Progress in Understanding Biogeochemical Cycles at Regional to Global Scales

  • Ingrid C. Burke
  • William K. Lauenroth
  • Carol A. Wessman


Global-to regional-scale studies have played an important role in the development of ecosystem ecology. Long before there was evidence of global-scale impacts by humans on biogeochemistry, ecologists recognized that there were strong, interactive forces at global scales that were responsible for the state of the earth. In addition to this knowledge, many early ecologists made observations of biogeochemical pools and processes at regional to continental scales; their interpretations of patterns and their causes made significant contributions to our understanding biogeochemistry. The work of these early scientists was characterized by creative induction and vision; many of the frontiers and questions identified long ago still remain the focus of our activities today.

In recent decades, immense progress has been made in understanding biogeochemical processes at regional to global scales. Considerable advances have been made in understanding global-and regional-scale budgets of carbon and of nitrogen, and the interactions of trace gas fluxes, biophysical processes, vegetation, and climate. These successes were partially the result of the development of new tools, new collaborations, and an imperative from the international public to solve important environmental issues. Although the linkage between our present-day scientific activities and regional-to global-scale environmental problems is strong and productive, there is a need for continued support for basic research that will identify new horizons.


Geographic Information System Global Carbon Cycle Global Biogeochemical Cycle Central Great Plain Biochemical Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aber, J.D., C. Driscoll, C.A. Federer, R. Lathrop, G. Lovett, J.M. Melillo et al. 1993. A strategy for the regional analysis of the effects of physical and chemical climate change on biogeochemical cycles in northeastern (U.S.) forests.Ecological Modelling67:37–47.CrossRefGoogle Scholar
  2. Amundson, R., J.W. Harden, and M.J. Singer. 1994. Factors of soil formation: a fiftieth anniversary perspective.Soil Science Society of America Special Publicationno.33.Madison, WI.Google Scholar
  3. Anderson, S.O., and A. Miller. 1996. Ozone layer: the road not taken. Correspondence.Nature382:390.CrossRefGoogle Scholar
  4. Andreae, M.O., and D.S. Schimel. 1989.Exchange of trace gases between terrestrial ecosystems and the atmosphere. John Wiley & Sons. Chichester, U.K.Google Scholar
  5. Arrhenius, S. 1896. On the influence of carbonic acid in the air upon the temperature on the ground.The Philosophical Magazine41:237–276.CrossRefGoogle Scholar
  6. Arrhenius, G. 1997. Carbon dioxide warming of the early earth.Ambio26:12–16.PubMedGoogle Scholar
  7. Asner, G.P., T.R. Seastedt, and A.R. Townsend. 1997. The decoupling of terrestrial carbon and nitrogen cycles.BioScience47:226–234.CrossRefGoogle Scholar
  8. Barlow, C., and T. Volk. 1992. Gaia and evolutionary biology.BioScience42:686–693.CrossRefGoogle Scholar
  9. Bolin, B. 1994. Science and policy making.Ambio23:27.Google Scholar
  10. Breymeyer, A.I., D.O. Hall, J.M. Melillo, and G.I. Agren. eds. 1996.Global change: effects on coniferous forests and grasslands. SCOPE 56. John Wiley & Sons. Chichester, U.K.Google Scholar
  11. Broecker, W.S., and T.-H. Peng. 1991. Interhemispheric transport of carbon dioxide by ocean circulation.Nature356:587–9.CrossRefGoogle Scholar
  12. Burke, I.C., T.G.F. Kittel, W.K. Lauenroth, P. Snook, C.M. Yonker, and W.J. Parton. 1991. Regional analysis of the central Great Plains, sensitivity to climate variability.BioScience41:685–692.CrossRefGoogle Scholar
  13. Burke, I.C., W.K. Lauenroth, W.J. Parton, and C.V. Cole. 1994. Interactions of landuse and ecosystem structure and function: a case study in the central Great Plains. Pages 79–95 in P.M. Groffman and G.E. Likens, eds.Integrated regional models.Chapman & Hall, New York.CrossRefGoogle Scholar
  14. Burke, I.C., W.K. Lauenroth, and W.J. Parton. 1997. Regional and temporal variation in net primary production and nitrogen mineralization in grasslands.Ecology78:1330–1340.CrossRefGoogle Scholar
  15. Burke, I.C., D.S. Schimel, C.M. Yonker, W.J. Parton, L.A. Joyce, and W.K. Lauenroth. 1990. Regional modeling of grassland biogeochemistry using GIS.Landscape Ecology4:45–54.CrossRefGoogle Scholar
  16. Caraco, N.F. 1995. Influence of human populations on P transfers to aquatic systems: a regional scale study using large rivers. Pages 235–44 in H. Tiessen, ed.Phosphorus in the global environment. SCOPE. John Wiley & Sons, Ltd., New York.Google Scholar
  17. Chase, T.N., R.A. Pielke, T.G.F. Kittel, R. Nemani, and S.W. Running. 1996. Sensitivity of a general circulation model to global changes in leaf area index.Journal of Geophysical Research101:7393–7408.CrossRefGoogle Scholar
  18. Claussen, M. 1994. On coupling global biome models with climate models.Climate Research4:203–221.CrossRefGoogle Scholar
  19. Cohen, W.B., M.E. Harmon, D.O. Wallin, and M. Fiorella. 1996. Two decades of carbon flux from forests of the Pacific Northwest.BioScience46:836–844.CrossRefGoogle Scholar
  20. Cole, J.J., B.L. Peierls, N.F. Caraco, and M.L. Pace. 1993. Nitrogen loading of rivers as a human-driven process. Pages 163–74 in M.J. McDonnell and S.T.A. Pickett, eds.Humans as components of ecosystems.Springer-Verlag, New York.Google Scholar
  21. Coleman, M.B., T.L. Bearly, I.C. Burke, and W.K. Lauenroth. 1994. Linking ecological simulation models to geographic information systems: an automated solution. Pages 397–412 in W. Michener and J. Brunt, eds.Environmental information management and analysis: ecosystem to global scales. E. Taylor and Francis, London, England.Google Scholar
  22. Costanza, R., F.H. Sklar, and M.L. White. 1990. Modeling coastal landscape dynamics.BioScience40:91–107.CrossRefGoogle Scholar
  23. Cramer, W., and A. Fischer. 1996. Data requirements for global terrestrial ecosystem modelling. Pages 529–565 in B. Walker and W. Steffen, eds.Global change and terrestrial ecosystems.Cambridge University Press, Cambridge, England.Google Scholar
  24. Crawford, E. 1997. Arrhenius: 1896 model of the greenhouse effect in context.Ambio26:6–11.Google Scholar
  25. Denman, K., E. Hofman, and H. Marchant. 1996. Marine biotic responses to environmental change and feedbacks to climate. Pages 483–516 in J.T. Houghton, L.G. Meirra Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell, eds.Climate change 1995. The science of climate change.Cambridge University Press, Cambridge, England.Google Scholar
  26. Dockuchaiev, V.V. 1883,1967. Russian chernozem. InCollected writings volume 3.Israel Progress in Science Transactions, Jerusalem.Google Scholar
  27. Dumas, J.B.A., and M.J.B. Boussingault. 1841. Lecon sur la statique chimique des entres organises.Philosophical Magazine19:337–347, 456–469.Google Scholar
  28. Elzinga, A. 1997. From Arrhenius to megascience: interplay between science and public decisionmaking.Ambio26:72–80.Google Scholar
  29. Emanuel, W.R., H.H. Shugart, and M.P. Stevenson. 1985. Climatic change and the broad-scale distribution of terrestrial ecosystem complexes.Climatic Change7:29–43.CrossRefGoogle Scholar
  30. Fennessy, M.J., and Y. Xue. 1997. Impact of USGS vegetation map on GCM simulations over the U.S.Ecological Applications7:22–33.CrossRefGoogle Scholar
  31. Field, C.B., J.T. Randerson, and C.M. Malmstrom. 1995. Global net primary production: combining ecology and remote sensing.Remote Sensing of Environment51:74–88.CrossRefGoogle Scholar
  32. Fung, I.Y., C.J. Tucker, and K.C. Prentice. 1987. Application of advanced very high resolution radiometer vegetation index to study atmosphere-biosphere exchange of CO2.Journal of Geophysical Research923:2999–3015.CrossRefGoogle Scholar
  33. Goudriaan, J. 1996. Predicting crop yields under climate change. Pages 260–274 in B. Walker and W. Steffen, eds.Global change and terrestrial ecosystems.Cambridge University Press, Cambridge, England.Google Scholar
  34. Goulden, M.L., J.W. Munger, S.-M. Fan, B.C. Daube, and S.C. Wofsy. 1996. Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability.Science271:1576–1578.CrossRefGoogle Scholar
  35. Goward, S.N., C.J. Tucker, and D.G. Dye. 1985. North American vegetation patterns observed with the NOAA-7 advanced very resolution.Vegetatio64:3–14.CrossRefGoogle Scholar
  36. Grisebach, A.R.H. 1872.Die vegetation der Erde.Engleman, Leipsig.Google Scholar
  37. Groffman, P.M., and G.E. Likens. 1994.Integrated regional models.Chapman &Hall, New York.CrossRefGoogle Scholar
  38. Hall, F.G., D.B. Botkin, D.E. Strebel, K.D. Woods, and S.J. Goetz. 1991. Large-scale patterns of forest succession as determined by remote sensing.Ecology72:628–640.CrossRefGoogle Scholar
  39. Hall, F.G., and P.J. Sellers. 1995. First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) in 1995.Journal of Geophysical Research100:25,383–25,395.CrossRefGoogle Scholar
  40. Harriss, R.C., S.C. Wofsy, M. Garstang, L.C.B. Molion, R.S. McNeal, J.M. Hoell, R.J. Bendura et al. 1988. The Amazon boundary layer experiment.Journal of Geophysical Research93:1351–1360.CrossRefGoogle Scholar
  41. Heimann, M. 1997. A review of the contemporary global carbon cycle and as seen a century ago by Arrhenius and Hogbom.Ambio26:17–24.Google Scholar
  42. Heimann, M., and E. Maier-Reimer. 1996. On the relations between the oceanic uptake of carbon dioxide and its carbon isotopes.Global Biogeochemical Cycles10:89–110.CrossRefGoogle Scholar
  43. Henderson-Sellers, A., K. McGuthrie, and C. Gross. 1995. Sensitivity of global climate model simulations to increased stomatal resistance.Journal of Climate8:1738–1756.CrossRefGoogle Scholar
  44. Heywood, V.H. ed. 1995.Global biodiversity assessment. United Nations Environment Programme. Cambridge University Press, Cambridge, England.Google Scholar
  45. Holdridge, L.R. 1947. Determination of world plant formations from simple climatic data.Science105:367–368.PubMedCrossRefGoogle Scholar
  46. Holland, E.A., A.R. Townsend, and P.M. Vitousek. 1995. Variability in temperature regulation of CO, fluxes and N mineralization from five Hawaiian soils: implications for a changing climate.Global Change Biology1:115–123.CrossRefGoogle Scholar
  47. Houghton, R.A. 1991. Releases of carbon to the atmosphere from degradation of forests in tropical Asia.Canadian Journal of Forest Research21:132–142.CrossRefGoogle Scholar
  48. Houghton, R.A. 1995. Land-use change and the carbon cycle.Global Change Biology1:275–287. CrossRefGoogle Scholar
  49. Houghton, R.A. Emissions of carbon from land-use change. In T.M.L. Wigley and D. Schimel, eds.The carbon cycle.Cambridge University Press, Stanford, CA: in press.Google Scholar
  50. Howarth, R.W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J.A. Downing et al. 1996. Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic ocean: natural and human influences.Biogeochemistry35:75–139.CrossRefGoogle Scholar
  51. Humboldt, A. von. 1817.De distributionae geographica plantarum. Libraria GraecoLatino-Germanica, Paris, France.Google Scholar
  52. Hutchinson, G.E. 1944a. A century of atmospheric biogeochemistry.American Scientist32:129–132.Google Scholar
  53. Hutchinson, G.E. 1944b. Nitrogen in the biogeochemistry of the atmosphere.American Scientist32:178–195.Google Scholar
  54. Hutchinson, G.E. 1949. A note on two aspects of the geochemistry of carbon.American Journal of Science247:27–32.CrossRefGoogle Scholar
  55. Hutchinson, G.E. 1948. On living in the biosphere.The Scientific MonthlyLXVII:393–398.Google Scholar
  56. Hutchinson, G.E. 1952. The biogeochemistry of phosphorus. Pages 1–35 in L.F. Wolterink, ed.The biology of phosphorus.Michigan State College Press, East Lansing, Michigan.Google Scholar
  57. Innis, G.S. 1976.Grassland simulation model.Springer-Verlag, New York.Google Scholar
  58. International Geosphere-Biosphere Programme 1988.A study of global change: a plan for action.Special Committee for IGBP Report No. 4:200.Google Scholar
  59. IPCC. 1990.Climate change. The IPCC scientific assessment. Cambridge University Press, Cambridge, England.Google Scholar
  60. IPCC. 1995.Climate change 1994. Radiative forcing of climate change and an evaluation of the IPCC IS92 Emission Scenarios. Cambridge University Press, Cambridge, England.Google Scholar
  61. IPCC. 1996.Climate change 1995. The science of climate change. Cambridge University Press, Cambridge, England.Google Scholar
  62. Jenny, H. 1941.Factors of soil formation: a system of quantitative pedology.McGraw-Hill, New York.Google Scholar
  63. Jenny, H. 1961. Derivation of state factor equations for soil and ecosystems.Soil Science Society of America Proceedings25:385–388.CrossRefGoogle Scholar
  64. Jenny, H. 1980.The soil resource: origin and behavior.Springer-Verlag, New York.Google Scholar
  65. Justice, C.O., J.R.G. Townshend, B.N. Holben, and C.J. Tucker. 1985. Analysis of the phenology of global vegetation using meteorological satellite data.International Journal of Remote Sensing6:1271–1318.CrossRefGoogle Scholar
  66. Kareiva, P., and Anderson, M. 1988. Spatial aspects of species interactions: the wedding of models and experiments. Pages 35–50 in A. Hastings, ed.Community ecology. Lecture Notes in Biomathematics77. Springer-Verlag, Berlin, Germany.Google Scholar
  67. Keeling, R.F., S.C. Piper, and M. Heimann. 1996. Global and hemispheric CO2sinks deduced from changes in atmospheric 02concentration.Nature381:218–221.CrossRefGoogle Scholar
  68. Keller, M., and W.A. Reiners. 1994. Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the atlantic lowlands of Costa Rica.Global Biogeochemical Cycles8(4):399–409.CrossRefGoogle Scholar
  69. Keeling, R.F., and S.R. Shertz. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle.Nature358:723–727.CrossRefGoogle Scholar
  70. Kirchner, J.W. 1991. The Gaia hypotheses: are they testable? are they useful? Pages 38–46 in S. Schneider and P. Boston, eds.Scientists on Gaia.MIT Press, Cambridge, MA.Google Scholar
  71. Koster, R.D., and M.J. Suarez. 1994. The components of a “SVAT” scheme and their effects on a GCM’s hydrological cycle.Advances in Water Research17:61–78.CrossRefGoogle Scholar
  72. Kuhn, T.S. 1972.The structure of scientific revolutions2d ed. The University of Chicago Press, Chicago, IL.Google Scholar
  73. Lauenroth, W.K. 1979. Grassland primary production: North American grasslands in perspective. Pages 3–24 in French N.R., ed.Perspectives in Grassland Ecology.Springer-Verlag, New York.CrossRefGoogle Scholar
  74. Lauenroth, W.K., and O.E. Sala. 1992. Long-term forage production of North American shortgrass steppe.Ecological Applications2:397–403.CrossRefGoogle Scholar
  75. Leemans, R. 1992. Modelling ecological and agricultural impacts of global change on a global scale.Journal of Scientific and Industrial Research51:709–724.Google Scholar
  76. Leemans, R., and W. Cramer. 1991.The IIASA database for mean monthly values of temperature precipitation and cloudiness on a global terrestrial gird. Research Report RR-91–18. International Institute of Applied Systems Analyses, Laxenburg, Austria.Google Scholar
  77. Lieth, H. 1978. Primary productivity in ecosystems: comparative analysis of global patterns. Pages 300–321 in H.F.H. Lieth, ed.Patterns of primary production in the biosphere. Dowden, Hutchinson and Ross, Inc., Stroudsburg, PA.Google Scholar
  78. Lieth, H., and R.H. Whittaker. 1975.Primary production of the biosphere.Ecological Studies 14.Springer-Verlag, New York.CrossRefGoogle Scholar
  79. Lovelock, J.E. 1988.The ages of Gaia. W.W. Norton Company, New York.Google Scholar
  80. Lovelock, J.E., and L. Margulis. 1974. Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis.Tellus22:2–9.Google Scholar
  81. Major, J. 1951. A functional factorial approach to plant ecology.Ecology32:392–412.CrossRefGoogle Scholar
  82. Margulis, L., and G. Hinkle. 1991. The biota and gaia: 150 years of support for environmental sciences. Pages 11–18 in S. Schneider and P. Boston, eds.Scientists on Gaia.MIT Press, Cambridge, MA.Google Scholar
  83. Margulis, L., and J.E. Lovelock. 1974. Biological modulation of the earth’s atmosphere.Icarus21:471–489.CrossRefGoogle Scholar
  84. Matson, P.A., and R.C. Harriss. 1995.Biogenic trace gases: measuring emissions from soil and water. Blackwell Science Ltd., Oxford, England.Google Scholar
  85. Matson, P.A., and R.C. Harriss. 1988. Prospects for aircraft-based gas exchange measurements in ecosystem studies.Ecology69:1318–1325.CrossRefGoogle Scholar
  86. Matson, P.A., and S.L. Ustin. 1991. Special Feature: the future of remote sensing in ecological studies.Ecology76:19–17.Google Scholar
  87. Matson, P.A., P.M. Vitousek, and D.S. Schimel. 1989. Regional extrapolation of trace gas flux based on soils and ecosystems. Pages 97–108 in M.O. Andreae and D.S. Schimel, eds.Exchange of trace gases between terrestrial ecosystems and the atmosphere.John Wiley & Sons, Chichester, England.Google Scholar
  88. McGuire, D.A., J.M. Melillo, and L.A. Joyce. 1995. The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon dioxide.Annual Review of Ecology and Systematics26:473–503.CrossRefGoogle Scholar
  89. Meentemeyer, V. 1984. The geography of organic decomposition rates.Annals of the Association of American Geographers74:551–560.CrossRefGoogle Scholar
  90. Meentemeyer, V., E.O. Box, and R. Thompson. 1982. World patterns and amounts of terrestrial plant litter production.BioScience32:125–128.CrossRefGoogle Scholar
  91. Melillo, J.M. 1996. Carbon and nitrogen interactions in the terrestrial biosphere: anthropogenic effects. Pages 431–50 in B. Walker and W. Steffen, eds.Global change and terrestrial ecosystems.Cambridge University Press, Cambridge, England.Google Scholar
  92. Melillo, J.M., A.D. McGuire, D.W. Kicklighter, B. Vorosmarty III, C.J. Moore, and A.L. Schloss. 1993. Global climate change and terrestrial net primary production.Nature363:234–240.CrossRefGoogle Scholar
  93. Melillo, J.M., I.C. Prentice, G.D. Farquhar, E.-D. Schulze, and O.E. Sala. 1996. Terrestrial biotic responses to environmental change and feedbacks to climate. Pages 449–81 in J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell, eds.Climate change 1994. The Science of Climate Change.Cambridge University Press, Cambridge, England.Google Scholar
  94. Miller, R.B. 1994. Interactions and collaboration in global change across the social and natural sciences.Ambio23:19–24.Google Scholar
  95. Montzka, S.A., J.H. Butler, R.C. Myers, T.M. Thompson, T.H. Swanson, A.D. Clarke et al. 1996. Decline in the tropospheric abundance of halogen from halocarbons: implications for stratospheric ozone depletion.Science272:1318–1322.PubMedCrossRefGoogle Scholar
  96. Mosier, A.R., D. Schimel, D. Valentine, K. Bronson, and W. Parton. 1991. Methane and nitrous oxide fluxes in native, fertilized, and cultivated grasslands.Nature350:330–332.CrossRefGoogle Scholar
  97. Nemani, R.R., S.W. Running, R.A. Pielke, and T.N. Chase. 1996. Global vegetation cover changes from coarse resolution satellite data.Journal of Geophysical Research101:7157–7162.CrossRefGoogle Scholar
  98. Noddack, W. 1937. Der kohlenstoff im haushalt der natur.Zeit. Ang. Chem.50: 505–510.CrossRefGoogle Scholar
  99. Odum, H.T. 1955. Trophic structure and productivity of Silver Springs, Florida.Ecological Monographs27:55–112.CrossRefGoogle Scholar
  100. Parry, M.L., J.E. Hossell, R. Bunce, P.J. Jones, R. Rehman, R.B. Tranter, J.S. Marsh et al. 1996. Global and regional land use responses to climate change. Pages 466–483 in B. Walker and W. Steffen, eds.Global change and terrestrial ecosystems.Cambridge University Press, Cambridge, England.Google Scholar
  101. Paruelo, J.M., and R.A. Golluscio. 1994. Range assessment using remote sensing in northwest Patagonia (Argentina).Journal of Range Management47:498–502.CrossRefGoogle Scholar
  102. Peierls, B.L., N.F. Caraco, M.L. Pace, and J.J. Cole. 1991. Human influence on river nitrogen.Nature350:386–387.CrossRefGoogle Scholar
  103. Perring, F.H. 1958. A theoretical approach to a study of chalk grassland.Journal of Ecology46:665–679.CrossRefGoogle Scholar
  104. Peterson, D.L., and R.H. Waring. 1994. Overview of the Oregon transect ecosystem research project.Ecological Applications4(2):211–225.CrossRefGoogle Scholar
  105. Pickett, S.T.A. 1989. Space-for-time substitution as an alternative to long-term studies. Pages 110–135 in G.E. Likens, ed.Long-term studies in ecology.Springer-Verlag, New York.CrossRefGoogle Scholar
  106. Pielke, R.A., G. Dalu, J.S. Snook, T.J. Lee, and T.G.F. Kittel. 1991. Nonlinear influence of mesoscale land use on weather and climate.Journal of Climate4:1053–1069.CrossRefGoogle Scholar
  107. Pielke, R.A., T.J. Lee, J.H. Copeland, J.L. Eastman, C.L. Ziegller, and C.A. Finley. 1997. Use of USGS-provided data to improve weather and climate simulations.Ecological Applications7:3–21.Google Scholar
  108. Pollard, D., and S.L. Thompson. 1995. The effect of doubling stomatal resistance in a global climate model.Global Planet Change10:1–4.CrossRefGoogle Scholar
  109. Potter, C.S., J.T. Randerson, C.B. Field, P.A. Matson, P.M. Vitousek, H.A. Mooney, and S.A. Klooster. 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data.Global Biogeochemical Cycles7:811–841.CrossRefGoogle Scholar
  110. Prather, M., P. Midgley, F. Sherwood Rowland, and R. Stolarski. 1996. The ozone layer: the road not taken.Nature381:551–554.CrossRefGoogle Scholar
  111. Prentice, I.C., W. Cramer, S.P. Harrison, R. Leemans, R.A. Monserud, and A.M. Solomon. 1992. A global biome model based on plant physiology and dominance, soil properties and climate.Journal of Biogeography19:117–134.CrossRefGoogle Scholar
  112. Prentice, K.C. 1990. Bioclimatic distribution of vegetation for general circulation model studies.Journal of Geophysical Research95:11811–11830.CrossRefGoogle Scholar
  113. Prince, S.D., and S.N. Goward. 1995. Global primary production: a remote sensing approach.Journal of Biogeography22:815–835.CrossRefGoogle Scholar
  114. Quay, P.D., B. Tilbrook, and C.S. Wong. 1992. Oceanic uptake of fossil fuel CO2: Carbon-13 evidence.Science256:74–79.PubMedCrossRefGoogle Scholar
  115. Redfield, A.C. 1958. The biological control of chemical factors in the environment.American ScientistAutumn205–221.Google Scholar
  116. Revelle, R., and H.E. Suess. 1957. Carbon dioxide exchange between the atmosphere and ocean, and the question of an increase in atmospheric CO, during the past decades.Tellus9:18–27.CrossRefGoogle Scholar
  117. Riebsame, W.E., K.A. Galvin, R. Young, W.J. Parton, I.C. Burke, L. Bohren, and E. Knop. 1994. An integrated model of causes of and responses to environmental change: land use/cover in the Central Great Plains.BioScience44:350–356.CrossRefGoogle Scholar
  118. Riley, G.A. 1944. The carbon metabolism and photosynthetic efficiency of the earth as a whole.American Scientist32:132–134.Google Scholar
  119. Rodhe, H., R. Charlson, and E. Crawford. 1997. Svante Arrhenius and the greenhouse effect.Ambio26:2–5.Google Scholar
  120. Rodin, L.E., and N.I. Bazilevich. 1967.Production and mineral cycling in terrestrial vegetation. Oliver & Boyd. Edinburgh, London, England.Google Scholar
  121. Rosenzweig, C.M., and L. Parry. 1994. Potential impact of climate change on world food supply.Nature367:133–138.CrossRefGoogle Scholar
  122. Rosenzweig, M.L. 1968. Net primary productivity of terrestrial communities: prediction from climatological data.American Naturalist102:67–74.CrossRefGoogle Scholar
  123. Roughgarden, J., S.W. Running, and P.A. Matson. 1991. What does remote sensing do for ecology?Ecology72:1918–1922.CrossRefGoogle Scholar
  124. Running, S.W. 1986. Global primary production from terrestrial vegetation: estimates integrating satellite remote sensing and computer simulation technology.Science of the Total Environment56:233–242.CrossRefGoogle Scholar
  125. Running, S.W. 1994. Testing forest-BGC ecosystem process simulations across a climatic gradient in Oregon.Ecological Applications4:238–247.CrossRefGoogle Scholar
  126. Running, S.W., and J.C. Coughlan. 1988. A general model of forest ecosystem process for regional applications. 1. Hydrologic balance, canopy gas exchange and primary production processes.Ecological Applications42:125–54.Google Scholar
  127. Running, S.W., T. Loveland, and L.L. Pierce. 1994. A vegetation classification logic based on remote sensing for use in global biogeochemical models.Ambio23:7781.Google Scholar
  128. Rutherford, M.C. 1980. Annual plant production precipitation relations in arid and semi arid regions.South African Journal of Science76:53–56.Google Scholar
  129. Sala, O.E., W.J. Parton, L.A. Joyce, and W.K. Lauenroth. 1988. Primary production of the central grassland region of the United States.Ecology69:40–45.CrossRefGoogle Scholar
  130. Sarmiento, J.L. 1993. Carbon cycle: atmospheric CO, stalled.Nature365:697–698.CrossRefGoogle Scholar
  131. Sato, N., P.J. Sellers, D.A. Randall, E.K. Schneider, J. Shukla, J.L. Kinter III et al. 1989. Effects of implementing the simple biosphere model in a general circulation model.Journal of Atmospheric Sciences46:2757–2769.CrossRefGoogle Scholar
  132. Schimel, D.S. 1994. Introduction. Pages 3–10 in P.M. Groffman and G.E. Likens, eds.Integrated regional models. Interactions between humans and their environment.Chapman & Hall, New York.Google Scholar
  133. Schimel, D.S., and I.C. Burke. 1992. Spatial interactive models of atmosphere-ecosystem coupling. Pages 284–289 in M.F. Goodchild, B.O. Parks, and L.T. Steyaert, eds.Environmental Modeling with GIS.Oxford University Press, New York.Google Scholar
  134. Schimel, D.S., B.H. Braswell, E.A. Holland, R. McKeown, D.S. Ojima, T.H. Painter et al. 1994a. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils.Global Biogeochemical Cycles8:279–293.CrossRefGoogle Scholar
  135. Schimel, D.S, I.G. Enting, M. Heimann, T.M.L. Wigley, D. Raynaud, D. Alves, et al. 1994b. CO2and the carbon cycle. Pages 35–72 in J.T. Houghton, L.G. Meira Filho, H. Lee, B.A. Callander, E. Haites, N. Harris, et al. eds.Climate Change 1994. Intergovernmental Panel on Climate Change.Cambridge University Press, Cambridge, England.Google Scholar
  136. Schindler, D.W., and S.E. Bayley. 1993. The biosphere as an increasing sink for atmospheric carbon: estimates from increased nitrogen deposition.Global Biogeochemical Cycles7:717–733.CrossRefGoogle Scholar
  137. Schneider, S., and P. Boston. 1991.Scientists on Gaia. MIT Press. Cambridge, MA.Google Scholar
  138. Schwartz, S.E. 1989. Acid deposition: unraveling a regional phenomenon.Science243:753–762.PubMedCrossRefGoogle Scholar
  139. Segal, M., and R.W. Arritt. 1992. Non-classical mesoscale circulations caused by surface sensible heat flux gradients.Bulletin of the American Meteorological Society73:1593–1604.CrossRefGoogle Scholar
  140. Sellers, P. 1995. The Boreal Ecosystem-Atmosphere Study (BOREAS): an overview and early results from the 1994 field year.Bulletin of the American Meteorological Society76:15–49.CrossRefGoogle Scholar
  141. Sellers, P., F. Hall, H. Margolis, R. Kelly, D. Baldocchi, G. den Hartog, J. Cihlar et al. 1995. The Boreal Ecosystem-Atmosphere Study (BOREAS): an overview and early results from the 1994 field year.Bulletin of the American Meteorological Society76:1549–1577.CrossRefGoogle Scholar
  142. Sellers, P.J. 1987. Modeling effects of vegetation on climate. Pages 133–62 in R.E. Dickson, ed.The geophysiology of Amazonia.John Wiley & Sons, New York.Google Scholar
  143. Sellers, P.J., F.G. Hall, and G. Asrar. 1992. An overview of the First International Satellite Land Surface Climatology Project (ISLSCP) field Experiment (FIFE).Journal of Geophysical Research97:18345–18371.CrossRefGoogle Scholar
  144. Shroeder, H. 1919. Die jährliche gesamptpruduktion der grünen pflanzendecke der Erde.Naturwiss7:8–12.CrossRefGoogle Scholar
  145. Shaw, C.E. 1930. Potent factors in soil formation.Ecology11:239–245.CrossRefGoogle Scholar
  146. Skole, D., and C. Tucker. 1993. Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988.Science260:1905–1910.PubMedCrossRefGoogle Scholar
  147. Smith, T.M., H.H. Shugart, G.B. Bonan, and J.B. Smith. 1993. The transient response of terrestrial carbon storage to a perturbed climate.Nature361:523–526.CrossRefGoogle Scholar
  148. Steayart, L.T., T.R. Loveland, and W.J. Parton. 1997. Land cover characterization and land surface parameterization research.Ecological Applications7:1–2.Google Scholar
  149. Tans, P.P., P.S. Bakwin, and D.W. Guenther. 1996. A feasible global carbon cycle observing system: a plan to decipher today’s carbon cycle based on observations.Global Change Biology2:309–318.CrossRefGoogle Scholar
  150. Tans, P.P., J.A. Berry, and R.F. Keeling. 1993. Oceanic 13C/12C observations: a new window on ocean CO2uptake.Global Biogeochemical Cycles7:353–368.CrossRefGoogle Scholar
  151. Tans, P.P., I.Y. Fung, and T. Takahashi. 1990. Observational constraints on the global atmospheric CO2budget.Science247:1431–1438.PubMedCrossRefGoogle Scholar
  152. Tilman, D. 1989. Ecological experimentation: strengths and conceptual problems. Pages 136–157 in G.E. Likens, ed.Long-term studies in ecology.Springer-Verlag, New York.CrossRefGoogle Scholar
  153. Townsend, A.R., P.M. Vitousek, and E.A. Holland. 1992. Tropical soils could dominate the short-term carbon cycle feedbacks to increased global temperatures.Climatic Change22:293–303.CrossRefGoogle Scholar
  154. Tucker, C.J., J.R.G. Townshend, and T.E. Goff. 1985. African land cover classification using satellite data.Science227:369–376.PubMedCrossRefGoogle Scholar
  155. Tucker, C.J., C. Vanpraet, E. Boerwinkel, and A. Gaston. 1983. Satellite remote sensing of dry matter production in the Sentalese Sahel.Remote Sensing of Environment13:461–474.CrossRefGoogle Scholar
  156. Van Dyne, G.M. 1977. Content, evolution and educational impacts of a systems ecology course sequence. Pages 9–23 in G.S. Innis, ed.New directions in the analysis of ecological systems. Part I.The Society of Computer Simulation. La Jolla, California.Google Scholar
  157. Van Dyne, G.M. 1972. Organization and management of an integrated ecological research program-with special emphasis on systems analysis, universities and scientific cooperation. Pages 111–72 in J.N. Jeffers, ed.Mathematical models in ecology.Blackwell Scientific Publishers, Oxford, England.Google Scholar
  158. VEMAP Members. 1995. Vegetation/ecosystem modeling and analysis project: comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2doubling.Global Biogeochemical Cycles9:407–437.CrossRefGoogle Scholar
  159. Vernadsky, W.I. 1944. Problems of biogeochemistry, II.Transactions of the Connecticut Academy of Arts and Sciences35:483–517.Google Scholar
  160. Vernadsky, W.I. 1945. The biosphere and the noosphere.American Scientist33: 1–12.Google Scholar
  161. Vitousek, P.M., J. Aber, R.W. Howarth, G.E. Likens, P.A. Matson, D.W. Schindler, W.H. Schlesinger, and D.G. Tilrnan 1997. Human alteration of the global nitrogen cycle: sources and consequences.Ecological Applications7:737–750.Google Scholar
  162. Walker, B., and Steffen, W. 1996.Global change and terrestrial ecosystems. Cambridge University Press, Cambridge, England.Google Scholar
  163. Webb, W.L., W.K. Lauenroth, S.R. Szarek, and R.S. Kinerson. 1983. Primary production and abiotic controls in forests, grasslands, and desert ecosystems in the U.S.Ecology64:134–151.CrossRefGoogle Scholar
  164. Wessman, C.A. 1992. Spatial scales and global change: bridging the gap from plots to GCM grid cells.Annual Review of Ecological Systems23:175–200.CrossRefGoogle Scholar
  165. Wessman, C.A., J.D. Aber, D.L. Peterson, and J.M. Melillo. 1988. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems.Nature6186:154–256.CrossRefGoogle Scholar
  166. Wessman, C.A., C.A. Bateson, and T.L. Benning. 1997. Detecting fire and grazing patterns in tallgrass prairie using spectral mixture analysis.Ecological Applications7:493–511.CrossRefGoogle Scholar
  167. Wofsy, S.C., M.L. Goulden, J.W. Munber et al. 1993. Net exchange of CO, in a mid-latitude forest.Science260:1314–1317.PubMedCrossRefGoogle Scholar
  168. Woodward, F.I. 1996. Developing the potential for describing the terrestrial biosphere’s response to a changing climate. Pages 511–28 in B.H. Walker and W.L. Steffen, eds.Global change and terrestrial ecosystems.Cambridge University Press, Cambridge, England.Google Scholar
  169. Woodwell, G.M., and E.V. Pecan. 1973.Carbon and the biosphere. United States Atomic Energy Commission, Springfield, VA.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Ingrid C. Burke
  • William K. Lauenroth
  • Carol A. Wessman

There are no affiliations available

Personalised recommendations