Skip to main content

An Object-Oriented Adaptive Finite Element Code: Design Issues and Applications in Hyperthermia Treatment Planning

  • Chapter
Modern Software Tools for Scientific Computing

Abstract

The finite element code Kaskade has been developed for the solution of partial differential equations in one, two, and three space dimensions. Its object-oriented implementation concept is based on the programming language C++. Adaptive finite element techniques are employed to provide solution procedures of optimal computational complexity. This implies a posteriori error estimation, local mesh refinement and multilevel preconditioning.

One major concept of the implementation is the separation of ‘geometric’ and ‘algebraic’ entities. The former ones mainly comprise typical problem-dependent classes like the mesh, the finite element, and the materials. The mesh structure and node distribution may be rather complex due to the nested refinement levels created in the adaptive solution process. By using a global node-numbering strategy we transfer the geometry-based features into algebraic structures; the latter include special sparse matrix classes and vector templates.

Beyond the formal description of the code we present an application arising in a current research project. Here a real-life problem has to be solved, involving the calculation of electromagnetic fields and temperature distributions in human bodies in order to support hyperthermia treatment planning in a clinical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Babušhka, O. C. Zienkiewicz, J. Gago and E. R. A. de Oliveira, editors. Accuracy Estimates and Adaptive Refinements in Finite Element Computations. Wiley, 1986.

    Google Scholar 

  2. R. E. Bank. PLTMG 7.0 — A Software Package for Solving Elliptic Partial Differential Equations. Users’ Guide 7.0, SIAM, 1994.

    Google Scholar 

  3. R. E. Bank, T. Dupont and H. Yserentant. The hierarchical basis multigrid method. Numer. Math., 52, pp. 427–458, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. E. Bank, A. Sherman and A. Weiser. Refinement algorithms and data structures for local mesh refinement. In R. Stepleman et al., editor, Scientific Computing. IMACS/North Holland, Amsterdam, 1983.

    Google Scholar 

  5. R. Barret, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, 1993.

    Google Scholar 

  6. P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuss, H. Rentz-Reichert and C. Wieners. UG — a flexible software toolbox for solving partial differential equations. Technical report, Institut für Computeranwendungen III, Universität Stuttgart, 1996.

    Google Scholar 

  7. A. Bayliss, M. Gunzburger and E. Turkel. Boundary conditions for the numerical solution of elliptic equations in exterior regions. SIAM J. Appl. Math., 42, pp. 430–451, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Beck, H. C. Hege, M. Seebass, P. Wust, P. Deuflhard and R. Felix. Adaptive finite element codes for numerical calculations in hyperthermia treatment planning. In C. Franconi, G. Arcangeli and R. Cavaliere, editors, Proc. of the 7th Int. Congress on Hyperthermic Oncology, Rome,Italy, 1996.

    Google Scholar 

  9. J. Bey. Tetrahedral grid refinement. Computing, 55, pp. 355–378, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Bornemann. An adaptive multilevel approach to parabolic equations I. Impact of Comput. Sci. Engrg., 4, pp. 1–45, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Bossavit. Whitney forms: a class of finite elements for three-dimensional computation in electromagnetism. Inst. Elec. Eng. Proc., Part A, 135, pp. 493–500(8), 1988.

    Google Scholar 

  12. J. H. Bramble, J. E. Pasciak and J. Xhu. Parallel multilevel preconditioners. Math. Corp., 55, pp. 1–22, 1990.

    Article  MATH  Google Scholar 

  13. S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, Vol. 15, Springer, 1994.

    MATH  Google Scholar 

  14. A. M. Bruaset, E. Holm and H. P. Langtangen. Increasing the efficiency and reliability of software development for systems of PDEs. In E. Arge, A. M. Bruaset and H. P. Langtangen, editors, Modern Software Tools for Scientific Computing, pages 247–268. Birkhäuser, 1997.

    Chapter  Google Scholar 

  15. P. Deuflhard, P. Leinen and H. Yserentant. Concepts of an adaptive hierarchical finite element code. Impact of Comput. Sci. Engrg., 1, pp. 3–35, 1989.

    Article  MATH  Google Scholar 

  16. I. S. Duff. MA28 — A Set of FORTRAN Subroutines for Sparse Unsymmetric Linear Equations. Technical report, AERE—R.8730, Harwell, 1980.

    Google Scholar 

  17. B. Erdmann, J. Lang and R. Roitzsch. KASKADE Manual Version 2.0: FEM for 2 and 3 Space Dimensions. Technical report, KonradZuse-Zentrum für Informationstechnik Berlin, 1993.

    Google Scholar 

  18. A. George and J. W. -H. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice Hall, Englewood Cliffs, New Jersey, 1981.

    MATH  Google Scholar 

  19. W. Hackbusch. Multi-Grid Methods and Applications. Springer, Berlin, 1985.

    MATH  Google Scholar 

  20. W. Hackbusch. Iterative Solution of Large Sparse Linear Systems of Equations. Springer, Berlin, 1993.

    Google Scholar 

  21. R. H. W. Hoppe and R. Kornhuber. Adaptive multilevel methods for obstacle problems. SIAM J. Numer. Anal, 31(2), pp. 301–323, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Jin. The Finite Element Method in Electrodynamics. John Wiley & Sons, New York, 1993.

    Google Scholar 

  23. V. N. Kannelopoulos and J. P. Webb. A numerical study of vector absorbing boundary conditions for the finite element solution of Maxwell’s equations. IEEE Microwave Guided Wave Lett., 1, pp. 325–327, 1991.

    Article  Google Scholar 

  24. H. Kardestunger and D. H. Norrie, editors. Finite Element Handbook. McGraw-Hill, New York, 1987.

    Google Scholar 

  25. R. Kornhuber. Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems. Wiley-Teubner, 1997.

    MATH  Google Scholar 

  26. J. C. Nedelec. Mixed finite elements in R 3 . Numer. Math., 35, pp. 315–341, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  27. K. D. Paulsen, X. Jia and J. M. Sullivan. Finite element computations of specific absorption rates in anatomically conforming full-body models for hyperthermia treatment analysis. IEEE Trans. Biomed. Engrg., 40(9, pp. 933–945), 1993.

    Article  Google Scholar 

  28. H. H. Pennes. Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, 1, pp. 93–122, 1948.

    Google Scholar 

  29. M. C. Rivara. Design and data structure of a fully adaptive multigrid finite element software. ACM Trans. Math. Software, 10, pp. 242–264, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. B. Roemer and A. W. Dutton. A new tissue convective energy balance equation for predicting tissue temperature distributions. Presented at: ICHO VII, Rome, Italy, April 9–13, 1996; University of Utah preprint, Salt Lake City, 1996.

    Google Scholar 

  31. B. Smith, P. Bjørstadt and W. Gropp. Domain Decomposition. Parallel Multilevel methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  32. G. Wittum. On the convergence of multigrid methods with transforming smoothers. Numer. Math, 57, pp. 15–38, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  33. P. Wust, M. Seebass, J. Nadobny, P. Deuflhard, G. Mönich and R. Felix. Simulation studies promote technological development of radiofrequency phased array hyperthermia. Int. J. Hyperthermia 12, pp. 477–494, 1996.

    Article  Google Scholar 

  34. H. Yserentant. Hierarchical bases give conjugate gradient methods a multigrid speed of convergence. Appl. Math. and Comp. 19, pp. 347–358, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  35. S. Zhang. Multilevel Iterative Techniques. Ph.D. Thesis, Pennsylvania State University, 1988.

    Google Scholar 

  36. O. C. Zienkiewicz, J. P. S. R. de Gago and D. W. Kelly. The hierarchical concept in finite element analysis. Computers and Structures, 16, pp. 53–65, 1983.

    Article  MATH  Google Scholar 

  37. O. C. Zienkiewicz and J. Z. Zhu. The superconvergent patch recovery (SPR) and adptive finite element refinement. Corp. Meth. Appl. Mech. Eng., 101, pp. 207–224, 1992.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beck, R., Erdmann, B., Roitzsch, R. (1997). An Object-Oriented Adaptive Finite Element Code: Design Issues and Applications in Hyperthermia Treatment Planning. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds) Modern Software Tools for Scientific Computing. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1986-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1986-6_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7368-4

  • Online ISBN: 978-1-4612-1986-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics