Skip to main content

Structural and Computational Studies of Anticonvulsants: A Search for Correlation Between Molecular Systematics and Activity

  • Chapter
Crystallographic and Modeling Methods in Molecular Design

Abstract

Epilepsy is the most common form of neurological disorder except for stroke (Porter, et al., 1987). The disease is a collection of disorders, and a patient may suffer from more than one form of epilepsy. In addition, not all anticonvulsant drugs are effective against all types of seizure. There are two main classes of epileptic seizure, partial and generalized. These two classes of seizure are initiated differently: partial seizures begin at a localized focal point in the brain and spread to surrounding neurons while generalized seizures show no localized initiation point. Control of these two seizure types requires different activity: partial seizures can be controlled by preventing the sudden electrical discharge at the focal point and generalized seizures can be prevented by a general lowering of neuronal reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allinger, N.L. 1982. MMP2: Molecular Mechanics, Quantum Chemistry program Exchange, Chemistry Department, Indiana University, Bloomington, Indiana 47405, USA.

    Google Scholar 

  • Camerman, A. and N. Camerman. 1971. The stereochemical basis of anticonvulsant drug action. The crystal and molecular structure of diphenylhydantoin, a noncentrosymmetric structure solved by centric symbolic addition. Acta Crystallogr., Sect. B, 27: 2205–2211.

    CAS  Google Scholar 

  • Catterall, W.A. 1987. Common modes of drug on Na channels: local anesthetics, antiarrhythmics and anticonvulsants. Trends in Pharmacol. Sci.,8:57–65

    Article  CAS  Google Scholar 

  • Clark, C.R., M.J.M. Wells, R.T. Sansom, G.N. Norris, R.C. Dockens, W.R. Ravis. 1984. Anticonvulsant activity of some 4-aminobenzamides. J. Med. Chem., 27: 779–782.

    Article  PubMed  CAS  Google Scholar 

  • Clark, C.R., R.T. Sansom, C.M. Lin, G.M. Norris. 1985. Anticonvulsant activity of some 4-aminobenzanilides. J. Med. Chem. 28: 1259–1262.

    Article  PubMed  CAS  Google Scholar 

  • Clark, C.R., C.M. Lin, and R.T.J. Sansom. 1986. Anticonvulsant activity of 2 and 3 aminobenzanides. J. Med. Chem. 29: 1534–1537.

    Article  PubMed  CAS  Google Scholar 

  • Clark, C.R., and T.W. Davenport. 1987a. Synthesis and anticonvulsant activity of analogues of 4-amino-N-(1-phenylethyl) benzamide. J. Med. Chem. 30: 1214–1218.

    Article  CAS  Google Scholar 

  • Clark, C.R., T.W. Davenport. 1987b. Anticonvulsant activity of some 4-aminophenyl acetamides. J. Pharmceut. Sci. 76:18–20.

    Article  CAS  Google Scholar 

  • Codding, P.W. 1984. The structure of 5,5-diphenyl-1,3-oxazolidine-2,4-dione, C15H11NO3. Acta Crystallogr. Sect. C, 40: 2071–2074.

    Google Scholar 

  • Codding, P.W., T.A. Lee and J.F. Richardson. 1984. Cyheptamide and 3-hydroxy-3-phenacyloxindole: structural aimilarity to diphenylhydantoin as the basis for anticonvulsant activity. J. Med. Chem., 27: 694–654.

    Article  Google Scholar 

  • Fujiwara, H., A.K. Bose, M.S. Manhas, and J. M. van der Veen. 1979. Non-bonded aromatic-amide attraction in 5-benzyl-3-arylhydantoins. J.C.S. Perkin II, 653–658.

    Google Scholar 

  • Goehring, R.R., J. Subrahmanyam, and J.F. Wolfe. 1983. Abstract MEDI 58, 186th ACS Meeting, Washington, D.C.

    Google Scholar 

  • Himes, V.L., A.D. Mighell and W.H. De Camp. 1981. Structure of carbamazepine: 5H-dibenz[b,f]azepine-5-carboxamide. Acta Crystallogr., Sect B, 37: 2242–2245.

    Article  Google Scholar 

  • Pople, J.A. and G.A. Segal. 1966. CNDO. J. Chen. Phys. 44: 3289–3295.

    CAS  Google Scholar 

  • Porter, R.J. and W.H. Pitlick. 1987. in “Basic and Clinical Pharmacology”, 3rd edn., Katzung, B.G., ed., Norwalk: Appleton and Lange, pp. 262–278.

    Google Scholar 

  • Robertson, D.W., E.E. Beedle, J.D. Leander, and R.C. Rathburn. 1985. Comparison of the anticonvulsant activities of the R[LY(R)] and S[LY(S)] enantiomers of 4-amino-n-(a-methylbenzyl)-benzamide. Pharmacologist 27: 231.

    Google Scholar 

  • Robertson, D.W., J.D. Leander, R. Lawson, E.E. Beedle, C.R. Clark, B.D. Potts, C.J. Parli. 1987. Discovery and anticonvulsant activity of a potent metabolic inhibitor 4-amino-N-(2,6 dimethylphenyl) 3,5-dimethylbenzamide. J. Med. Chem. 30: 1742–1746.

    Article  PubMed  CAS  Google Scholar 

  • Terrence, C.F., M. Sax, G.H. Fromm, C.-H. Chang, C.S. Yoo. 1983. Effect of baclofen enantiomorphs on the spinal trigeminal nucleus and steric similarities of carbamazepine. Pharmacol., 27: 85–94.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Codding, P.W., Duke, N.E., Aha, L.J., Palmer, L.Y., McClurg, D.K., Szkaradzinska, M.B. (1990). Structural and Computational Studies of Anticonvulsants: A Search for Correlation Between Molecular Systematics and Activity. In: Bugg, C.E., Ealick, S.E. (eds) Crystallographic and Modeling Methods in Molecular Design. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3374-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3374-9_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7987-7

  • Online ISBN: 978-1-4612-3374-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics