Skip to main content

Remote Sensing of Marine Photosynthesis

  • Chapter
Remote Sensing of Biosphere Functioning

Part of the book series: Ecological Studies ((ECOLSTUD,volume 79))

Abstract

The oceans occupy 70% of the earth’s surface, and estimates of their contribution to global photosynthesis range from 10% to 50% (Perry, 1986) or 20 to 50 × 1015 g C y−1 (McCarthy, 1984; Martin et al., 1987). Photosynthesis in the oceans is of interest as the basis of marine food chains (Ryther, 1969) and for its role in global biogeochemical cycles (e.g., Sundquist, 1985). The nature and dynamics of marine producers differ markedly from those of their terrestrial counterparts. The pool of living plant carbon in the oceans is small (about 0.5 to 5.0 gC m−2) and consists principally of microscopic unicellular organisms that turn over rapidly, on time scales of the order of days (Harris, 1980a). These turnover rates are thought to be controlled primarily by light and nutrient limitation. Because of the low biomass concentrations, estimates of photosynthetic rates have been based primarily on the measurement of rates of incorporation of 14C-labeled isotopes in incubations (Harris, 1984). While there has been a long-standing discussion of the interpretation of these data (Peterson 1980; Harris, 1984), debate has recently intensified with the development of alternative methodologies (e.g., Shulenberger and Reid, 1981; Jenkins and Goldman, 1985). Evidence of the importance of extremely small cells (picoplankton) (Johnson and Sieburth, 1979, 1982; Platt and Li, 1986) and of incubation artifacts such as metal contamination (Fitzwater et al., 1982) has cast further doubt on the large historical set of marine primary production estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altabet, M. A. (1988). Variations in nitrogen isotopic composition between sinking and suspended particles: implications for nitrogen cycling and particle transformation in the open ocean. Deep-Sea Res. 35:535–554.

    Article  CAS  Google Scholar 

  • Austin, R.W., and Petzold, T.J. (1981). The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner, pp. 239–256. In J.F.R. Gower (ed.), Oceanography from Space. Plenum Press, NY.

    Google Scholar 

  • Bannister, T.T. (1979). Quantitative description of steady-state, nutrient saturated algal growth, including nutrient saturation. Limnol. Oceanogr. 24:76–96.

    Article  CAS  Google Scholar 

  • Bishop, J.K.B., and Marra, J. (1984). Variations in primary production and particulate carbon flux through the base of the euphotic zone at the site of the Sediment Trap Intercomparison Experiment (Panama Basin). J. Mar. Res. 42:189–206.

    Article  Google Scholar 

  • Brown, O.B., Evans, R.H., Brown, J.W., Gordon, H.R., Smith, R.C., and Baker, K.S. (1985). Phytoplankton blooming off the U.S. East Coast. A satellite description. Science 229:163–167.

    Article  PubMed  CAS  Google Scholar 

  • Chavez, F.P., and Barber, R.T. (1987). An estimate of new production in the equatorial Pacific. Deep-Sea Res. 34:1229–1243.

    Article  Google Scholar 

  • Cleveland, J.S., and Perry, M.J. (1987). Quantum yield, relative specific absorption and fluorescence in nitrogen-limited Chaetoceros gracilis. Mar. Biol. 94:489–498.

    Article  CAS  Google Scholar 

  • Denman, K.L., and Abbott, M.R. (1988). Time evolution of surface chlorophyll patterns from cross-spectrum analysis of satellite color images. J. Geophys. Res. 93:6789–6798.

    Article  Google Scholar 

  • Dugdale, R.C., and Goering, J.J. (1967). Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12:196–206.

    Article  CAS  Google Scholar 

  • Eppley, R.W., and Peterson, B.J. (1979). Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282:677–680.

    Article  Google Scholar 

  • Eppley, R.W., Stewart, E., Abbott, M.R., and Heyman, U. (1985). Estimating ocean primary production from satellite chlorophyll: Introduction to regional differences and statistics for the southern Californian bight. J. Plankton Res. 7:57–70.

    Article  Google Scholar 

  • Eppley, R.W., Stewart, E., Abbott, M.R., and Owen, R.W. (1987). Estimating ocean production from satellite-derived chlorophyll: Insights from the Eastropac data set. Oceanologica Acta, Proc. Int. Symp. Equatorial Vertical Motion, Paris, May 6–10, 1985, pp. 109–113.

    Google Scholar 

  • Evans, G.T., and Parslow, J.S., (1985). A model of annual plankton cycles. Biol. Oceanogr. 3:327–347.

    Google Scholar 

  • Falkowski, P.G., Dubinsky, Z., and Wyman, K. (1985). Growth-irradiance relationships in phytoplankton. Limnol. Oceanogr. 30:311–321.

    Article  CAS  Google Scholar 

  • Fitzwater, S.E., Knauer, G.A., and Martin, J.H. (1982). Metal contamination and its effect on primary production measurements. Limnol. Oceanogr. 27:544–551.

    Article  CAS  Google Scholar 

  • Frost, B.W. (1987). Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: A model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus spp. Mar. Ecol. Prog. Ser. 39:49–68.

    Article  Google Scholar 

  • Gautier, C., Diak, G., and Masse, S. (1980). A simple physical model to estimate incident solar irradiance at the surface from GOES satellite data. J. Appl. Meteorol. 19:1005–1012.

    Article  Google Scholar 

  • Gordon, H.R. (1987). Calibration requirements and methodology for remote sensors viewing the ocean in the visible. Remote Sens. Envir. 22:103–126.

    Article  Google Scholar 

  • Gordon, H.R., Brown, J.W., Brown, O.B., Evans, R.H., and Clark, D.K. (1983). Nimbus-7 Coastal Zone Color Scanner: Reduction of its radiometric sensitivity with time. Appl. Optics 22:3929–3931.

    Article  CAS  Google Scholar 

  • Gordon, H.R., Brown, O.B., Evans, R.H., Brown, J.W., Smith, R.C., Baker, K.S., and Clark, D.K. (1988). A semi-analytic radiance model of ocean color. J. Geophys. Res. 93:10909–10924.

    Article  Google Scholar 

  • Gordon, H.R., and Clark, D.K. (1980a). Atmospheric effects in the remote sensing of phytoplankton pigment. Boundary-Layer Met. 18:299–313.

    Article  Google Scholar 

  • Gordon, H.R., and Clark, D.K. (1980b). Remote sensing optical properties of a stratified ocean: An improved interpretation. Appl. Optics 19:3428–3430.

    Article  CAS  Google Scholar 

  • Gordon, H.R., and Morel, A. (1983). Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A review. Springer-Verlag, NY.

    Google Scholar 

  • Gower, J.F.R., and Borstad, G.A. (1981). Use of the in vivo fluorescence line at 685 nm for remote sensing surveys of surface chlorophyll-a. pp 329–338. In J.F.R. Gower (ed.), Oceanography from Space. Plenum Press, NY.

    Google Scholar 

  • Harris, G.P. (1973). Diel and annual cycles of net phytoplankton photosynthesis in Lake Ontario. J. Fish. Res. Bd. Canad. 30:1779–1787.

    Article  Google Scholar 

  • Harris, G.P. (1978). Photosynthesis, productivity and growth: The physiological ecology of phytoplankton. Ergeb. Limnol. (beih. Arch. Hydrobiol.) 10:1–171.

    Google Scholar 

  • Harris, G.P. (1980a). Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, models and management. Canad. J. Fish. Aq. Sci. 37:877–900.

    Article  Google Scholar 

  • Harris, G.P. (1980b). The measurement of photosynthesis in natural populations of phytoplankton. pp. 129–187. In I. Morris (ed.), The Physiological Ecology of Phytoplankton. Blackwell, Oxford, England.

    Google Scholar 

  • Harris, G.P. (1984). Phytoplankton productivity and growth measurements: Past, present and future. J. Plankton Res. 6:699–713.

    Article  Google Scholar 

  • Harris, G.P. (1986). Phytoplankton Ecology: Structure, Function and Fluctuation. Chapman and Hall, London, England.

    Google Scholar 

  • Harris, G.P., Davies, P., Nunez, M., and Meyers, G. (1988). Interannual variability in climate and fisheries in Tasmania. Nature (London). 333:754–757.

