Skip to main content

Primary and Metastatic Bone Malignancies

  • Chapter
Pediatric Skeletal Scintigraphy

Abstract

The uses of skeletal scintigraphy and other scintigraphic studies in evaluating children with primary bone tumors and children with skeletal metastases are reviewed in this chapter. The chapter emphasizes the relative values of different imaging studies in assessing osteosarcoma and neuroblastoma, which are, respectively, the most common primary and metastatic bone malignancies of childhood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboulafia AJ, Malawer MM. Surgical management of pelvic and extremity osteosarcoma. Cancer 1993;71(suppl):3358–3366.

    Article  PubMed  CAS  Google Scholar 

  2. Applegate KA, Connolly LP, Treves ST. Neuroblastoma presenting clinically as hip osteomyelitis: a signature diagnosis on skeletal scintigraphy. Pediatr Radiol 1995;25:S93–97.

    Article  PubMed  Google Scholar 

  3. Aro HT, Aho AJ. Clinical use of bone allografts. Ann Med 1993;25:403–412.

    Article  PubMed  CAS  Google Scholar 

  4. Askin FB, Rosai J, Sibley RK, et al. Malignant small cell tumor of the thoracopulmonary region in childhood. A distinctive clinicopathologic entity of uncertain histogenesis. Cancer 1979;43:2438–2451.

    Article  PubMed  CAS  Google Scholar 

  5. Bacci G, Picci P, Ruggieri P, et al. Primary chemotherapy and delayed surgery (neoadjuvant chemotherapy) for osteosarcoma of the extremities. Cancer 1990;65:2539–2553.

    Article  PubMed  CAS  Google Scholar 

  6. Baker M, Siddiqui AR, Provisor A, et al. Radiographic and scintigraphic skeletal imaging in patients with neuroblastoma: concise communication. J Nucl Med 1983;24:467–469.

    PubMed  CAS  Google Scholar 

  7. Bar-Sever Z, Connolly LP, Gebhardt MC, Treves ST. Scintigraphy of lower extremity cadaveric bone allografts in osteosarcoma patients. Clin Nucl Med 1997;22:532–535.

    Article  PubMed  CAS  Google Scholar 

  8. Beltran J, Simon DC, Katz W, et al. Increased MR signal intensity in skeletal muscle adjacent to malignant tumors: pathologic correlation and clinical relevance. Radiology 1987;162:251–255.

    PubMed  CAS  Google Scholar 

  9. Ben Ami T, Treves ST, Tumeh S, et al. Stress fractures after surgery for osteosarcoma: scintigraphic assessment. Radiology 1987;163:157–162.

    PubMed  Google Scholar 

  10. Bousvaros A, Kirks DR, Grossman H. Imaging of neuroblastoma: an overview. Pediatr Radiol 1986;16:89–106.

    Article  PubMed  CAS  Google Scholar 

  11. Brodeur GM, Pritchard J, Berthold F, et al Revisions of international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 1993;11:1466–1477.

    PubMed  CAS  Google Scholar 

  12. Caner B, Kitapci M, Aras T, et al. Increased accumulation of hexakis (2-methoxyisobutylisonitrile) technetium (I) [Tc-MIBI] in osteosarcoma and its metastatic lymph nodes. J Nucl Med 1991;32:1977–1978.

    PubMed  CAS  Google Scholar 

  13. Caner B, Kitapci M, Unlu M, et al. Technetium-99m MIBI uptake in benign and malignant bone tumors: a comparative study with technetium-99m MDP. J Nucl Med 1992;33:319–324.

    PubMed  CAS  Google Scholar 

  14. Chew FS, Hudson TM. Radionuclide bone scanning of osteosarcoma: falsely extended uptake patterns. AJR 1982;139:49–54.

    PubMed  CAS  Google Scholar 

  15. Clausen N, Gotze H, Pedersen A, et al. Skeletal scintigraphy and radiography at onset of acute lymphocytic leukemia in children. Med Pediatr Oncol 1983;11:291–296.

    Article  PubMed  CAS  Google Scholar 

  16. Cohen MD. Imaging of Children with Cancer. St. Louis: Mosby Year Book; 1992.

    Google Scholar 

  17. Connolly LP, Bloom DA, Kozakewich H, et al. Localization of Tc-99m MDP in neuroblastoma metastases to liver and lung. Clin Nucl Med 1996;21:629–633.

    Article  PubMed  CAS  Google Scholar 

  18. Connolly LP, Laor T, Jaramillo D, et al. Prediction of chemotherapeutic response of osteosarcoma with quantitative thallium-201 scintigraphy and magnetic resonance imaging (abstract). Radiology 1996;201(P):349.

    Google Scholar 

  19. Crist WM, Kun LE. Common solid tumors of childhood. N Engl J Med 1991;324:461–471.

    Article  PubMed  CAS  Google Scholar 

  20. D’Angio GL, Breslow N, Beckwith JB, et al. Treatment of Wilms’ tumor: results of the third National Wilms’ Tumor Study. Cancer 1989;64:349–360.

    Article  PubMed  Google Scholar 

  21. Dalinka MK, Haygood TM. Radiation changes. In: Resnick D, ed. Diagnosis of Bone and Joint Disorders. 3rd ed. Philadelphia: W.B. Saunders; 1995:3276–3308.

    Google Scholar 

  22. Dillon E, Parkin GJS. The role of diagnostic radiology in the diagnosis and management of rhabdomyosarcoma in young persons. Clin Radiol 1978;29:53–59.

    Article  PubMed  CAS  Google Scholar 

  23. Dorr U, Sautter-Bihl ML, Schilling FH, et al. Somatostatin receptor scintigraphy: a new diagnostic tool in neuroblastoma? Prog Clin Biol Res 1994;385:355–361.

    PubMed  CAS  Google Scholar 

  24. Ecklund K, Laor T, Goorin AM, et al. Methotrexate osteopathy in patients with osteosarcoma. Radiology 1997;202:543–547.

    PubMed  CAS  Google Scholar 

  25. Englaro EE, Gelfand MJ, Harris RE, et al. I-131 MIBG imaging after bone marrow transplantation for neuroblastoma. Radiology 1992;182:515–520.

    PubMed  CAS  Google Scholar 

  26. Enneking WF, Mindell ER. Observations on massive retrieved human allografts. J Bone Joint Surg [A] 1991;73:1123–1142.

    CAS  Google Scholar 

  27. Erlemann R, Sciuk J, Bosse A, et al. Response of osteosarcoma and Ewing sarcoma to preoperative chemotherapy: assessment with dynamic and static MR imaging and skeletal scintigraphy. Radiology 1990;175:791–796.

    PubMed  CAS  Google Scholar 

  28. Farahati J, Mueller SP, Coennen HH, et al. Scintigraphy of neuroblastoma with radioiodinated m-iodobenzylguanidine. In: Treves ST, ed. Pediatric Nuclear Medicine. 2nd ed. New York: Springer-Verlag; 1995:528–545.

    Google Scholar 

  29. Fletcher BD, Crom DB, Krance RA, et al. Radiation-induced bone abnormalities after bone marrow transplantation for childhood leukemia. Radiology 1994;191:231–235.

    PubMed  CAS  Google Scholar 

  30. Friedlaender GE. Bone grafts. Current concepts (review). J Bone Joint Surg [A] 1987;69:786–790.

    CAS  Google Scholar 

  31. Frouge C, Vanel D, Coffre C, et al. The role of magnetic resonance imaging in the evaluation of Ewing sarcoma—a report of 27 cases. Skeletal Radiol 1988;17:387–392.

    Article  PubMed  CAS  Google Scholar 

  32. Gelfand MJ, Elgazzar AH, Kriss VM, et al. Iodine-123-MIBG SPECT versus planar imaging in children with neural crest tumors. J Nucl Med 1994;35:1753–1757.

    PubMed  CAS  Google Scholar 

  33. Glasser DB, Lane JM, Huvos AG, et al. Survival, prognosis, and therapeutic response in osteogenic sarcoma: the Memorial Hospital experience. Cancer 1992;69:698–708.

    Article  PubMed  CAS  Google Scholar 

  34. Goldman B, Braunstein P. Augmented radioactivity on bone scans of limbs bearing osteosarcomas. J Nucl Med 1978;16:423–424.

    Google Scholar 

  35. Goldstein H, NcNeil BJ, Zufall E, et al. Changing indications for bone scintigraphy in patients with osteosarcoma. Radiology 1980;135:177–180.

    PubMed  CAS  Google Scholar 

  36. Goorin AM, Shuster JJ, Baker A, et al. Changing pattern of pulmonary metastases with adjuvant chemotherapy in patients with osteosarcoma: results from the Multi-institutional Osteosarcoma Study. J Clin Oncol 1991;9:600–605.

    PubMed  CAS  Google Scholar 

  37. Gordon I, Peters AM, Gutman A, et al. Tc-99m bone scans are more sensitive than I-123 MIBG scans for bone imaging in neuroblastoma. J Nucl Med 1990;31:129–134.

    PubMed  CAS  Google Scholar 

  38. Grosfeld JL, Baehner RL. Neuroblastoma: an analysis of 160 cases. World J Surg 1980;4:29–38.

    Article  PubMed  CAS  Google Scholar 

  39. Hanna SL, Parham DM, Fairclough DL, et al. Assessment of osteosarcoma response to preoperative chemotherapy using dynamic FLASH gadolinium-DTPA-enhanced magnetic resonance imaging. Invest Radiol 1992;27:367–373.

    Article  PubMed  CAS  Google Scholar 

  40. Heideman RL, Packer RJ, Albright LA, et al. Tumors of the central nervous system. In: Pizzo PA, Poplack DG, eds. Principles and Practice of Pediatric Oncology. 2nd ed. Philadelphia: JB Lippincott; 1993:633–682.

    Google Scholar 

  41. Heisel MA, Miller JH, Reid BS, et al. Radionuclide bone scan in neuroblastoma. Pediatrics 1983;71:206–209.

    PubMed  CAS  Google Scholar 

  42. Herrlin K, Willen H, Wiebe T. Flare phenomenon in osteosarcoma after complete remission. J Nucl Med 1995;36:1429–1431.

    PubMed  CAS  Google Scholar 

  43. Hoefnagel CA, Bruning PF, Cohen P, et al. Detection of lung metastases from osteosarcoma by scintigraphy using 99mTc-methylene diphosphonate. Diagn Imaging 1981;50:277–284.

    PubMed  CAS  Google Scholar 

  44. Holscher HC, Bloem JL, Vanel D, et al. Osteosarcoma: chemotherapy-induced changes at MR imaging. Radiology 1992;182:839–844.

    PubMed  CAS  Google Scholar 

  45. Hopper KD, Moser RP, Haseman DB, et al. Osteosarcomatosis. Radiology 1990;175:233–239.

    PubMed  CAS  Google Scholar 

  46. Horowitz ME, DeLaney TE, Malawer MM, et al. Ewing’s sarcoma family of tumors: Ewing’s sarcoma of bone and soft tissue and the peripheral primitive neuroectodermal tumors. In: Pizzo PA, Poplack DG, eds. Pediatric Oncology. 2nd ed. Philadelphia: JB Lippincott; 1993:795–821.

    Google Scholar 

  47. Howman-Giles RB, Gilday DL, Ash JM. Radionuclide skeletal survey in neuroblastoma. Radiology 1979;131:497–502.

    PubMed  CAS  Google Scholar 

  48. Hudson TM. Radiologic-Pathologic Correlation of Musculoskeletal Lesions. Baltimore: Williams & Wilkins; 1987.

    Google Scholar 

  49. Jaffe HL. Tumor and Tumorous Conditions of the Bones and Joints. Philadelphia: Lee & Febiger; 1958.

    Google Scholar 

  50. Jaramillo D, Laor T, Gebhardt M. Pediatric musculoskeletal neoplasms. Evaluation with MR imaging. MRI Clin North Am 1996;4:1–22.

    Google Scholar 

  51. Kagan RA, Steckel RJ. Clear cell sarcoma of the kidney: a renal tumor of childhood that metastasizes to bone. AJR 1986;146:64–66.

    Google Scholar 

  52. Kartner N, Riordan JR, Ling V. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science 1983;221:1285–1288.

    Article  PubMed  CAS  Google Scholar 

  53. Keller SM, Rosenbaum RC, Rosenberg SA. The significance of bone scan abnormalities in patients with primary osteogenic sarcoma. J Surg Oncol 1984;26:122–129.

    Article  PubMed  CAS  Google Scholar 

  54. Kirks DR, Cook TA, Merten DF, et al. The value of radionuclide bone imaging in selected patients with osteosarcoma metastatic to lung. Pediatr Radiol 1980;9:139–143.

    Article  PubMed  CAS  Google Scholar 

  55. Knop J, Dellin G, Heise U, et al. Scintigraphic evaluation of tumor regression during preoperative chemotherapy of osteosarcoma: correlation of Tc-99m methylene diphosphonate parametric imaging with surgical histopathology. Skeletal Radiol 1990;19:165–172.

    Article  PubMed  CAS  Google Scholar 

  56. Krenning EP, Kwekkeboom DJ, Bakker WH, et al. Somatostatin receptor scintigraphy with [In-111-DTPA-D-Phel] and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1,000 patients. Eur J Nucl Med 1993;20:716–731.

    Article  PubMed  CAS  Google Scholar 

  57. Laor T, Jaramillo D, Oestrich A. Skeletal system. In: Kirks DR, ed. Practical Pediatric Imaging. Diagnostic Radiology of Infants and Children. 3rd ed. Philadelphia: Lippincott-Raven; 1997:327–510.

    Google Scholar 

  58. Lawrence JA, Babyn PS, Chan HS, et al. Extremity osteosarcoma in childhood: prognostic value of radiologic imaging. Radiology 1993;189:43–47.

    PubMed  CAS  Google Scholar 

  59. Lemmi MA, Fletcher BD, Marina NM, et al. Use of MR imaging to assess results of chemotherapy for Ewing sarcoma. AJR 1990;155:343–346.

    PubMed  CAS  Google Scholar 

  60. Libshitz HI, Cohne MA. Radiation-induced osteochondromas. Radiology 1982;142:643–647.

    PubMed  CAS  Google Scholar 

  61. Lin J, Leung WT. Quantitative evaluation of thallium-201 uptake in predicting chemo-therapeutic response of osteosarcoma. Eur J Nucl Med 1995;22:553–555.

    Article  PubMed  CAS  Google Scholar 

  62. Link MP, Eilber F. Osteosarcoma. In: Pizzo PA, Poplack DG, eds. Pediatric Oncology. 2nd ed. Philadelphia: JB Lippincott; 1993:841–866.

    Google Scholar 

  63. Lutrin CL, McDougall IR, Goris ML. Intense concentration of technetium-99m pyrophosphate in the kidneys of children treated with chemotherapeutic drugs for malignant disease. Radiology 1978;128:165–167.

    PubMed  CAS  Google Scholar 

  64. MacVicar AD, Olliff JFC, Pringle J, et al. Ewing sarcoma: MR imaging of chemotherapy-induced changes with histologic correlation. Radiology 1992;184:859–864.

    PubMed  CAS  Google Scholar 

  65. Mandell GA, Heyman S. Extraosseous uptake of technetium-99m MDP in secondary deposits of neuroblastoma. Clin Nucl Med 1986;11:337–341.

    Article  PubMed  CAS  Google Scholar 

  66. Manil L, Edeline V, Lumbroso J, et al. Indium-111-pentetreotide scintigraphy in children with neuroblast-derived tumors. J Nucl Med 1996;37:893–896.

    PubMed  CAS  Google Scholar 

  67. Mankin HJ, Springfield DS, Gebhardt MC, et al. Current status of allografting for bone tumors. Orthopedics 1992;15:1147–1152.

    PubMed  CAS  Google Scholar 

  68. Marina NM, Etcubanas E, Parham DM, et al. Peripheral primitive neuroectodermal tumor (peripheral neuroepithelioma) in children. A review of the St. Jude experience and controversies in diagnosis and management. Cancer 1989;64:1952–1960.

    Article  PubMed  CAS  Google Scholar 

  69. Martin-Simmerman P, Cohen MD, Siddiqui A, et al. Calcification and uptake of Tc-99m diphosphonates in neuroblastomas: concise communication. J Nucl Med 1984; 25:656–660.

    PubMed  CAS  Google Scholar 

  70. Maurer HM. Rhabdomyosarcoma. Curr Probl Cancer 1978;2:3–36.

    Article  Google Scholar 

  71. May KP, West SG, McDermott MT, et al. The effect of low-dose methotrexate on bone metabolism and histomorphometry in rats. Arthritis Rheum 1994;37:201–206.

    Article  PubMed  CAS  Google Scholar 

  72. McDonald DJ. Limb salvage surgery for sarcomas of the extremities. AJR 1994;163:509–513.

    PubMed  CAS  Google Scholar 

  73. McKillop JH, Etcubanus E, Goris ML. The indications for and limitations of bone scintigraphy in osteogenic sarcoma: a review of 55 patients. Cancer 1981;48:1133–1138.

    Article  PubMed  CAS  Google Scholar 

  74. Meadows AT, Baum E, Fassati-Bellani F, et al. Second malignant neoplasms in children: an update from the late effects study group. J Clin Oncol 1985;3:532–538.

    PubMed  CAS  Google Scholar 

  75. Menendez LR, Fideler BM, Mirra J. Thallium-201 scanning for the evaluation of osteosarcoma and soft tissue sarcoma. J Bone Joint Surg [A] 1993;75:526–531.

    CAS  Google Scholar 

  76. Meyers PA, Heller G, Healey J, et al. Chemotherapy for nonmetastatic osteogenic sarcoma. The Memorial Sloan-Kettering experience. J Clin Oncol 1992;10:5–15.

    PubMed  CAS  Google Scholar 

  77. Miller DR. Acute lymphoblastic leukemia. Pediatr Clin North Am 1980;27:269–293.

    PubMed  CAS  Google Scholar 

  78. Mirra JM. Bone Tumors. Philadelphia: Lea & Febiger; 1989.

    Google Scholar 

  79. Nadel HR, Rossleigh MA. Tumor imaging. In: Treves ST, ed. Pediatric Nuclear Medicine. 2nd ed. New York: Springer-Verlag; 1995:496–527.

    Google Scholar 

  80. Nesbit M, Krivit W, Heyn R, et al. Acute and chronic effects of methotrexate on hepatic, pulmonary, and skeletal systems. Cancer 1976;37:1048–1054.

    Article  PubMed  CAS  Google Scholar 

  81. Newton WA, Meadows AT, Shimada H, et al. Bone sarcomas as second malignant neoplasms following childhood cancer. Cancer 1991;67:193–201.

    Article  PubMed  Google Scholar 

  82. Norton KI, Hermann G, Abdelwahab IF, et al. Epiphyseal involvement in osteosarcoma. Radiology 1991;180:813–816.

    PubMed  CAS  Google Scholar 

  83. O’Connor MI, Pritichard DJ. Ewing’s sarcoma. Prognostic factors, disease control, and the reemerging role of surgical treatment. Clin Orthop 1991;262:78–87.

    PubMed  Google Scholar 

  84. O’Flanagan SJ, Stack JP, McGee HM, et al. Imaging of intramedullary tumour spread in osteosarcoma. A comparison of techniques. J Bone Joint Surg [B] 1991;73:998–1001.

    Google Scholar 

  85. Ohtomo K, Terui S, Yokoyama R, et al. Thallium-201 scintigraphy to assess effect of chemotherapy to osteosarcoma. J Nucl Med 1996;37:1444–1448.

    PubMed  CAS  Google Scholar 

  86. Oritz SS, Miller JH, Villablanca JG, et al. Bone abnormalities detected with skeletal scintigraphy after bone marrow harvest in patients with childhood neuroblastoma. Radiology 1994;192:755–758.

    Google Scholar 

  87. Paltiel HJ, Gelfand MJ, Elgazzar AH, et al. Neural crest tumors: 123IMIBG imaging in children. Radiology 1994;190:117–121.

    PubMed  CAS  Google Scholar 

  88. Parisi MT, Greene MK, Dykes TM, et al. Efficacy of metaiodobenzylguanidine as a scintigraphic agent for the detection of neuroblastoma. Invest Radiol 1992;27:768–773.

    Article  PubMed  CAS  Google Scholar 

  89. Parker BR, Castellino RA. Pediatric Oncologic Radiology. St. Louis: Mosby; 1977.

    Google Scholar 

  90. Parker BR, Margin S, Castellino RA. Skeletal manifestations of leukemia, Hodgkin disease, and non-Hodgkin lymphoma. Semin Roentgenol 1980;15:302–315.

    Article  PubMed  CAS  Google Scholar 

  91. Piwnica-Worms D, Chiu ML, Budding M, et al. Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res 1993;53:977–984.

    PubMed  CAS  Google Scholar 

  92. Podoloff DA. Malignant bone disease. In: Henkin RE, Boles MA, Dillehay GL, et al, eds. Nuclear Medicine. 2nd ed. Philadelphia: Mosby Year Book; 1996:1208–1222.

    Google Scholar 

  93. Podrasky AE, Stark DD, Hattner RS, et al. Radionuclide bone scanning in neuroblastoma: skeletal metastases and primary tumor localization of 99m Tc-MDP. AJR 1983;141:469–472.

