Skip to main content

Cellular Proto-oncogenes

  • Chapter
Oncogenes

Overview

Retroviral oncogenes originally were derived from genes in eukaryotic cells. The seminal discovery that DNA sequences within normal, uninfected, nonmalignant cells were homologous to retroviral oncogenes was made in 1976. Cellular proto-oncogenes have exon and intron structures typical of eukaryotic genes. Some exon sequences are well conserved among vertebrate and invertebrate species. The retroviral life cycle suggests a mechanism whereby cellular genes may be transduced by the viruses. The conservation of cellular proto-oncogenes among species suggests a fundamental role for them. These proto-oncogenes can be grouped according to their function or location in the cell: growth factors, growth factor receptors, nuclear proteins, and membrane proteins. The subcellular locations and functions of these proteins suggest that in normal cells they play a role in growth, development, and differentiation. Aberrant growth and development are characteristic of cancer, and the hypothesis that abnormal “activated” oncogenes contribute to the neoplastic state is therefore attractive. Changes activating normal proto-oncogenes to transforming oncogenes could occur at the DNA, RNA, or protein level. In vivo carcinogenesis is clearly a multistep process. The fact that single activated oncogenes are unable to transform normal primary cells, whereas co-introduction of at least two activated oncogenes does lead to transformation supports the genetic basis for this multistep process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Alitalo K, Schwab M, Lin CC, et al. Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci USA 80:1707, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Ar-Rushdi A, Nishikura K, Erickson J, et al. Differential expression of the translocated and untranslocated c-myc oncogene in Burkitt’s lymphoma. Science 222:390, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Bargmann CI, Hung M-C, Weinberg RA. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 46:649, 1986.

    Article  Google Scholar 

  • Bishop JM. Cellular oncogenes and retroviruses. Annu Rev Biochem 52:301, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Bishop JM. Oncogenes and proto-oncogenes. Hosp Prac 52:301, 1983.

    CAS  Google Scholar 

  • Blair DG, Oskarsson M, Wood TG, et al. Activation of the transforming potential of a normal cell sequence: a molecular model for oncogenes. Science 212:941, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Blick M, Westin E, Gutterman J, et al. Oncogene expression in human leukemia. Blood 64:1234, 1984.

    PubMed  CAS  Google Scholar 

  • Capon DJ, Seeburg PH, McGrath JP, et al. Activation of K-ras-2 gene in human colon and lung carcinomas by two different point mutations. Nature 304:507, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Cooper GM. Cellular transforming genes. Science 217:801, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Corcoran LM, Adams JM, Dunn AR, et al. Murine T lymphomas in which the cellular myc oncogene has been activated by retroviral insertion. Cell 37:113, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Dickson C, Smith R, Brookes S, et al. Tumorigenesis by mouse mammary tumor virus: proviral activation of a cellular gene in the common integration region int-2. Cell 37:529, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Eva A, Robbins KC, Andersen PR, et al. Cellular genes analogous to retroviral one genes are transcribed in human tumor cells. Nature 295:116, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Huang C-C, Hay N, Bishop JM. The role of RNA molecules in transduction of the proto-oncogene c-fps. Cell 44:935, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Land H, Parada LF, Weinberg RA. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–602, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Land H, Parada LF, Weinberg RA. Cellular oncogenes and multistep carcinogenesis. Science 222:771, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Marshall CJ, Hall A, Weiss RA. A transforming gene present in human sarcoma cell lines. Nature 311:671, 1982.

    Google Scholar 

  • Müller R, Slamon DJ, Tremblay JM, et al. Differential expression of cellular oncogenes during pre- and postnatal development of the mouse. Nature 299:640, 1982.

    Article  PubMed  Google Scholar 

  • Murphree AL, Benedict WF. Retinoblastoma: clues to human oncogenes. Science 223:1028, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Neel BG, Hayward WS, Robinson HL, et al. Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: oncogenesis by promoter insertion. Cell 23:323, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Nusse R, Van Ooyen A, Cox D, et al. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307:131, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Rowley J. Human oncogene locations and chromosome aberrations. Nature 301:290, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Ruley HE. Adenovirus early region 1A enables viral and cellular transforming gene to transform primary cells in culture. Nature 304:602–606, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Saito H, Hayday AC, Wiman K, et al. Activation of c-myc gene by translocation: a model for translocational control. Proc Natl Acad Sci USA 80:7476, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Slamon DJ, deKernion JB, Verma IM, et al. Expression of cellular oncogenes in human malignancies. Science 224:256, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Spector DH, Varmus HE, Bishop JM. Nucleotide sequences related to the transforming gene of avian sarcoma virus are present in DNA of uninfected vertebrates. Proc Natl Acad Sci USA 75:4102, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Turc-Carel C, Philip I, Berger M-P, et al. Chromosomal translocations in Ewing’s sarcoma. N Engl J Med 309:497, 1983.

    Google Scholar 

  • Westin EH, Wong-Staal F, Gelmann EP, et al. Expression of cellular homologues of retroviral one genes in human hematopoietic cells. Proc Natl Acad Sci USA 79:2490, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Willecke K, Schafer R. Human oncogenes. Hum Genet 66:132, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Yunis JJ. The chromosomal basis of human neoplasia. Science 221:227, 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Burck, K.B., Liu, E.T., Larrick, J.W. (1988). Cellular Proto-oncogenes. In: Oncogenes. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3718-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3718-1_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96423-2

  • Online ISBN: 978-1-4612-3718-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics