Skip to main content
Log in

On the convergence of multi-grid methods with transforming smoothers

Theory with applications to the Navier-Stokes equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

In the present paper we give a convergence theory for multi-grid methods with transforming smoothers as introduced in [31] applied to a general system of partial differential equations. The theory follows Hackbusch's approach for scalar pde and allows a convergence proof for some well-known multi-grid methods for Stokes- and Navier-Stokes equations as DGS by Brandt-Dinar, [5], TILU from [31] and the SIMPLE-methods by Patankar-Spalding, [23].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Commun. Pure Appl. Math.17, 35–92 (1964)

    Google Scholar 

  2. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo21, 337–344 (1984)

    Google Scholar 

  3. Becker, C., Ferziger, J.H. Peric, M., Scheuerer, G.: Finite-volume multigrid solutions of the two-dimensional incompressible Navier-Stokes equations. In: Hackbusch W. (ed.) Robust multi-grid methods. Proceedings of the fourth GAMM-Seminar Kiel, Jan 1988

  4. Brandt, A.: Multigrid techniques: 1984 guide with applications to fluid dynamics. GMD-Studien Nr. 85, Bonn (1984)

  5. Brandt, A., Dinar, N.: Multigrid solutions to elliptic flow problems. ICASE Report Nr. 79-15 (1979)

  6. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO, Modelisation Math. Anal. Numer.8, 129–151 (1974)

    Google Scholar 

  7. Ciminno, G.: La ricerca scientifica, ser II, vol 1, pp. 326–333. In: Pubblicazioni dell' Insituto per le Applicazioni del Calcolo,34, (1938)

  8. Euler, L.: Inventio summae cuiusque seriei ex dato termino generali. Comment. Acad. Sci. Petropolitanae8, 9–22 (1741)

    Google Scholar 

  9. Fuchs, L.: Multi-grid schemes for incompressible flows. In: Hackbusch W ((ed.) Efficient solvers for elliptic systems. Notes on numerical fluid mechanics, vol. 10. Braunschweig: Vieweg 1984

    Google Scholar 

  10. Fuchs, L., Zhao, H.-S.: Solution of three-dimensional viscous incompressible flows by a multigrid method. Int. J. Numer. Methods Fluids4, 539–555 (1984)

    Google Scholar 

  11. Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations. Series in Computational Mathematics. Berlin-Heidelberg-New York: Springer 1986

    Google Scholar 

  12. Hackbusch, W.: Analysis and multi-grid solutions of mixed finite element and mixed difference equations. Report, Ruhr-Universität Bochum (1980)

  13. Hackbusch, W.: Multi-grid methods and applications. Berlin-Heidelberg-New York: Springer 1985

    Google Scholar 

  14. Hackbusch, W.: On the regularity of difference schemes. Ark. Mat.19, 71–95 (1981)

    Google Scholar 

  15. Hackbusch, W.: On the regularity of difference schemes—part II: regularity estimates for linear and nonlinear problems. Ark. Math.21, 3–28 (1983)

    Google Scholar 

  16. Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Stuttgart: Teubner 1986

    Google Scholar 

  17. Hackbusch, W.: Convergence of multi-grid iterations applied to difference equations. Math. Comput.34, 425–440 (1980)

    Google Scholar 

  18. Harlow, F.H., Welch, J.E.: Numerical Calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids8, 12, 2182–2189 (1965)

    Google Scholar 

  19. Kaczmarz, S.: Angenäherte Auflösung von Systemen linearer Gleichungen. Bull. Acad. Polon. Sci. Lett.A35, 355–357 (1937)

    Google Scholar 

  20. Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications, vol. 1 Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  21. Lonsdale, G.: Solution of a rotating Navier-Stokes problem by a nonlinear multigrid algorithm. Report Nr. 105, Manchester University 1985

  22. Pätsch, J.: Ein Mehrgitterverfahren zur Berechnung der Eigenwerte und der Eigenvektoren der Oberflächenschwingungen eines abgeschlossenen Wasserbeckens. Master thesis, Institut für Informatik und Praktische Mathematik, CAU Kiel. (1987)

  23. Patankar, S.V., Spalding, D.B.: A calculation procedure for heat and mass transfer in threedimensional parabolic flows. Int. J. Heat Mass Transfer15, 1787–1806 (1972)

    Google Scholar 

  24. Pau, V., Lewis, E.: Application of the multigird technique to the pressure-correction equation for the SIMPLE algorithm. In: Hackbusch, W., Trottenberg, U. (eds.), Multigrid methods, special topics and applications GMD-Studien Nr. 110. St. Augustin (1986)

  25. Shaw, G.J., Sivalonganathan, S.: On the smoothing properties of the simple pressure-correction algorithm. Int. J. Numer. Methods Fluids8, 441–461 (1988)

    Google Scholar 

  26. Sivalonganathan, S., Shaw G.J.: A multigrid method for recincirculating flows. Int. J. Numer. Methods Fluids8, 417–440 (1988)

    Google Scholar 

  27. Taylor, C., Hood, P.: A numerical solution of the Navier-Stokes equations using finite element technique. Comput. Fluids1, 73–100 (1973)

    Google Scholar 

  28. Varga, R.S.: Matrix iterative analysis. Englewood Cliffs: Prentice Hall 1962

    Google Scholar 

  29. Wesseling, P.: Theoretical and practical aspects of a multigrid method. SIAM J. Sci. Stat. Comput.3, 387–407 (1982)

    Google Scholar 

  30. Wittum, G.: Distributive Iterationen für indefinite Systeme. Thesis, Universität Kiel 1986

  31. Wittum, G.: Multi-grid methods for Stokes and Navier-Stokes equations. Transforming smoothers—algorithms and numerical results. Numer. Math.54, 543–563 (1989)

    Google Scholar 

  32. Wittum, G.: On the robustness of ILU-smoothing. SIAM Journal of Sci. Stat. Comput.10, 699–717 (1989)

    Google Scholar 

  33. Wittum, G.: Linear iterations as smoothers in multi-grid methods. Imp. Comput. Sci. Engeneering1, 180–212 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittum, G. On the convergence of multi-grid methods with transforming smoothers. Numer. Math. 57, 15–38 (1990). https://doi.org/10.1007/BF01386394

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01386394

Subject Classifications

Navigation