    Article  Google Scholar 

  • Harris, G.P., Ganf, G.G., and Thomas, D.P. (1987). Productivity, growth rates and cell size distributions of phytoplankton in the SW Tasman Sea: Implications for carbon metabolism in the euphoric zone. J. Plankton Res. 9:1003–1030.

    Article  Google Scholar 

  • Harris, G.P., and Griffiths, F.B. (1987). On means and variances in aquatic food chains and recruitment to the fisheries. Freshwater Biol. 17:381–386.

    Article  Google Scholar 

  • Harris, G.P., Griffiths, F.B., and Thomas, D.P. (1989). Light and dark uptake and loss of 14C: Methodological problems with productivity measurements in oceanic waters. Hydrobiologia 173:95–105.

    Article  CAS  Google Scholar 

  • Harris, G.P., Haffner, G.D., and Piccinin, B.B. (1980). Physical variability and phytoplankton communities. II. Primary productivity by phytoplankton in a physically variable environment. Arch. Hydrobiol. 88:393–425.

    Google Scholar 

  • Harris, G.P., and Piccinin, B.B. (1977). Photosynthesis by natural phytoplankton populations. Arch. Hydrobiol. 80:405–457.

    CAS  Google Scholar 

  • Harris, G.P., Piccinin, B.B., and Van Pyn, J. (1983). Physical variability and phytoplankton communities: V. Cell size, niche diversification and the role of competition. Arch. Hydrobiol. 98:215–239.

    Google Scholar 

  • Heinrich, A.K. (1962). The life histories of plankton animals and seasonal cycles of plankton communities in the oceans. J. Cons. Int. Explor. Mer. 27:15–24.

    Google Scholar 

  • Jassby, A.T. and Platt, T. (1976). Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21:540–547.

    Article  CAS  Google Scholar 

  • Jenkins, W.J. (1982). Oxygen utilization rates in the North Atlantic subtropical gyre and primary production in oligotrophic systems. Nature (London) 300:246–248.

    Article  CAS  Google Scholar 

  • Jenkins, W.J., and Goldman, J.C. (1985). Seasonal oxygen cycling and primary production in the Sargasso Sea. J. Mar. Res. 43:465–491.

    Article  CAS  Google Scholar 

  • Johnson, P.W., and Sieburth, J. McN. (1979). Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass. Limnol. Oceanogr. 24:928–935.

    Article  Google Scholar 

  • Johnson, P.W., and Sieburth, J. McN. (1982). In-situ morphology and occurrence of eucaryotic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters. J. Phycol. 18:318–327.

    Article  Google Scholar 

  • Jorgansen, E.G. (1969). The adaptation of plankton algae IV Light adaptation in different algal species. Physiol, plantarum 22:1307–1315.

    Article  Google Scholar 

  • Karl, D.M., and Knauer, G.A. (1984). Vertical distribution, transport and exchange of carbon in the northeast Pacific Ocean: Evidence for multiple zones of biological activity. Deep-Sea Res. 31:221–243.

    Article  CAS  Google Scholar 

  • Kelly, G.J. (1989). A comparison of marine photosynthesis with terrestrial photosynthesis: A biochemical perspective. Oceanogr. Mar. Biol. Ann. Rev. 27, in press.

    Google Scholar 

  • Kirk, J.T.O. (1983). Light and Photosynthesis in Aquatic Environments. Cambridge Univ. Press, Cambridge, England.

    Google Scholar 

  • Klein, P., and Coste, B. (1984). Effects of wind-stress variability on nutrient transport into the mixed layer. Deep-Sea Res. 31:21–37.

    Article  CAS  Google Scholar 

  • Laws, E.A., and Bannister, T.T. (1980). Nutrient and light-limited growth of Thalassiosira fluviatilis in continuous culture with implications for phytoplankton growth in the ocean. Limnol. Oceanogr. 25:457–473.

    Article  CAS  Google Scholar 

  • Marra, J. (1978). Phytoplankton photosynthetic response to vertical movement in a mixed layer. Mar. Biol. 46:203–208.

    Article  CAS  Google Scholar 

  • Martin, J.J., and Fitzwater, S.E. (1988). Iron deficiency limits phytoplankton growth in the northeast Pacific subarctic. Nature (London) 331:341–343.

