The Diversity of Chemoreceptors

  • Michael S. Laverack


Diversity is defined in the Oxford English Dictionary as “The condition or quality of being diverse, different or varied; difference, unlikeness.”


Accessory Structure Taste Receptor Oxford English Dictionary Homarus Americanus Ciliary Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ache, B.W. (1972) Amino acid receptors in the antennules of Homarus americanus, Comp. Biochem. Physiol., 42A: 807–811.CrossRefGoogle Scholar
  2. Ache, B.W. (1982) Chemoreception and thermoreception, in Biology of Crustacea, vol. 3, Bliss, D.H., Atwood, H.L. and Sandeman, D.C., (eds.), Academic Press, New York, pp. 369–398.Google Scholar
  3. Alkon, D.L., Akaike, T., and Harrigan, J. (1978) Interaction of chemosensory, visual and statocyst pathways in Hermissenda crassicornis, J. Gen. Physiol., 71: 177–194.PubMedCrossRefGoogle Scholar
  4. Allen, E.J. (1894) Studies on the nervous system of Crustacea. II. The stomatogastric system of Astacus and Homarus, Q.J. Microsc. Sci., 36: 483–496.Google Scholar
  5. Altner, H. and Prillinger, L. (1980) Ultrastructure of invertebrate chemo- thermo- and hygroreceptors and its functional significance, Int. Rev. Cytol., 67: 69–139.CrossRefGoogle Scholar
  6. Altner, I., Hatt, H., and Altner, H. (1983) Structural properties of bimodal chemo- and mechano-sensitive setae on the pereiopod chelae of the crayfish Austropotamobius torrentium, Cell Tissue Res., 228: 357–374.PubMedCrossRefGoogle Scholar
  7. Atema, J. (1977) Functional separation of smell and taste in fish and Crustacea, Olfaction Taste Proc. Int. Symp. 6: 165–174.Google Scholar
  8. Bailey, D.F. and Laverack, M.S. (1966) Aspects of the neurophysiology of Buccinum undatum L. (Gastropoda). I. Central responses to stimulation of the osphradium, J. Exp. Biol., 144: 131–148.Google Scholar
  9. Barber, S.B. (1961) Responses of Limulus chemoreceptors to amino acid stimulation, Am. Zool., 1: 435.Google Scholar
  10. Bardach, J. and Villars, T. (1974) The chemical senses of fishes, in Chemoreception by Marine Organisms, Grant, P.T. and Mackie, A.M. (eds.), Academic Press, London, pp. 49–104.Google Scholar
  11. Barth, F.G. (1980) Campaniform sensilla; another vibration receptor in the crab leg, Naturwiss enschaften 67: 201.CrossRefGoogle Scholar
  12. Bauer, U., Dudel, J., and Hatt, H. (1981) Characteristics of single chemoreceptive units sensitive to amino acids and related substances in the crayfish leg, J. Comp. Physiol., 144: 67–74.CrossRefGoogle Scholar
  13. Bicker, G., Davis, W.J., and Matera, M. (1982) Chemoreception and mechanoreception in the gastropod mollusc Pleurobranchaea californica, J. Comp. Physiol., 149: 235–250.CrossRefGoogle Scholar
  14. Bonar, D.B. (1978) Ultrastructure of a cephalic sensory organ in larvae of the gastropod Pheatilla sibogae (Aeolidacea, Nudibranchia), Tissue Cell, 10: 153–165.PubMedCrossRefGoogle Scholar
  15. Boyle, P.R. (1983) Ventilation rate and arousal in the octopus, Octopus vulgaris, J. Exp. Mar. Biol. Ecol., 69: 129–136.CrossRefGoogle Scholar
  16. Burke, R.D. (1983) The induction of marine invertebrate larvae; stimulus and response, Can. J. Zool., 61: 1701–1719.CrossRefGoogle Scholar
  17. Burke, R.D. (1984) Pheromonal control of metamorphosis in the Pacific sand dollar, Dendraster excentricus, Science, 225: 442–443.PubMedCrossRefGoogle Scholar
  18. Campbell, A.C. and Laverack, M.S. (1969) The responses of pedicellariae from Echinus esculentus, J. Exp. Mar. Biol. Ecol., 2: 191–214.CrossRefGoogle Scholar
  19. Cantell, C.E., Franzen, A., and Sensenbaugh, T. (1982) Ultrastructure of multiciliated collar cells in the pilidium larva of Lineus bilineatus, Zoomorphologie, 101: 1–15.CrossRefGoogle Scholar
  20. Carr, W.E.S. and Thompson, H. W. (1983) Adenosine 5’-monophosphate, an internal regulatory agent, is a potent chemoattractant for a marine shrimp, J. Comp. Physiol. A, 153: 47–53.CrossRefGoogle Scholar
  21. Case, J.F., and Gwilliam, G.F. (1961) Amino-acid sensitivity of the dactyl chemoreceptors of Carcinides maenas, Biol. Bull., 127: 428–446.CrossRefGoogle Scholar
  22. Chase, R. (1982) The olfactory sensitivity of snails, Achatina fulica, J. Comp. Physiol., 148: 225–235.CrossRefGoogle Scholar
  23. Chia, F.S. (1982) Fine structure of larval rhinophores of the nudibranch Rostanga pulchra with emphasis on sensory receptor cells, Cell Tissue Res. 225: 235–248.PubMedCrossRefGoogle Scholar
  24. Chia, F.S. and Koss, R.F. (1984) Fine structure of the cephalic sensory organ in the larva of the nudibranch Rostanga pulchra (Mollusca, Opisthobranchia, Nudibranchia), Zoomorphologie, 104: 131–139.CrossRefGoogle Scholar
  25. Cloney, R.A. (1977) Larval adhesive organs and metamorphosis in Ascidians. 1. Fine structure of the everting papillae of Distaplia occidentalis, Cell Tissue Res., 183: 423–444.PubMedCrossRefGoogle Scholar
  26. Crisp, D.J. (1974) Factors influencing the settlement of marine invertebrate larvae, in Chemoreception in Marine Animals, Grant, P.T. and Mackie, A.M. (eds.) Academic Press, New York, pp. 177–205.Google Scholar
  27. Crisp, M. (1981) Epithelial sensory structures of trochids, J. Mar. Biol. Assoc. U.K., 61: 95–106.CrossRefGoogle Scholar
  28. Crouau, Y. (1978) Organes sensoriels d’un Mysidace sous terrain anophthalme, Antromysis juberthiei: étude ultra-structural des aesthetascs, Bull. Mus. Nat. Hist. Nat. Paris, 3; Zoologie, 352: 165–175.Google Scholar
  29. Davis, W.J. and Matera E.M. (1982) Chemoreception in gastropod molluscs; electron microscopy of putative receptor cells, J. Neurobiol., 13: 79–84.PubMedCrossRefGoogle Scholar
  30. Derby, C.D. (1982) Structure and function of cuticular sensilla of the lobster, Homarus americanus, J. Crustacean Biol., 2: 1–21.CrossRefGoogle Scholar
  31. Derby, C.D. and Atema, J. (1982) Narrow-spectrum chemoreceptor cells in the walking legs of the lobster Homarus americanus; taste specialists, J. Comp. Physiol., 146: 181–189.CrossRefGoogle Scholar
  32. Derby, C.D., Carr, W.E.S. and Ache, B.W. (1984) Purinergic olfactory cells of crustaceans: response characteristics and similarities to internal purinergic cells of vertebrates, J. Comp. Physiol. A, 155: 341–349.CrossRefGoogle Scholar
  33. Dethier, V.G. (1980) Evolution of receptor sensitivity to secondary plant substances with special reference to deterrents, Am. Nat., 115: 45–66.CrossRefGoogle Scholar
  34. Felgenhauer, B.E. and Abele, L.G. (1983) Ultrastructure and functional morphology of feeding and associated appendages in the tropical freshwater shrimp Atya innocous (Herbst) with notes on its ecology, J. Crustacean Biol., 3: 336–363.CrossRefGoogle Scholar
  35. Fraenkel, G.S. (1959) The raison d’être of secondary plant substances, Science, 129: 1466–1470.PubMedCrossRefGoogle Scholar
  36. Fredman, S.M. and Jahan-Parwar, B. (1980) Processing of chemosensory and mechanosensory information in identifiable Aplysia neurons, Comp. Biochem. Physiol., 66A: 25–34.CrossRefGoogle Scholar
  37. Frings, H. and Frings, G. (1965) Chemosensory bases of food-finding and feeding in Aplysia juliana, Biol. Bull., 128: 211–217.CrossRefGoogle Scholar
  38. Ghiradella, H., Case, J.F., and Cronshaw, J. (1968) Structure of aesthetascs in selected marine and terrestrial decapods: chemoreceptor morphology and environment, Am. Zool., 8: 603–621.PubMedGoogle Scholar
  39. Ghiradella, H., Cronshaw, J., and Case, J.F. (1968) Fine structure of the aesthetasc hairs of Pagurus hirsutiusculus Dana, Protoplasma, 66: 1–20.CrossRefGoogle Scholar
  40. Gnatzy, W., Schmidt, M., and Rombke, J. (1984) Are the funnel-canal organs the “campaniform sensilla” of the shore crab Carcinus maenas (Crustacea: Decapoda)? I. Topography, external structure and basic organization, Zoomorphologie, 104: 11–20.CrossRefGoogle Scholar
  41. Hackney, C.M., McCrohan, C.R., and Hawkins, S.J. (1983) Putative sense organs on the pallial tentacles of the limpet Patella vulgata (L), Cell Tissue Res. 231: 663–674.PubMedCrossRefGoogle Scholar
  42. Hartmann, H.B. and Hartmann, M.S. (1977) The stimulation of filter feeding in the porcellain crab Petrolisthes cinctipes Randall by amino acids and sugars, Comp. Biochem. Physiol. 56A: 19–22.CrossRefGoogle Scholar
  43. Haszprunar, G. (1985) The fine morphology of the osphradial sense organs of the Mollusca. I. Gastropoda, Prosobranchia, Philos. Trans. R. Soc. Lond. B Biol. Sci., 307: 457–496.CrossRefGoogle Scholar
  44. Hatt, H. (1984) Structural requirements of amino acids and related compounds for stimulation of receptors in crayfish walking leg, J. Comp. Physiol., 155: 219–231.CrossRefGoogle Scholar
  45. Hatt, H. and Bauer, U. (1982) Electrophysiological properties of pyridine receptors in the crayfish walking leg, J. Comp. Physiol., 148: 221–224.CrossRefGoogle Scholar
  46. Hatt, H. and Schmiedel-Jakob, I. (1984) Electrophysiological studies of pyridine-sensitive units on the crayfish walking leg. I. Characteristics of stimulatory molecules, J. Comp. Physiol., 154: 855–863.CrossRefGoogle Scholar
  47. Hayes, W.F. and Barber, S.B. (1982) Peripheral synapses in Limulus chemoreceptors, Comp. Biochem. Physiol., 72A: 287–293.CrossRefGoogle Scholar
  48. Heimann, P. (1984) Fine structure and moulting of aesthetasc sense organs on the antennules of the isopod, Asellus aquaticus (Crustacea), Cell Tissue Res., 235: 117–128.PubMedCrossRefGoogle Scholar
  49. Hidaka, I., Ohsugi, T., and Kubomatsu, T. (1978) Taste receptor stimulation and feeding behaviour in the puffer, Chem Sens. Flavour, 3: 341–354.CrossRefGoogle Scholar
  50. Holborow, P.L. and Laverack, M.S. (1972) Presumptive photoreceptor structures of the trochophore of Harmothoe imbricata, Mar. Behav. Physiol., 1: 139–156.CrossRefGoogle Scholar
  51. Jahan-Parwar, B. (1972) Behavioural and electrophysiological studies on chemoreception in Aplysia, Am. Zool., 12: 525–537.Google Scholar
  52. Jahan-Parwar, B., Smith, M., and van Baumgarten, R. (1969) Activation of neurosecretory cells in Aplysia by osphradial stimulation, Am. J. Physiol., 216: 1246–1257.PubMedGoogle Scholar
  53. Jensen, K.R. (1982) Chemoreception as a factor in food location of Elysia cauze Marcus (Opisthobranchia, Ascoglossa), Mar. Behav. Physiol., 8: 205–218.CrossRefGoogle Scholar
  54. Jones, D.A. (1979) Chemical defense; primary or secondary function? Am. Nat. 113: 445–451.CrossRefGoogle Scholar
  55. Keil, T.A. and Steinbrecht, R. A. (1984) Mechanosensitive and olfactory sensilla of insects, in Insect Ultrastructure vol. 2 King, R.C. and Akai, H. (eds.), Plenum, pp. 477–516.CrossRefGoogle Scholar
  56. Lacalli, T.C. (1984) Structure and organization of the nervous system, in the trochophore larva of Spirobranchus, Philos. Trans. R. Soc. Lond. B Biol. Sci., 306: 79–135.CrossRefGoogle Scholar
  57. Lane, E.B. and Whitear, M. (1982) Sensory structures at the surface of fish skin. I. Putative chemoreceptors, Zool. J. Linn. Soc., 75: 141–152.CrossRefGoogle Scholar
  58. Laverack, M.S. (1963) Aspects of chemoreception in Crustacea, Comp. Biochem. Physiol., 8: 141–151.CrossRefGoogle Scholar
  59. Laverack, M.S. (1968) On the receptors of marine invertebrates, Oceanogr. Mar. Biol. Annu. Rev., 6: 249–324.Google Scholar
  60. Laverack, M.S. (1974) Structure of chemoreceptor cells, in Chemoreception in Marine Organisms, Grant, P.T., and Mackie, A.M. (eds.), Academic Press, New York, pp. 1–49.Google Scholar
  61. Laverack, M.S. (1975) Properties of chemoreceptors in marine Crustacea, Olfaction Taste, Proc. Int. Symp. 5: 141–146.Google Scholar
  62. Laverack, M.S. and Ardill, D.J. (1965) The innervation of the aesthetasc hairs of Panulirus argus, Q. J. Microsc. Sci., 106: 45–60.Google Scholar
  63. Laverack, M.S. and Barrientos, Y. (1985) Sensory and other superficial structures in living marine Crustacea, Trans. R. Soc. Edinb. Earth Sci., 76: 123–136.Google Scholar
  64. Luther, W. (1930) Versuche über die Chemorezeption der Brachyuren, Z. Vgl. Physiol., 12: 177–205.Google Scholar
  65. Mackie, A.M. (1981) Identification of the gustatory feeding stimulants, in Chemoreception in fishes, Hara, T.J., (ed.), Elsevier, North Holland, pp. 275–291.Google Scholar
  66. Mackie, A.M., Lasker, R., and Grant, P.T. (1968) Avoidance reactions of a mollusc Buccinum undatum to saponin-like surface-active substances in extracts of the starfish Asterias rubens and Marthasterias glacialis, Comp. Biochem. Physiol., 26: 415–428.CrossRefGoogle Scholar
  67. Mackie, A.M. and Mitchell, A.I. (1982) Further studies on the chemical control of feeding behaviour in the dover sole, Solea solea, Comp. Biochem. Physiol., 73A: 89–93.CrossRefGoogle Scholar
  68. Mackie, A.M. and Turner, A.B. (1970) Partial characterization of a biologically active steroid glycoside isolated from the starfish Marthasterias glacialis, Biochem. J., 117: 543–550.Google Scholar
  69. Matera, E.M. and Davis, W.J. (1982) Paddle cilia (discocilia) in chemosensitive structures of the gastropod mollusc Pleurobranchaea californica, Cell Tissue Res. 222: 25–40.PubMedCrossRefGoogle Scholar
  70. McLeese, D.W. (1970) Detection of dissolved substances by the American lobster (Homarus americanus) and olfactory attraction between lobsters, J. Fish Res. Board Can., 27: 1371–1378.CrossRefGoogle Scholar
  71. McLeese, D.W. (1973) Olfactory responses of lobsters (Homarus americanus) to solutions from prey species and to seawater extracts and chemical fractions of fish muscle and effects of antennule ablation, Mar. Behav. Physiol., 2: 237–249.CrossRefGoogle Scholar
  72. Mead, F., Gabouriant, D.T., and Corbière-Tichanée, G., (1976) Structure de l’organe sensoriel apical de l’antenne chez l’isopode terrestre Metaponorthus sexfasciatus Budde-Lund (Crustacea: Isopoda), Zoomorphologie, 53: 253–269.CrossRefGoogle Scholar
  73. Moore, A. and Cobb, J.L.S. (1985) Neurophysiological studies on the detection of amino acids in Ophiura ophiura, Comp. Biochem. Physiol., 82A: 395–399.CrossRefGoogle Scholar
  74. Phillips, D.W. (1975) Localisation and electrical activity of the distance chemoreceptors that mediate predator avoidance behaviour in Acmaea limatula and Acmaea scutum (Gastropoda, Prosobranchia), J. Exp. Biol., 63: 403–412.PubMedGoogle Scholar
  75. Phillips, D.W. (1976) A scanning electron microscope study of sensory tentacles on the mantle margin of the gastropod Acmaea (Notacmaea) scutum, Veliger 19: 266–271.Google Scholar
  76. Phillips, D.W. (1979) Ultrastructure of sensory cells on the mantle tentacles of the gastropod Notacmaea scutum, Tissue & Cell, 11: 623–632.CrossRefGoogle Scholar
  77. Reimer, A.A. (1971) Chemical control of feeding behaviour in Palythoa (Zoanthidae, Coelenterata), Comp. Biochem. Physiol. 40A: 19–38.CrossRefGoogle Scholar
  78. Reimer, A.A. (1973) Feeding behaviour in the sea anemone Calliactis polypus (Forskal 1975), Comp. Biochem. Physiol., 44A: 1289–1301.CrossRefGoogle Scholar
  79. Reimer, A.A. and Reimer, A. (1975) Chemical control of feeding in four species of tropical ophiuroids of the genus Ophioderma, Comp. Biochem. Physiol., 51A: 917–927.Google Scholar
  80. Robertson, R.M. and Laverack, M.S. (1979) Oesophageal sensors and their modulatory influence on oesophageal peristalsis in the lobster, Proc. R. Soc. Lond. B Biol. Sci., 206: 235–263.PubMedCrossRefGoogle Scholar
  81. Rossi, F., Nardi, G., Palumbo, A., and Prota, G. (1985) 5-thiolhistidine, a new amino acid from eggs of Octopus vulgaris, Comp. Biochem. Physiol., 80B: 843–845.Google Scholar
  82. Schmidt, M. and Gnatzy, W., (1984) Are the funnel canal organs the “campaniform sensilla” of the shore crab, Carcinus maenas (Decapoda: Crustacea)? II. Ultrastructure, Cell Tissue Res., 237: 87–93.CrossRefGoogle Scholar
  83. Seelinger, G. (1983) Response characteristics and specificity of chemoreceptors in Hemilepistus reaumuri (Crustacea: Isopoda), J. Comp. Physiol., 152: 219–229.CrossRefGoogle Scholar
  84. Shelton, R.G.J, and Laverack, M.S. (1968) Observations on a redescribed crustacean cuticular sense organ, Comp. Biochem. Physiol., 25: 1049–1059.CrossRefGoogle Scholar
  85. Shelton, R.G.J, and Laverack, M.S. (1970) Receptor hair structure and function in the lobster Homarus gammarus, J. Exp. Mar. Biol. Ecol., 4: 201–210.CrossRefGoogle Scholar
  86. Shepheard, P. (1974) Chemoreception in the antennule of the lobster, Homarus americanus, Mar. Behav. Physiol., 2: 261–273.Google Scholar
  87. Sloan, N.A. and Campbell, A.C. (1982) Perception of food, in Echinoderm Nutrition, Jangoux, M. and Lawrence, J.M. (eds.), Balkema, Rotterdam, pp. 3–23.Google Scholar
  88. Snow, P.J. (1973) Ultrastructure of the aesthetasc hairs of the littoral decapod, Paragrapsus gaimardii, Z. Zellforsch. Mikrosk. Anat., 138: 489–502.CrossRefGoogle Scholar
  89. Spencer, M. (1986) The innervation and chemical sensitivity of single aesthetasc hairs, J. Comp. Physiol., 158: 59–68.CrossRefGoogle Scholar
  90. Stinnakre, J. and Tauc, L. (1969) Central neuronal response to the activation of osmoreceptors in the osphradium of Aplysia, J. Exp. Biol., 51: 347–361.PubMedGoogle Scholar
  91. Strathmann, R.R. (1971) The feeding behaviour of planktotrophic echinoderm larvae: mechanisms, regulation and rates of suspension feeding, J. Exp. Mar. Biol. Ecol., 6: 109–160.CrossRefGoogle Scholar
  92. Strathmann, R.R. (1982) Cine films of particle capture by an induced local change of beat of lateral cilia of a bryozoan, J. Exp. Mar. Biol. Ecol., 62: 225–236.CrossRefGoogle Scholar
  93. Strathmann, R.R. (1984) Effect of flavour and size on selection of food by suspension- feeding plutei, Limnol. Oceanogr., 29: 357–361.CrossRefGoogle Scholar
  94. Sumida, B.H. and Case, J.F. (1983) Food recognition by Chaetopterus variopedatus (Renier): synergy of mechanical and chemical stimulation, Mar. Behav. Physiol., 9: 249–274.CrossRefGoogle Scholar
  95. Thurm, U. (1968) Steps in the transducer process of mechanoreceptors, Symp. Zool. Soc. Lond., 23: 199–216.Google Scholar
  96. Valentincic, T. (1979) Structure-activity relationships of amino acids in Marthasterias glacialis chemoreception, Proc. Europ. Colloq. Echinoderms, Balkema, Rotterdam, pp. 337–341.Google Scholar
  97. Welsch, U. and Storch, V. (1969) Über das Osphradium der prosobranchen Schnecken Buccinum undatum L und Neptunea antiqua (L), Z. Zellforsch. Mikrosk. Anat., 95: 317–330.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Michael S. Laverack
    • 1
  1. 1.Gatty Marine LaboratoryUniversity of St. AndrewsSt. AndrewsUK

Personalised recommendations