations available

Personalised recommendations