    PubMed  CAS  Google Scholar 

  94. Quddus FF, Espinola D, Kramer SS, et al. Comparison between x-ray and bone scan detection of bone metastases in patients with rhabdomyosarcoma. Med Pediatr Oncol 1983;11:125–129.

    Article  PubMed  CAS  Google Scholar 

  95. Ragab AH, Frech RS, Vietti TJ. Osteoporotic fractures secondary to methotrexate therapy of acute leukemia in remission. Cancer 1970;25:580–585.

    Article  PubMed  CAS  Google Scholar 

  96. Ramanna L, Waxman A, Binney G, et al. Thallium-201 scintigraphy in bone sarcoma: comparison with gallium-67 and technetium-99m MDP in the evaluation of chemo-therapeutic response. J Nucl Med 1990;31:567–572.

    PubMed  CAS  Google Scholar 

  97. Ramanna L, Waxman A, Rosen G. Evaluation of Tl–201 uptake patterns in bone lesions: differentiation of benign from malignant processes [abstract]. J Nucl Med 1992;33:869.

    Google Scholar 

  98. Raney RB, Hays DM, Tefft M, et al. Rhabdomyosarcoma and the undifferentiated sarcomas. In: Pizzo PA, Poplack DG, eds. Principles and Practice of Pediatric Oncology. 2nd ed. Philadelphia: JB Lippincott; 1993:769–794.

    Google Scholar 

  99. Rees CR, Siddiqui AR, duCret R. The role of bone scintigraphy in osteogenic sarcoma. Skeletal Radiol 1986;15:365–367.

    Article  PubMed  CAS  Google Scholar 

  100. Resnick D. Tumors and tumor-like lesions of bone: radiographic principles. In: Resnick D, ed. Diagnosis of Bone and Joint Disorders. 3rd ed. Philadelphia: W.B. Saunders; 1995:3613–3627.

    Google Scholar 

  101. Resnick D, Kyriakos K, Greenway GD. Tumors and tumor-like lesions of bone: imaging and pathology of specific tumors. In: Resnick D, ed. Diagnosis of Bone and Joint Disorders. 3rd ed. Philadelphia: W.B. Saunders; 1995:3662–3697.

    Google Scholar 

  102. Rogalsky RJ, Black B, Reed MH. Orthopedic manifestations of leukemia in children. J Bone Joint Surg [A] 1986;68:494–501.

    CAS  Google Scholar 

  103. Rosen G, Loren GJ, Brien EW, et al. Serial thallium-201 scintigraphy in osteosarcoma. Correlation with tumor necrosis after preoperative chemotherapy. Clin Orthop 1993;293:302–306.

    PubMed  Google Scholar 

  104. Rosenberg ZS, Lev S. Osteosarcoma: subtle, rare, and misleading plain film features. AJR 1995;165:1209–1214.

    PubMed  CAS  Google Scholar 

  105. Rufini V, Fisher GL, Shulkin BL, et al. Iodine-123-MIBG imaging of neuroblastoma: utility of SPECT and delayed imaging. J Nucl Med 1996;37:1464–1468.

    PubMed  CAS  Google Scholar 

  106. Schima W, Amann G, Stiglbauer R, et al. Preoperative staging of osteosarcoma: efficacy of MR imaging in detecting joint involvement. AJR 1994;163:1171–1175.

    PubMed  CAS  Google Scholar 

  107. Schwartz AM, Leonidas JC. Methotrexate osteopathy. Skeletal Radiol 1984;11:13–16.

    Article  PubMed  CAS  Google Scholar 

  108. Schweil AM, McKillop JH, Milroy R, et al. Mechanism of 201l uptake in tumours. Eur J Nucl Med 1989;15:376–379.

    Article  Google Scholar 

  109. Shapiro B, Gross MD. Radiochemistry, biochemistry, and kinetics of 131I-metaiodobenzylguanidine (MIBG) and 123I-MIBG. Clinical applications of the use of 123I-MIBG. Med Pediatr Oncol 1987;15:170–177.

    Article  PubMed  CAS  Google Scholar 

  110. Shimada H, Chatten J, Newton WA, et al. Histopathologic prognostic factors in neuroblastic tumors: definition of subtypes of ganglioneuroblastoma and an age-linked classification of neuroblastomas. JNCI 1984;73:405–416.

    PubMed  CAS  Google Scholar 

  111. Shulkin BL, Shapiro B, Hutchinson RJ. Iodine-131-metaiodobenzylguanidine and bone scintigraphy for the detection of neuroblastoma. J Nucl Med 1992;33:1735–1740.

    PubMed  CAS  Google Scholar 

  112. Silberzweig JE, Haller JO, Miller S. Ifosfamide: a new cause of rickets. AJR 1992;158:823–824.

    PubMed  CAS  Google Scholar 

  113. Sim FH, Frassica FJ, Unni KK. Osteosarcoma of the diaphysis of long bones: clinicopathologic features and treatment in 51 cases. Orthopedics 1995;18:19–23.

    PubMed  CAS  Google Scholar 

  114. Simon MA, Kirchner PT. Scintigraphic evaluation of primary bone tumors: comparison of technetium-99m phosphonate and gallium citrate imaging. J Bone Joint Surg [A] 1980;62:758–764.

    CAS  Google Scholar 

  115. Smith FW, Gilday DL, Ash JM, et al. Primary neuroblastoma uptake of 99mTc methylene diphosphonate. Radiology 1980;137:501–504.

    PubMed  CAS  Google Scholar 

  116. Sommer HJ, Knop J, Heise U, et al. Histomorphologic changes of osteosarcoma after chemotherapy: correlation with 99mTc methylene diphosphonate functional imaging. Cancer 1987;59:252–258.

    Article  PubMed  CAS  Google Scholar 

  117. Stanisavljevic S, Babcock AL. Fractures in children treated with methotrexate for leukemia. Clin Orthop 1977;125:139–144.

    PubMed  Google Scholar 

  118. Sty JR, Wells RG, Starshak RJ, Gregg D. The musculoskeletal system. In: Sty J, Wells R, Starshak R, Gregg D, eds. Diagnostic Imaging of Infants and Children. Vol. 3. Gaithesburg: Aspen; 1992:233–405.

    Google Scholar 

  119. Thrall JH, Geslein GE, Corcoran RJ, et al. Abnormal radionuclide deposition patterns adjacent to focal skeletal lesions. Radiology 1975;115:659–663.

    PubMed  CAS  Google Scholar 

  120. Treves ST, Connolly LP, Kirkpatrick JA. Bone. In Treus ST (ed) Pediatric Nuclear Medicine. 2nd ed. New York: Springer-Verlag; 1995:233–301.

    Google Scholar 

  121. Triche TJ. Pathology of pediatric malignancies. In: Pizzo PA, Poplack DG, eds. Principles and Practice of Pediatric Oncology. 2nd ed. Philadelphia: JB Lippincott; 1993:115–152.

    Google Scholar 

  122. Unni KK. Dahlins Bone Tumors: General Aspects and Data on 11,087 Cases. Philadelphia: Lippincott-Raven; 1996.

    Google Scholar 

  123. Vanel D, Henry-Amar M, Lumbrosus J, et al. Pulmonary evaluation of patients with osteosarcoma: roles of standard radiography, tomography, CT, scintigraphy and tomoscintigraphy. AJR 1984;143:519–523.

    PubMed  CAS  Google Scholar 

  124. Warner WW. Kyphosis. In: Morrisy RT, Weinstein SL, eds. Lovell and Winter’s Pediatric Orthopedics. 4th ed. Philadelphia: Lippincott-Raven; 1996:687–716.

    Google Scholar 

  125. Weeks DA, Beckwith JB, Miereau GW, et al. Rhabdoid tumor of the kidney. A report of 111 cases from the National Wilms’ Tumor Study Pathology Center. Am J Surg Pathol 1989;13:439–458.

    Article  PubMed  CAS  Google Scholar 

  126. Wolf EL, Berdon WE, Cassady JR, et al. Slipped femoral capital epiphysis as a sequela to childhood irradiation for malignant tumors. Radiology 1977;125:781–784.

    PubMed  CAS  Google Scholar 

  127. Woods WG, Lemieux B, Tuchman M. Neuroblastoma represents distinct clinical-biologic entities: a review and perspective from the Quebec neuroblastoma screening project. Pediatrics 1992;89:114–118.

    PubMed  CAS  Google Scholar 

  128. Young G, L’Hereux P. Extraosseous tumor uptake of 99mTc phosphate compounds in children with abdominal neuroblastoma. Pediatr Radiol 1978;7:159–163.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Connolly, L.P., Treves, S.T. (1998). Primary and Metastatic Bone Malignancies. In: Pediatric Skeletal Scintigraphy. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2174-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2174-6_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7444-5

  • Online ISBN: 978-1-4612-2174-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics