Skip to main content
Log in

Chemically stimulated feeding behavior in marine animals

Importance of chemical mixtures and involvement of mixture interactions

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

A review is provided of the chemical components in tissue extracts that elicit feeding behavior in marine fish and crustaceans. For most species, the major stimulants of feeding behavior in excitatory extracts are an assemblage of common metabolites of low molecular weight including amino acids, quaternary ammonium compounds, nucleosides and nucleotides, and organic acids. It is often mixtures of substances rather than individual components that account for the stimulatory capacity of a natural extract. Recent studies using a shrimp,Palaemonetes pugio, are described in which behavioral bioassays were conducted with complex synthetic mixtures formulated on the basis of the composition of four tissue extracts. These results indicate that synergistic interactions occur among the mixture components. The neural mechanisms whereby marine crustaceans receive and code information about chemical mixtures are also reviewed. Narrowly tuned receptor cells, excited only by particular components of food extracts such as specific amino acids, nucleotides, quaternary ammonium compounds, and ammonium ions, are common in lobsters and could transmit information about mixtures as a labeled-line code. However, since physiological recordings indicate that most higher-level neurons in the brain each transmit information about many components of mixtures, rather than about a single component, it is suggested that information about a complex food odor is transmitted as an across-fiber pattern, instead of a labeled-line code. Electrophysiological recordings of responses of peripheral and central neurons of lobsters to odor mixtures and their components reveal that suppressive interactions occur, rather than the synergistic interactions noted earlier in the behavioral studies. Possible reasons for these differences are discussed. Evidence from the behavioral study indicates that the “direction” of a mixture interaction can be concentration-dependent and the synergism may occur at low mixture concentrations, while suppression may occur at high concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ache, B.W. 1974. The experimental analysis of host location in symbiotic marine invertebrates, pp. 45–60,in W. Vernberg (ed.). Symbiosis in the Sea. University of South Carolina Press, Columbia.

    Google Scholar 

  • Ache, B.W. 1982. Chemoreception and thermoreception, pp. 369–398,in H.L. Atwood and D.C. Sandeman (eds.). The Biology of Crustacea, Vol. 3. Academic Press, New York.

    Google Scholar 

  • Ache, B.W.,Johnson, B.R., andClark, E. 1978. Chemical attractants for the Florida spiny lobster,Panulirus argus. Tech. Paper No. 10, 22 pp. Florida Sea Grant, University of Florida.

  • Atema, J. 1977. Functional separation of smell and taste in fish and Crustacea, pp. 165–174,in J. LeMagnen and P. MacLeod (eds.). Olfaction and Taste VI. IRL Press, London.

    Google Scholar 

  • Atema, J. 1980. Chemical senses, chemical signals and feeding behavior in fishes, pp. 57–101,in J.E. Bardach, J.J. Magnuson, R.C. May, and J.M. Reinhart (eds.). Fish Behavior and Its Use in the Capture and Culture of Fishes. International Center for Living Aquatic Resources Management, Manila, Philippines

    Google Scholar 

  • Atema, J., Holland, K., andIkehara, W. 1980. Chemical search image: Olfactory responses of yellowfin tuna (Thunnus albacares) to prey odors.J. Chem. Ecol. 6:457–465.

    Google Scholar 

  • Bartoshuk, L.M. 1975. Taste mixtures: Is mixture suppression related to compression?Physiol. Behav. 14:643–649.

    Google Scholar 

  • Bell, S.S., andCoull, B.C. 1978. Field evidence that shrimp predation regulates meiofauna.Oecologia 35:141–148.

    Google Scholar 

  • Carr, W.E.S. 1976. Chemoreception and feeding behavior in the pigfish.Orthopristis chrysopterus: Characterization and identification of stimulatory substances in a shrimp extract.Comp. Biochem. Physiol. 155A:153–157.

    Google Scholar 

  • Carr, W.E.S. 1982. Chemical stimulation of feeding behavior, pp. 259–275,in T.J. Harra (ed.). Chemoreception in Fishes. Elsevier, Amsterdam.

    Google Scholar 

  • Carr, W.E.S., andChaney, T.B. 1976. Chemical stimulation of feeding behavior in the pinfish,Lagodon rhomboides: Characterization and identification of stimulatory substances extracted from shrimp.Comp. Biochem. Physiol. 54A:437–441.

    Google Scholar 

  • Carr, W.E.S., andDerby, C.D. 1986. Behavioral chemoattractants for the shrimp,Palaemonetes pugio: Identification of active components in food odors and evidence of synergistic mixture interactions.Chem. Senses. 11:49–64.

    Google Scholar 

  • Carr, W.E.S., andGurin, S. 1975. Chemoreception in the shrimp,Palaemonetes pugio: Comparative study of stimulatory substances in human serum.Biol. Bull. 148:380–392.

    Google Scholar 

  • Carr, W.E.S., andThompson, H.W. 1983. Adenosine 5′-monophosphate, an internal regulatory agent, is a potent chemoattractant for a marine shrimp.J. Comp. Physiol. 153:47–53.

    Google Scholar 

  • Carr, W.E.S., Gondeck, A.R., andDelanoy, R.L. 1976. Chemical stimulation of feeding behavior in the pinfish,Lagodon rhomboides: A new approach to an old problem.Comp. Biochem. Physiol. 54A:161–166.

    Google Scholar 

  • Carr, W.E.S., Blumenthal, K.M., andNetherton, J.D., III. 1977. Chemoreception in the pigfish,Orthopristis chrysopterus: The contribution of amino acids and betaine to stimulation of feeding behavior by various extracts.Comp. Biochem. Physiol. 58A:69–73.

    Google Scholar 

  • Carr, W.E.S., Netherton, J.C., III, andMilstead, M.L. 1984. Chemoattractants of the shrimp,Palaemonetes pugio: Variability in responsiveness and the stimulatory capacity of mixtures containing amino acids, quaternary ammonium compounds, purines and other substances.Comp. Biochem. Physiol. 77A: 469–474.

    Google Scholar 

  • Croll, R.G. 1983. Gastropod Chemoreception.Biol. Rev. 58:293–319.

    Google Scholar 

  • Davenport, D. 1966. The experimental analysis of behavior in symbiosis, pp. 381–429,in S.M. Henry (ed.). Symbiosis, Vol. I. Academic Press, New York.

    Google Scholar 

  • Derby, C.D. 1986. Chemoreceptor cells in aquatic invertebrates: Peripheral mechanisms of chemical signal processing,in J. Atema, R.R. Fay, A.N. Popper, and W.N. Tavolga (eds.). Sensory Biology of Aquatic Organisms. Springer, New York.

    Google Scholar 

  • Derby, C.D., andAche, B.W. 1984a. Quality coding of a complex odorant in an invertebrate.J. Neurophysiol. 51:906–924.

    Google Scholar 

  • Derby, C.D., andAche, B.W. 1984b. Electrophysiological identification of the stimulatory and interactive components of a complex odorant.Chem. Senses 9:201–218.

    Google Scholar 

  • Derby, C.D., andAtema, J. 1981. Selective improvement in responses to prey odors by the lobster,Homarus americanus, following feeding experience.J. Chem. Ecol. 7:1073–1080.

    Google Scholar 

  • Derby, C.D., andAtema, J. 1982. Narrow-spectrum chemoreceptor cells in the walking legs of the lobsterHomarus americanus: Taste specialists.J. Comp. Physiol. 146:181–189.

    Google Scholar 

  • Derby, C.D., Carr, W.E.S., andAche, B.W. 1984a. Purinergic olfactory cells of crustaceans: Response characteristics and similarities to internal purinergic cells of vertebrates.J. Comp. Physiol. 155:341–349.

    Google Scholar 

  • Derby, C.D., Hamilton, K.A., andAche, B.W. 1984b. Processing of olfactory information at three neuronal levels in the spiny lobster.Brain Res. 300:311–319.

    Google Scholar 

  • Derby, C.D., Ache, B.W., andKennel, E.W. 1985. Mixture suppression in olfaction: Electro-physiological evaluation of the contribution of peripheral and central neural components.Chem. Senses 10:301–316.

    Google Scholar 

  • Dunham, P.J. 1978. Sex pheromones in Crustacea.Biol. Rev. 53:555–583.

    Google Scholar 

  • Erickson, R.P. 1974. Parallel “population” neural coding in feature extraction, pp. 155–169,in F.O. Schmitt and F. G. Worden (eds.). The Neurosciences. The MIT Press, Cambridge, Mass.

    Google Scholar 

  • Fuke, S., Konosu, S., andIna, K. 1981. Identification of feeding stimulants for red sea bream in the extract of marine wormPerinereis brevicirrus.Bull. Jpn. Soc. Sci. Fish. 47:1631–1635.

    Google Scholar 

  • Fuzessery, A.M., Carr, W.E.S., andAche, B.W. 1978. Antennular chemosensitivity in the spiny lobster,Panulirus argus: Studies of taurine sensitive receptors.Biol. Bull. 154:226–240.

    Google Scholar 

  • Gleeson, R.A. 1980. Pheromone communication in the reproductive behavior of the blue crab,Callinectes sapidus.Mar. Behav. Physiol. 7:119–134.

    Google Scholar 

  • Gleeson, R.A., andAche, B.W. 1985. Amino acid suppression of taurine-sensitive chemosensory neurons.Brain Res. 335:99–107.

    Google Scholar 

  • Goh, Y., andTamura, T. 1980. Olfactory and gustatory responses to amino acids in two marine teleosts—red sea bream and mullet.Comp. Biochem. Physiol. 66C:225–229.

    Google Scholar 

  • Hara, T.J. 1975. Olfaction in fish.Prog. Neurobiol. 5:271–335.

    Google Scholar 

  • Harada, K., Maruyama, S., andNakano, K. 1984. Feeding attractants in chemical constituents of brown algae for abalone.Bull. Jpn. Soc. Sci. Fish. 50:1541–1544.

    Google Scholar 

  • Hashimoto, Y., Konosu, S., Fusetani, N., andNose, T. 1968. Attractants for eels in the extracts of short-necked clams. I. Survey of constituents eliciting feeding behavior by the omission test.Bull. Jpn. Soc. Sci. Fish. 34:78–83.

    Google Scholar 

  • Hidaka, I. 1982. Taste receptor stimulation and feeding behavior in the puffer, pp. 243–257,in T.J. Hara (ed.). Chemoreception in Fish. Elsevier, Amsterdam.

    Google Scholar 

  • Holland, K. 1978. Chemosensory orientation to food by a Hawaiian goatfish (Parupeneusporphyreus, Mullidae).J. Chem. Ecol. 4:173–186.

    Google Scholar 

  • Ina, K., andHigashi, K. 1978. Survey of feeding stimulants for the red sea bream (Chrysophrys major).J. Agric. Chem. Soc. Jpn. 52:19–23.

    Google Scholar 

  • Johnson, B.R., andAtema, J. 1983. Narrow-spectrum chemoreceptor cells in the antennules of the American lobster,Homarus americanus.Neurosci. Lett. 41:145–150.

    Google Scholar 

  • Johnson, B.R., Voigt, R., Borroni, P.T., andAtema, J. 1984. Response properties of lobster chemoreceptors: Tuning of primary taste neurons in walking legs.J. Comp. Physio. 155:593–604.

    Google Scholar 

  • Johnson, B.R., Borrow, P.R., andAtema, J. 1985. Mixture effects in primary olfactory and gustatory receptor cells from the lobster.Chem. Senses 10:367–373.

    Google Scholar 

  • Lenhoff, H.M., andLindstedt, K.J. 1974. Chemoreception in aquatic invertebrates with special emphasis on the feeding behavior of coelenterates, pp. 143–175,in P.T. Grant and A. M. Mackie (eds.). Chemoreception in Marine Organisms. Academic Press, New York.

    Google Scholar 

  • Liley, N.R. 1982. Chemical communication in fish.Can. J. Fish. Aquat. Sci. 39:22–35.

    Google Scholar 

  • Mackie, A.M. 1973. The chemical basis of food detection in the lobsterHomarus gammarus.Mar. Biol. 21:103–108.

    Google Scholar 

  • Mackie, A.M. 1982. Identification of the gustatory feeding stimulants, pp. 275–291,in T.J. Hara (ed.). Chemoreception in Fishes. Elsevier, Amsterdam.

    Google Scholar 

  • Mackie, A.M., andAdron, J.W. 1978. Identification of inosine and inosine-5′-monophosphate as the gustatory feeding stimulants for the turbot,Scophthalmus maximus.Comp. Biochem. Physiol. 60A:79–83.

    Google Scholar 

  • Mackie, A.M., andGrant, P.T. 1974. Interspecies and intraspecies chemoreception by marine invertebrates, pp. 105–141,in P.T. Grant and A.M. Mackie (eds.). Chemoreception in Marine Organisms. Academic Press, New York.

    Google Scholar 

  • Mackie, A.M., andMitchell, A.I. 1982. Further studies on the chemical control of feeding behavior in the Dover sole,Solea solea.Comp. Biochem. Physiol. 73A:89–93.

    Google Scholar 

  • Mackie, A.M., andMitchell, A.I. 1983. Studies on the chemical nature of feeding stimulants for the juvenile European eel,Anguilla anguilla (L.).J. Fish. Biol. 22:425–430.

    Google Scholar 

  • Mackie, A.M., andShelton, R.G.J. 1972. A whole-animal bioassay for the determination of food attractants of the lobsterHomarus gammarus.Mar. Biol. 14:217–221.

    Google Scholar 

  • Mackie, A.M., Adron, J.W., andGrant, P.T. 1980. Chemical nature of feeding stimulants for the juvenile Dover sole,Solea solea (L.).J. Fish Biol. 16:701–708.

    Google Scholar 

  • McLeese, D.W. 1970. Detection of dissolved substances by the American lobster (Homarus americanus) and olfactory attraction between lobsters.J. Fish. Res. Board Can. 27:1371–1378.

    Google Scholar 

  • Morse, D.E., Hooker, N., Duncan, H., andJensen, L. 1979. γ-Aminobutyric acid, a neuro-transmitter, induces planktonic abalone larvae to settle and begin metamorphosis.Science 204:407–410.

    Google Scholar 

  • Ohsugi, T., Hidaka, I., andIkeda, M. 1978. Taste receptor stimulation and feeding behavior in the puffer,Fugu pardalis. II. Effects produced by mixtures of constituents of clam extracts.Chem. Senses Flavor 3:355–368.

    Google Scholar 

  • Pawson, M.G. 1977. Analysis of a natural chemical attractant for whitingMerlangius merlangus L. and codGadus morhua L. using a behavioral bioassay.Comp. Biochem. Physiol. 56A: 129–135.

    Google Scholar 

  • Pearson, W.H., andOlla, B.L. 1977. Chemoreception in the blue crab,Callinectes sapidus.Biol. Bull. 153:346–354.

    Google Scholar 

  • Pearson, W.H., Sugarman, P.D., andWoodruff, D.L. 1979. Thresholds for detection and feeding behavior in the dungeness crab,Cancer magister (Dana).J. Exp. Mar. Biol. Ecol. 39:65–78.

    Google Scholar 

  • Rifkin, B., andBartoshuk, L.M. 1980. Taste synergism between monosodium glutamate and disodium 5′-guanylate.Physiol Behav. 24:1169–1172.

    Google Scholar 

  • Rittschof, D., Shepherd, R., andWilliams, L.G. 1984. Concentration and preliminary characterization of a chemical attractant of the oyster drill,Urosalpinx cinerea.J. Chem. Ecol. 10:63–79.

    Google Scholar 

  • Sleeper, H.L., Paul, V.J., andFenical, W. 1980. Alarm pheromones from the marine opisthobranch,Navanax inermis.J. Chem. Ecol. 6:57–70.

    Google Scholar 

  • Stabell, O.B. 1984. Homing and olfaction in salmonids: A critical review with special reference to the Atlantic salmon.Biol. Rev. 59:333–388.

    Google Scholar 

  • Stoecker, D. 1980. Chemical defenses of ascidians against predators.Ecology 61:1327–1334.

    Google Scholar 

  • Sun, H.H., andFenical, W. 1979. Rhipocephalin and rhipocephenal; toxic feeding deterrents from the tropical marine algaRhipocephatus phoenix.Tetrahedron Lett. 8:685–688.

    Google Scholar 

  • Tsushima, J., andIna, K. 1978. Survey of feeding stimulants for carps,Cyprinus carpio.J. Agric. Chem. Soc. Jpn. 52:225–229.

    Google Scholar 

  • Welsh, B.L. 1975. The role of grass shrimp,Palaemonetes pugio, in a tidal marsh ecosystem.Ecology 56:513–530.

    Google Scholar 

  • Zimmer-Faust, R.K., andCase, J.F. 1983. A proposed dual role of odor in foraging by the California spiny lobster,Panulirus interruptus (Randall).Biol. Bull. 164:341–353.

    Google Scholar 

  • Zimmer-Faust, R.K., Michel, W.C., Tyre, J.E., andCase, J.F. 1984. Chemical induction of feeding in California spiny lobster,Panulirus interruptus (Randall): Responses to molecular weight fractions of abalone.J. Chem. Ecol. 10:957–971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carr, W.E.S., Derby, C.D. Chemically stimulated feeding behavior in marine animals. J Chem Ecol 12, 989–1011 (1986). https://doi.org/10.1007/BF01638992

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01638992

Key words

Navigation