Advertisement

The Molecular Nature of Chemical Stimuli in the Aquatic Environment

  • William E. S. Carr

Abstract

Many aquatic organisms possess well-developed chemosensory systems that are adapted to monitoring changes in the chemical composition of the aqueous environment in which they live. For aquatic organisms. specific chemicals in the environment may evoke highly predictable changes in behavior. Facets of behavior known to be affected by external chemicals include those associated with feeding. avoiding predators, recognizing a suitable habitat, reproducing, migrating. and interacting with conspecific organisms. General reviews of this material are provided by Mackie and Grant ( 1974). Daloze, Braekman. and Tursch (1980). and Atema (1985).

Keywords

Chemical Signal Blue Crab Chemical Stimulus Quaternary Ammonium Compound Molecular Nature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ache, B.W. 1982. “Chemoreception and Thermoreception.” In The Biology of Crustacea, vol 3, edited by H.L. Atwood and D.C. Sandeman. New York: Academic Press.Google Scholar
  2. Ammerman, J.W., and F. Azam. 1985. Bacterial 5’-nucleotidase in aquatic ecosystems: a novel mechanism of phosphorous regeneration. Science 227:1338–1340.PubMedCrossRefGoogle Scholar
  3. Atema, J. 1980. Chemical senses, chemical signals and feeding behavior in fishes. In Fish Behavior and Its Use in the Capture and Culture of Fishes. Manilla: Int. Center Living Aquatic Resources Mgt.Google Scholar
  4. Atema, J. 1985. Chemoreception in the sea: adaptations of chemoreceptors and behavior to aquatic stimulus conditions. Soc. Exp. Biol. Sympos. 39:387–423.Google Scholar
  5. Atema, J., and D.G. Engstrom. 1971. Sex pheromone in the lobster, Homarus americanus. Nature 232:261–263.PubMedCrossRefGoogle Scholar
  6. Atema, J., and R.B. Gagosian. 1973. Behavioral responses of male lobsters to ecdysones. Mar. Behav. Physiol. 2:15–20.CrossRefGoogle Scholar
  7. Atema, J., and D. Stenzler. 1977. Alarm substance of the marine mud snail, Nassarius obsoletus: biological characterization and possible evolution. J. Chem. Ecol. 3:173–187.CrossRefGoogle Scholar
  8. Ayer, S.W., R.J. Andersen, H. Cun-heng, and J. Clardy. 1984. Phidolopin, a new purine derivative from the bryozoan Phidolopora pacifica. J. Org. Chem. 49:3869–3870.CrossRefGoogle Scholar
  9. Barber, J.T., E.G. Ellgard, and K. Herskowitz. 1982. The attraction of larvae of Culex pipiens quinquefasciatus Say. to ribonucleic acids and nucleotides. J. Insect Physiol. 28:585–588.CrossRefGoogle Scholar
  10. Boland, W., R. Terlinden, L. Jaenicke, and D.G. Muller. 1982. Binding-mechanism and sensitivity in gamete chemotaxis of the Phaeophyta Cutleria multifida. Eur. J. Biochem. 126:173–179.PubMedCrossRefGoogle Scholar
  11. Boland, W., F.-J. Marner, L. Jaenicke, D.G. Muller, and E. Folster. 1983. Comparative receptor study in gamete chemotaxis of the seaweeds Ectocarpus siliculosus and Cutleria multifida. An approach to interspecific communication of algal gametes. Eur. J. Biochem. 134:97–103.PubMedCrossRefGoogle Scholar
  12. Boland, W., L. Jaenicke, D.G. Muller, and A. Peters. 1984. Differentiation of algal chemoreceptors. A comparative receptor study with two seaweed pairs: Cutleria multifida/Syringoderma phinneyi and Desmarestia aculeata/Ectocarpus siliculosus (Phaeophyceae). Eur. J. Biochem. 144:169–176.PubMedCrossRefGoogle Scholar
  13. Boyd, A., and M. Simon. 1982. Bacterial chemotaxis. Annu. Rev. Physiol. 44:501–507.PubMedCrossRefGoogle Scholar
  14. Boyd, C.A.R. 1979. Chemical neurotransmission: an hypothesis concerning the evolution of neurotransmitter substances. J. Theor. Biol. 76:415–417.PubMedCrossRefGoogle Scholar
  15. Brown, I.D., and G.A. Kerkut. 1981. A study of the chemokinetic effects of various pharmacological agents upon Tetrahymena vorax. Comp. Biochem. Physiol. 69C:275–280.Google Scholar
  16. Burke, R.D. 1984. Pheromonal control of metamorphosis in the Pacific sand dollar, Dendraster excentricus. Science 225:442–443.PubMedCrossRefGoogle Scholar
  17. Burnstock, G. 1978. “A basis for distinguishing two types of purinergic receptors.” In Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach, edited by R.W. Straub and L. Bolis. New York: Raven Press.Google Scholar
  18. Carr, W.E.S. 1967. Chemoreception in the mud snail Nassarius obsoletus. II. Identification of stimulatory substances. Biol. Bull. 133:106–127.PubMedCrossRefGoogle Scholar
  19. Carr, W.E.S. 1976. Chemoreception and feeding behavior in the pigfish, Orthopristis chrysopterus: characterization and identification of stimulatory substances in a shrimp extract. Comp. Biochem. Physiol. 155A:153–157.CrossRefGoogle Scholar
  20. Carr, W.E.S. 1982. “Chemical stimulation of feeding behavior.” In Chemoreception in Fishes, edited by T.J. Hara. Amsterdam: Elsevier Scientific Publishing Co.Google Scholar
  21. Carr, W.E.S., and T.B. Chaney. 1976. Chemical stimulation of feeding behavior in the pinfìsh, Lagodon rhomboides: characterization and identification of stimulatory substances extracted from shrimp. Comp. Biochem. Physiol. 54A:437–441.CrossRefGoogle Scholar
  22. Carr, W.E.S., and C.D. Derby. 1986a. Behavioral chemoattractants for the shrimp, Palaemonetes pugio: identification of active components in food extracts and evidence of synergistic mixture interactions. Chem. Sens. 11:49–64.CrossRefGoogle Scholar
  23. Carr, W.E.S., and C.D. Derby. 1986b. Chemically stimulated feeding behavior in marine animals: the importance of chemical mixtures and the involvement of mixture interactions. J. Chem. Ecol. 12:987–1009.CrossRefGoogle Scholar
  24. Carr, W.E.S., and H.W. Thompson. 1983. Adenosine 5’-monophosphate, an internal regulatory agent, is a potent chemoattractant for a marine shrimp. J. Comp. Physiol. 153:47–53.CrossRefGoogle Scholar
  25. Carr, W.E.S., K.M. Blumenthal, and J.C. Netherton III. 1977. Chemoreception in the pigfish, Orthopristis chrysopterus: the contribution of amino acids and betaine to stimulation of feeding behavior by extracts. Comp. Biochem. Physiol. 58A:69–73.CrossRefGoogle Scholar
  26. Carr, W.E.S., J.C. Netherton III, and M.L. Milstead. 1984. Chemoattractants of the shrimp, Palaemonetespugio: variability in responsiveness and the stimulatory capacity of mixtures containing amino acids, quaternary ammonium compounds, purines and other substances. Comp. Biochem. Physiol. 77A:469–474.CrossRefGoogle Scholar
  27. C’imino, G., S. DeRosa, S. DeStefano, R. Morrone, and G. Sodano. 1985. The chemical defense of nudibranch molluscs. Tetrahedron 41:1093–1100.CrossRefGoogle Scholar
  28. Clark, E., and A. George. 1979. Toxic soles, Pardachirus marmoratus from the Red Sea and P. pavoninus from Japan, with notes on other species. Environ. Biol. Fishes 4:103–123.CrossRefGoogle Scholar
  29. Colombo, L., P.C. Belvedere, A. Marconato, and F. Bentivegna. 1982. “Pheromones in Teleost Fish.” In Proceedings of the International Symposium on Reproductive Physiology of Fish, 2-6 August 1982, edited by C.J.J. Richter and H.J.T. Goos. Wageningen, The Netherlands: Centre for Agricultural Publishing and Documentation.Google Scholar
  30. Crisp, D.J. 1974. “Factors Influencing the Settlement of Marine Invertebrate Larvae.” In Chemoreception in Marine Organisms, edited by P.T. Grant and A.M. Mackie. London: Academic Press.Google Scholar
  31. Croll, R.G. 1983. Gastropod chemoreception. Biol. Rev. 58:293–319.CrossRefGoogle Scholar
  32. Daloze, D., J.C. Braekman, and B. Tursch. 1980. “Chemical Communication in the Marine Environment.” In Animals and Environmental Fitness: Physiological and Biochemical Aspects of Adaptation and Ecology, vol 1, edited by R. Gilles. Oxford: Pergamon Press.Google Scholar
  33. de Ceccatty, M.P. 1974. The origin of the integrative systems: a change of view derived from research on coelenterates and sponges. Perspect. Biol. Med. Spring:379–390.Google Scholar
  34. Derby, C.D., and J. Atema. 1982. Chemosensitivity of walking legs of the lobster Homarus americanus: neurophysiological response spectrum and thresholds. J. Exp. Biol. 98:303–315.Google Scholar
  35. Derby, C.D., W.E.S. Carr, and B.W. Ache. 1984. Purinergic olfactory receptors of crustaceans are similar to internal purinergic receptors of vertebrates. J. Comp. Physiol. 155:341–349.CrossRefGoogle Scholar
  36. Dolci, S., F. Eusebi, and G. Siracusa. 1985. γ-Amino butyric-N-acid sensitivity of mouse and human oocytes. Dev. Biol. 109:242–246.PubMedCrossRefGoogle Scholar
  37. Dunham, P.H. 1978. Sex pheromones in crustacea. Biol. Rev. 53:555–583.CrossRefGoogle Scholar
  38. Faulkner, D.J., and M.T. Ghiselin. 1983. Chemical defense and evolutionary ecology of dorid nudibranchs and some other opisthobranch gastropods. Mar. Ecol. Prog. Ser. 13:295–301.CrossRefGoogle Scholar
  39. Fenical, W. 1975. Halogenation in the Rhodophyta. J. Phycol. 11:245–259.Google Scholar
  40. Ferguson, R.L., and W.G. Sunda. 1984. Utilization of amino acids by planktonic marine bacteria: importance of clean technique and low substrate additions. Limnol. Oceanogr. 29:258–274.CrossRefGoogle Scholar
  41. Friend, M.G., and J.J.B. Smith. 1977. Factors affecting feeding by bloodsucking insects. Annu. Rev. Entomol. 22:309–331.PubMedCrossRefGoogle Scholar
  42. Friend, W.G., and J.J.B. Smith. 1982. ATP analogs and other phosphate compounds as gorging stimulants for Rhodnius prolixus.J. Insect Physiol. 28:371–376.CrossRefGoogle Scholar
  43. Fuke, S., S. Konosu, and K. Ina. 1981. Identification of feeding stimulants for red sea bream in the extract of marine worm Perinereis brevicirrus. Bull. Jpn. Soc. Sci. Fish. 47:1631–1635.CrossRefGoogle Scholar
  44. Fuzessery, Z.M., W.E.S. Carr, and B.W. Ache. 1978. Antennular chemosensitivity in the spiny lobster, Panulirus argus: studies of taurine sensitive receptors. Biol. Bull. 154:226–240.CrossRefGoogle Scholar
  45. Gagosian, R.B., and J. Atema. 1973. Behavioral responses of male lobsters to ecdysone metabolites. Mar. Behav. Physiol. 2:115–120.CrossRefGoogle Scholar
  46. Geiselman, J.A., and O.J. McConnell. 1981. Polyphenols in brown algae Fucus vesiculosa and Ascophyllum nodosum: chemical defenses against the marine herbivorous snail, Littorina littorea. J. Chem. Ecol. 7:1115–1133.CrossRefGoogle Scholar
  47. Gerhart, D.J. 1984. Prostaglandin A2: an agent of chemical defense in the Caribbean gorgonian Plexaura homomalla. Mar. Ecol. Prog. Ser. 19:181–187.CrossRefGoogle Scholar
  48. Gleeson, R.A. 1980. Pheromone communication in the reproductive behavior of the blue crab, Callinectes sapidus. Mar. Behav. Physiol. 7:119–134.CrossRefGoogle Scholar
  49. Gleeson, R.A., M.A. Adams, and A.B. Smith III. 1984. Characterization of a sex pheromone in the blue crab, Callinectes sapidus: crustecdysone studies. J. Chem. Ecol. 10:913–921.CrossRefGoogle Scholar
  50. Greengard, P.C. 1981. Intracellular signals in the brain. The Harvey Lectures, Series 75. New York: Academic Press.Google Scholar
  51. Gurin, S, and W.E.S. Carr. 1971. Chemoreception in Nassarius obsoletus: the role of specific stimulatory proteins. Science 174:293–295.PubMedCrossRefGoogle Scholar
  52. Haldane, J.B.S. 1954. La signalisation animale. Annee Biol. 58:89–98.Google Scholar
  53. Hara, T.J. 1975. Olfaction in fish. Prog. Neurobiol. 5:271–335.PubMedCrossRefGoogle Scholar
  54. Hashimoto, Y., S. Konosu, N. Fusetani, and T. Nose. 1968. Attractants for eels in the extracts of short-necked clams. I. Survey of constituents eliciting feeding behavior by the omission tests. Bull. Jpn. Soc. Sci. Fish. 34:78–83.CrossRefGoogle Scholar
  55. Heeb, M.A. 1973. Large molecules and chemical control of feeding behavior in the starfish Asterias forbesi. Helgol. wiss. Meeresunters. 24:425–435.CrossRefGoogle Scholar
  56. Hidaka, I. 1982. “Taste Receptor Stimulation and Feeding Behavior in the Puffer.” In Chemoreception in Fish, edited by T.J. Hara. Amsterdam: Elsevier Scientific Publishing Co.Google Scholar
  57. Hochlowski, J.E., R.P. Walker, C. Ireland, and D.J. Faulkner. 1982. Metabolites of four nudibranchs of the genus Hypselodoris. J. Org. Chem. 47:88–91.CrossRefGoogle Scholar
  58. Howe, N.R. 1976. Behavior of sea anemones evoked by the alarm pheromone anthopleurine. J. Comp. Physiol. 107:67–76.CrossRefGoogle Scholar
  59. Howe, N.R., and L.G. Harris. 1978. Transfer of the sea anemone pheromone, anthopleurine, by the nudibranch Aeolidia papillosa. J. Chem. Ecol. 4:551–561.CrossRefGoogle Scholar
  60. Howe, N.R., and Y.M. Sheikh. 1975. Anthopleurine: a sea anemone alarm pheromone. Science 189:386–388.PubMedCrossRefGoogle Scholar
  61. Johnson, B.R., and B.W. Ache. 1978. Antennular chemosensitivity in the spiny lobster, Panulirus argus: amino acids as feeding stimuli. Mar. Behav. Physiol. 5:145–157.CrossRefGoogle Scholar
  62. Kinnel, R.B., R.K. Dieter, J. Meinwald, D. Van Engen, J. Clardy, T. Eisner, M.O. Stallard, and W. Fenical. 1979. Brasilenyne and cis-dihydrorhodophytin: antifeedant medium-ring haloethers from a sea hare (Aplysia brasiliana). Proc. Nat. Acad. Sci. USA 76:3576–3579.PubMedCrossRefGoogle Scholar
  63. Kirchman, D., H. Graham, D. Reish, and R. Mitchell. 1982. Lectins may mediate in the settlement and metamorphosis of Janua (Dexiospira) brasiliensis Grube (Polychaeta: Spirorbidae [1982]). Mar. Biol. Lett. 3:131–142.Google Scholar
  64. Kittredge, J.S., and F.T. Takahashi. 1972. The evolution of sex pheromone communication in the Arthropoda. J. Theor. Biol. 35:467–471.PubMedCrossRefGoogle Scholar
  65. Kittredge, J.S., M. Terry, and F.T. Takahashi. 1971. Sex pheromone activity of the molting hormone, crustecdysone, on male crabs. Fish. Bull. 69:337–343.Google Scholar
  66. Kittredge, J.S., F.T. Takahashi, J. Lindsey, and R. Lasker. 1974. Chemical signals in the sea: marine allelochemics and evolution. Fish. Bull. 72:1–11.Google Scholar
  67. Kusano, K., R. Miledi, and J. Stinnakre. 1982. Cholinergic and catecholaminergic receptors in the Xenopus oocyte membrane. J. Physiol. (Lond.) 328:143–170.Google Scholar
  68. Larman, V.N. 1984. Protein extracts from some marine animals which promote barnacle settlement: possible relationship between a protein component of arthropod cuticle and actin. Comp. Biochem. Physiol. 77B:73–81.Google Scholar
  69. Larman, V.N., P.A. Gabbott, and J. East. 1982. Physico-chemical properties of the settlement factor proteins from the barnacle Balanus balanoides. Comp. Biochem. Physiol. 72B:329–338.Google Scholar
  70. Lenhoff, H.M. 1981. “Biology and Physical Chemistry of Feeding Response of Hydra.” In Biochemistry of Taste and Olfaction, edited by R.H. Cagan and M.R. Kare. New York: Academic Press.Google Scholar
  71. Lenhoff, H.M., and W. Heagy. 1977. Aquatic invertebrates: model systems for the study of receptor activation and evolution of receptor proteins. Annu. Rev. Pharmacol. Toxicol. 17:243–258.PubMedCrossRefGoogle Scholar
  72. Lenhoff, H.M., and K.J. Lindstedt. 1974. “Chemoreception in Aquatic Invertebrates with Special Emphasis on the Feeding Behavior of Coelenterates.” In Chemoreception in Marine Organisms, edited by P.T. Grant and A.M. Mackie. New York: Academic Press.Google Scholar
  73. Lentz, T.L. 1968. Primitive Nervous Systems. New Haven: Yale University Press.Google Scholar
  74. Liley, N.R. 1982. Chemical communication in fish. Can. J. Fish. Aąuat. Sci. 39:22–35.CrossRefGoogle Scholar
  75. Liley, N.R., and N.E. Stacey. 1983. “Hormones, Pheromones, and Reproductive Behavior in Fish.” In Fish Physiology, vol. 9, edited by W.S. Hoar, D.J. Randall, and E.M. Donaldson. New York: Academic Press.Google Scholar
  76. Lindstedt, K.J. 1971. Chemical control of feeding behavior. Comp. Biochem. Physiol. 39A:553–581.CrossRefGoogle Scholar
  77. Lucas, J.S., R.J. Hart, M.E. Howden, and R. Salathe. 1979. Saponins in eggs and larvae of Acanthaster planci (L.) (Asteroidea) as chemical defences against planktivorous fish. J. Exp. Mar. Biol. Ecol. 40:155–165.CrossRefGoogle Scholar
  78. Mackie, A.M. 1970. Avoidance reactions of marine invertebrates to either steroid glycosides of starfish or synthetic surface-active agents. J. Exp. Mar. Biol. Ecol. 5:63–69.CrossRefGoogle Scholar
  79. Mackie, A.M. 1973. The chemical basis of food detection in the lobster Homarus gammarus. Mar. Biol. 21:103–108.CrossRefGoogle Scholar
  80. Mackie, A.M. 1982. “Identification of the Gustatory Feeding Stimulants.” In Chemoreception in Fishes, edited by T.J. Hara. Amsterdam: Elsevier Scientific Publishing Co.Google Scholar
  81. Mackie, A.M., and J.W. Adron. 1978. Identification of inosine and inosine-5’-monophosphate as the gustatory feeding stimulants for the turbot, Scophthalmus maximus. Comp. Biochem. Physiol. 60A.79–83.CrossRefGoogle Scholar
  82. Mackie, A.M., and J.W. Adron. 1980. Chemical nature of feeding stimulants for the juvenile Dover sole Solea solea (L.). J. Fish Biol. 16:701–708.CrossRefGoogle Scholar
  83. Mackie, A.M., and P.T. Grant. 1974. “Interspecies and Intraspecies Communication by Marine Invertebrates.” In Chemoreception in Marine Organisms, edited by P.T. Grant and A.M. Mackie. London: Academic Press.Google Scholar
  84. Mackie, A.M., and A.I. Mitchell. 1982. Further studies on the chemical control of feeding behavior in the Dover sole, Solea solea. Comp. Biochem. Physiol. 73A:89–93.CrossRefGoogle Scholar
  85. Mackie, A.M., and A.I. Mitchell. 1983. Studies on the chemical nature of feeding stimulants for the juvenile European eel, Anquilla anquilla (L.). J. Fish Biol. 22:425–430.CrossRefGoogle Scholar
  86. Mackie, A.M., H.T. Singh, and J.M. Owen. 1977. Studies on the distribution, biosynthesis and function of steroidal saponins in echinoderms. Comp. Biochem. Physiol. 56B:9–14.Google Scholar
  87. Manahan, D.T., S.H. Wright, and G.C. Stephens. 1983. Simultaneous determination of net uptake of 16 amino acids by a marine bivalve. Am. J. Physiol. 244:R832-R838.PubMedGoogle Scholar
  88. Mato, J.M., B. Jastorff, M. Morr, and T.M. Konijn. 1978. A model for cyclic AMP-chemoreceptor interaction in Dictyostelium discoideum. Biochem. Biophys. Acta 544:309–314.PubMedGoogle Scholar
  89. McGrath, S.M., and C.W. Sullivan. 1981. Community metabolism of adenylates by microheterotrophs from the Los Angeles harbor and Southern California coastal waters. Mar. Biol. 62:217–226.CrossRefGoogle Scholar
  90. Mopper, K., and P. Lindroth. 1982. Diel and depth variations in dissolved free amino acids and ammonium in the Baltic Sea determined by shipboard HPLC analysis. Limnol. Oceanogr. 27:336–347.CrossRefGoogle Scholar
  91. Morse, A.N.C., and D.E. Morse. 1984. Recruitment and metamorphosis of Haliotis larvae induced by chemicals uniquely available at the surfaces of crustose red algae. J. Exp. Mar. Biol. Ecol. 75:191–215.CrossRefGoogle Scholar
  92. Morse, D.E. 1984. “Biochemical Control of Larval Recruitment and Fouling.” In Marine Biodeterioration: An Interdisciplinary Study, edited by J.D. Costlow and R.C.E. Tipper. Annapolis: Naval Institute Press.Google Scholar
  93. Morse, D.E., N. Hooker, H. Duncan, and L. Jensen. 1979. γ-Aminobutyric acid, a neurotransmitter, induces planktonic abalone larvae to settle and begin metamorphosis. Science 204:407–410.PubMedCrossRefGoogle Scholar
  94. Muller, D.G., G. Gassmann, and K. Luning. 1979. Isolation of a spermatozoid-releasing substance from female gametophytes of Laminaria digitata. Nature 279:430–431.PubMedCrossRefGoogle Scholar
  95. Norris, J.N., and W. Fenical. 1982. “Chemical Defense in Tropical Marine Algae.” In The Atlantic Barrier Reef Ecosystem at Carrie Bow Bay, Belize. I. Structure and Communities, edited by K. Rutzler and I.G. Macintyre. Smithson. Contrib. Mar. Sci. 12, Washington: Smithsonian Institution Press.Google Scholar
  96. Ohsugi, T., I. Hidaka, and M. Ikeda. 1978. Taste receptor stimulation and feeding behavior in the puffer, Fugu pardalis. II. Effects produced by mixtures of constituents of clam extracts. Chem. Sens. Flavour 3:355–368.CrossRefGoogle Scholar
  97. Olsson, R.A., E.M. Khouri, J.L. Bedynek, Jr., and J. McLean. 1979. Coronary vasoactivity of adenosine in the conscious dog. Circ. Res. 45:468–478.PubMedGoogle Scholar
  98. Ordal, G.W. 1985. Bacterial chemotaxis: biochemistry of behavior in a single cell. CRC Crit. Rev. Microbiol. 12:95–130.CrossRefGoogle Scholar
  99. Pfeiffer, W., G. Riegelbauer, G. Meier, and B. Schleiver. 1985. Effect of hypoxanthine-3(N)-oxide and hypoxanthine-1(N)-oxide on central nervous excitation of the black tetra Gymnocorymbus ternetzi (Characidae, Ostariophysi, Pisces) indicated by dorsal light response. J. Chem. Ecol. 11:507–523.CrossRefGoogle Scholar
  100. Phillis, J.W., and P.H. Wu. 1981. The role of adenosine and its nucleotides in central synaptic transmission. Prog. Neurobiol. 16:187–239.PubMedCrossRefGoogle Scholar
  101. Pierce, S.K. 1982. Invertebrate cell volume control mechanisms: a coordinated use of intracellular amino acids and inorganic ions as osmotic solute. Biol. Bull. 163:405–419.CrossRefGoogle Scholar
  102. Poulet, S.A., V. Martin-Jezequel, and R.N. Head. 1984. Distribution of dissolved free amino acids in the Ushant front region. Mar. Ecol. Prog. Ser. 18:49–55.CrossRefGoogle Scholar
  103. Rideout, J.A., N.B. Smith, and M.D. Sutherland. 1979. Chemical defense of crinoids by polyketide sulphates. Experientia 35:1273–1274.PubMedCrossRefGoogle Scholar
  104. Rittshof, D., and J. Bonaventura. 1986. Macromolecular cues in marine systems. J. Chem. Ecol. 12:1013–1023.CrossRefGoogle Scholar
  105. Ryan, E.P. 1966. Pheromone: evidence in a decapod crustacean. Science 151:340–341.PubMedCrossRefGoogle Scholar
  106. Scheuer, P.J. 1977. Chemical communication of marine invertebrates. Bioscience 27:664–668.CrossRefGoogle Scholar
  107. Sleeper, H.L., V.J. Paul, and W. Fenical. 1980. Alarm pheromones from the marine opisthobranch Navanax inermis. J. Chem. Ecol. 6:57–70.CrossRefGoogle Scholar
  108. Spencer, M., and J.F. Case. 1984. Exogenous ecdysteroids elicit low threshold sensory responses in spiny lobsters. J. Exp. Zool. 229:163–166.CrossRefGoogle Scholar
  109. Stabell, O.B. 1984. Homing and olfaction in salmonids: a critical review with special reference to the Atlantic salmon. Biol. Rev. 59:333–388.CrossRefGoogle Scholar
  110. Stoecker, D. 1980. Chemical defenses of ascidians against predators. Ecology 61:1327–1334.CrossRefGoogle Scholar
  111. Stone, T.W. 1981. Physiological roles for adenosine and adenosine 5’ triphosphate in the nervous system. Neuroscience 6:523–555.PubMedCrossRefGoogle Scholar
  112. Tachibana, K., M. Sakaitanai, and K. Nakanishi. 1984. Pavoninins: shark-repelling ichthyotoxins from the defense secretions of the Pacific sole. Science 226:703–705.PubMedCrossRefGoogle Scholar
  113. Thompson, T.E. 1983. Detection of epithelial acid secretions in marine mollusks: review of techniques, and new analytical methods. Comp. Biochem. Physiol. 74A:615–621.CrossRefGoogle Scholar
  114. van den Hurk, R., and J.G.D. Lambert. 1983. Ovarian steroid glucuronides function as sex pheromones for male zebra fish, Brachydanio rerio. Can. J. Zool. 61:2381–2387.CrossRefGoogle Scholar
  115. Van Haastert, P.J.M., B. Jastorff, J.E. Pinas, and T.M. Konijn. 1982. Analogs of cyclic AMP as chemoattractants and inhibitors of Dictyostelium chemotaxis. J. Bacteriol. 149:99–105.PubMedGoogle Scholar
  116. von Frisch, K. 1941. Über einen Schreckstoff der Fischhaut und seine biologische Bedeutung. Z. Vgl. Physiol. 29:46–145.CrossRefGoogle Scholar
  117. Walker, R.P., J.E. Thompson, and D.J. Faulkner. 1980. Sesterterpenes from Spongia idia. J. Org. Chem. 45:4976–4979.CrossRefGoogle Scholar
  118. Weaver, N. 1983. “Pheromones and Behavior.” In Endocrinology of Insects, edited by R.G.H. Downer and H. Laufer. New York: Alan R. Liss, Inc.Google Scholar
  119. Whittaker, R.H. 1970. “The Biochemical Ecology of Higher Plants.” In Chemical Ecology, edited by E. Sondheimer and J.B. Simeone. New York: Academic Press.Google Scholar
  120. Whittaker, R.H., and P.P. Feeny 1971. Allelochemics: chemical interactions between species. Science 171:757–770.PubMedCrossRefGoogle Scholar
  121. Zimmer-Faust, R.K., W.C. Michel, J.E. Tyre, and J.F. Case. 1984. Chemical induction of feeding in California spiny lobster, Panulirus interrupts Randall: responses to molecular weight fractions of abalone. J. Chem. Ecol. 10:957–971.CrossRefGoogle Scholar
  122. Zuckerman, B.M., and H.B. Jansson. 1984. Nematode chemotaxis and possible mechanisms of host/prey recognition. Annu. Rev. Phytopathol. 22:95–113.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • William E. S. Carr
    • 1
  1. 1.Laboratory and Department of ZoologyUniversity of FloridaSt AugustineUSA

Personalised recommendations