    Article  CAS  Google Scholar 

  • Martin, J.H., Knauer, G.A., Karl, D.M., and Broenkow, W.W. (1987). Vertex: Carbon cycling in the northeast Pacific. Deep-Sea Res. 34:267–285.

    Article  CAS  Google Scholar 

  • McCarthy, J.J. (1984). Measuring oceanic primary production. Global Ocean Flux Study. Workshop Proc. Nat. Acad. Press. Washington, DC, pp. 151–165.

    Google Scholar 

  • McCarthy, J.J., and Goldman, J.C. (1979). Nitrogenous nutrition of marine phytoplankton in nutrient depleted waters. Science 203:670–672.

    Article  PubMed  CAS  Google Scholar 

  • McElroy, M.B. (1983). Marine biological controls on atmospheric CO2 and climate. Nature (London) 302:328–329.

    Article  CAS  Google Scholar 

  • Morel, A., Lazzara, L., and Gostan, J. (1987). Growth rate and quantum yield time response for a diatom to changing irradiances (energy and color). Limnol. Oceanogr. 32:1066–1084.

    Article  CAS  Google Scholar 

  • Pace, M.L., Knauer, G.A., Karl, D.M., and Martin, J.H. (1987). Primary production, new production and vertical flux in the eastern Pacific Ocean. Nature (London) 325:803–804.

    Article  CAS  Google Scholar 

  • Parsons, T.R., and Takahashi, M. (1973). Biological Oceanographic Processes (1st ed.). Pergamon Press, NY.

    Google Scholar 

  • Pearman, G.I., and Hyson, P. (1986). Global transport and inter-reservoir exchange of carbon dioxide with particular reference to stable isotope distributions. Atmos. Chem. 4:81–124.

    Article  CAS  Google Scholar 

  • Perry, M.J. (1986). Assessing marine primary production from space. BioScience 36:461–467.

    Article  Google Scholar 

  • Peterson, B.J. (1980). Aquatic primary productivity and the 14C-CO2 method: A history of the productivity problem. Ann. Rev. Ecol. Syst. 11:359–385.

    Article  Google Scholar 

  • Platt, T. (1986). Primary production of the ocean water column as a function of surface light intensity: algorithms for remote sensing. Deep-Sea Res. 33:149–163.

    Article  Google Scholar 

  • Platt, T., and Harrison, W.G. (1986). Reconciliation of carbon and oxygen fluxes in the upper ocean. Deep-Sea Res. 33:273–276.

    Article  Google Scholar 

  • Platt, T., and Li, W.K.W. (eds.) (1986). Photosynthetic picoplankton. Canad. Bull. Fish. Aquat. Sci. 214.

    Google Scholar 

  • Platt, T., Sathyendranath, S., Caverhill, C.M., and Lewis, M.R. (1988). Ocean primary production and available light: Further algorithms for remote sensing. Deep-Sea Res. 35:855–879.

    Article  CAS  Google Scholar 

  • Prezelin, B.B. (1981). Light reactions in photosynthesis, pp. 41–43. In T. Platt (ed.), Physiological Bases of Phytoplankton Ecology. Canad. Bull. Fish. Aquat. Sci. 210, Ottawa, Canada.

    Google Scholar 

  • Reid, J.L., and Schulenberger, E. (1986). Oxygen saturation and carbon uptake near 28 N, 155 W. Deep-Sea Res. 33:267–271.

    Article  Google Scholar 

  • Riley, G.A. (1956). Oceanography of Long Island Sound, 1952–54. II. Physical oceanography. Bull. Bingham Oceanogr. Coll. 15:15–46.

    Google Scholar 

  • Robinson, I.S. (1985). Satellite Oceanography: An Introduction for Oceanographers and Remote-Sensing Scientists. Wiley, NY.

    Google Scholar 

  • Ryther, J.H. (1956). Photosynthesis in the oceans as a function of light intensity. Limnol. Oceanogr. 1:61–70.

    Article  Google Scholar 

  • Ryther, J.H. (1969). Photosynthesis and fish production in the sea. Science 166:72–76.

    Article  PubMed  CAS  Google Scholar 

  • Sathyendranath, S., Lazzara, L., and Prieur, L. (1987). Variations in the spectral values of specific absorption of phytoplankton. Limnol. Oceanogr. 32:403–415.

    Article  CAS  Google Scholar 

  • Schulenberger, E., and Reid, J.L. (1981). The Pacific shallow oxygen minimum, deep chlorophyll maximum and primary productivity, reconsidered. Deep-Sea Res. 28:901–919.

    Article  Google Scholar 

  • Smith, E.L. (1936). Photosynthesis in relation to light and carbon dioxide. Proc. Nat. Acad. Sci. 22:504–511.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R.C., and Baker, K.S. (1978). The bio-optical state of ocean waters and remote sensing. Limnol. Oceanogr. 23:247–259.

    Article  Google Scholar 

  • Smith, P.E., and Eppley, R.W. (1982). Primary production and the anchovy population in the southern Californian bight: Comparison of time series. Limnol. Oceanogr. 27:1–17.

    Article  Google Scholar 

  • Smith, R.C., Eppley, R.W., and Baker, K.S. (1982). Oceanic chlorophyll concentrations as determined by satellite (Nimbus-7 Coastal Zone Color Scanner). Marine Biol. 66:269–279.

    Article  Google Scholar 

  • Steele, J.H. (1962). Environmental control of photosynthesis in the sea. Limnol. Oceanogr. 7:137–150.

    Article  Google Scholar 

  • Sturm, B. (1983). Selected topics of Coastal Zone Color Scanner (CZCS) data evaluation, pp. 137–167. In A.P. Cracknell (ed.), Remote Sensing Applications in Marine science and Technology. Reidel, Dordrecht.

    Google Scholar 

  • Sundquist, E.T. (1985). Geological perspectives on carbon dioxide and the carbon cycle, pp. 5–59. In E.T. Sundquist and W.S. Broecker (eds.), The Carbon Cycle and Atmospheric CO 2 : Natural Variations Archaen to Present. Amer. Geophys. Union, Washington, DC.

    Google Scholar 

  • Sverdrup, H.U. (1953). On conditions for the vernal blooming of phytoplankton. J. Int. Cons. Explor. Mer. 18:287–295.

    Google Scholar 

  • Takahashi, M., and Parsons, T.R. (1972). Maximization of the standing stock and primary productivity of marine phytoplankton under natural conditons. Indian J. Mar. Sci. 1:61–62.

    Google Scholar 

  • Tailing, J.F. (1957). The phytoplankton population as a compound photosynthetic system. N. Phytol. 56:133–149.

    Article  Google Scholar 

  • Tailing, J.F. (1970). Generalized and specialized features of phytoplankton as a form of photosynthetic cover pp. 431–445. In Prediction and Measurement of Photosynthetic Productivity. Proc. IBPIPP Tech. Meeting, Trebon, 14–21 Sept. 1969. Pudoc, Wageningen.

    Google Scholar 

  • Topliss, B.F. (1985). Optical measurements in the Sargasso Sea: Solar stimulated fluorescence. Oceanol. Acta 8:263–270.

    CAS  Google Scholar 

  • Topliss, B.J., and Platt, T. (1986). Passive fluorescence and photosynthesis in the ocean: Implications for remote sensing. Deep-Sea Res. 33:849–864.

    Article  CAS  Google Scholar 

  • Venrick, E.L., McGowan, J.A., and Mantyla, A.W. (1973). Deep maxima of photosynthetic chlorophyll in the Pacific Ocean. Fish. Bull. 71:41–52.

    CAS  Google Scholar 

  • Walsh, J.J. (1984). The role of ocean biota in accelerated ecological cycles: A temporal view. BioScience 34:499–507.

    Article  CAS  Google Scholar 

  • Yentsch, C.S., and Ryther, J.H. (1957). Short-term variations in phytoplankton chlorophyll and their significance. Limnol. Oceanogr. 2:140–142.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Parslow, J.S., Harris, G.P. (1990). Remote Sensing of Marine Photosynthesis. In: Hobbs, R.J., Mooney, H.A. (eds) Remote Sensing of Biosphere Functioning. Ecological Studies, vol 79. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3302-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3302-2_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7958-7

  • Online ISBN: 978-1-4612-3302-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics