Skip to main content

Progress in Understanding Biogeochemical Cycles at Regional to Global Scales

  • Chapter
Successes, Limitations, and Frontiers in Ecosystem Science

Summary

Global-to regional-scale studies have played an important role in the development of ecosystem ecology. Long before there was evidence of global-scale impacts by humans on biogeochemistry, ecologists recognized that there were strong, interactive forces at global scales that were responsible for the state of the earth. In addition to this knowledge, many early ecologists made observations of biogeochemical pools and processes at regional to continental scales; their interpretations of patterns and their causes made significant contributions to our understanding biogeochemistry. The work of these early scientists was characterized by creative induction and vision; many of the frontiers and questions identified long ago still remain the focus of our activities today.

In recent decades, immense progress has been made in understanding biogeochemical processes at regional to global scales. Considerable advances have been made in understanding global-and regional-scale budgets of carbon and of nitrogen, and the interactions of trace gas fluxes, biophysical processes, vegetation, and climate. These successes were partially the result of the development of new tools, new collaborations, and an imperative from the international public to solve important environmental issues. Although the linkage between our present-day scientific activities and regional-to global-scale environmental problems is strong and productive, there is a need for continued support for basic research that will identify new horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J.D., C. Driscoll, C.A. Federer, R. Lathrop, G. Lovett, J.M. Melillo et al. 1993. A strategy for the regional analysis of the effects of physical and chemical climate change on biogeochemical cycles in northeastern (U.S.) forests.Ecological Modelling67:37–47.

    Article  Google Scholar 

  • Amundson, R., J.W. Harden, and M.J. Singer. 1994. Factors of soil formation: a fiftieth anniversary perspective.Soil Science Society of America Special Publicationno.33.Madison, WI.

    Google Scholar 

  • Anderson, S.O., and A. Miller. 1996. Ozone layer: the road not taken. Correspondence.Nature382:390.

    Article  Google Scholar 

  • Andreae, M.O., and D.S. Schimel. 1989.Exchange of trace gases between terrestrial ecosystems and the atmosphere. John Wiley & Sons. Chichester, U.K.

    Google Scholar 

  • Arrhenius, S. 1896. On the influence of carbonic acid in the air upon the temperature on the ground.The Philosophical Magazine41:237–276.

    Article  Google Scholar 

  • Arrhenius, G. 1997. Carbon dioxide warming of the early earth.Ambio26:12–16.

    PubMed  CAS  Google Scholar 

  • Asner, G.P., T.R. Seastedt, and A.R. Townsend. 1997. The decoupling of terrestrial carbon and nitrogen cycles.BioScience47:226–234.

    Article  Google Scholar 

  • Barlow, C., and T. Volk. 1992. Gaia and evolutionary biology.BioScience42:686–693.

    Article  Google Scholar 

  • Bolin, B. 1994. Science and policy making.Ambio23:27.

    Google Scholar 

  • Breymeyer, A.I., D.O. Hall, J.M. Melillo, and G.I. Agren. eds. 1996.Global change: effects on coniferous forests and grasslands. SCOPE 56. John Wiley & Sons. Chichester, U.K.

    Google Scholar 

  • Broecker, W.S., and T.-H. Peng. 1991. Interhemispheric transport of carbon dioxide by ocean circulation.Nature356:587–9.

    Article  Google Scholar 

  • Burke, I.C., T.G.F. Kittel, W.K. Lauenroth, P. Snook, C.M. Yonker, and W.J. Parton. 1991. Regional analysis of the central Great Plains, sensitivity to climate variability.BioScience41:685–692.

    Article  Google Scholar 

  • Burke, I.C., W.K. Lauenroth, W.J. Parton, and C.V. Cole. 1994. Interactions of landuse and ecosystem structure and function: a case study in the central Great Plains. Pages 79–95 in P.M. Groffman and G.E. Likens, eds.Integrated regional models.Chapman & Hall, New York.

    Chapter  Google Scholar 

  • Burke, I.C., W.K. Lauenroth, and W.J. Parton. 1997. Regional and temporal variation in net primary production and nitrogen mineralization in grasslands.Ecology78:1330–1340.

    Article  Google Scholar 

  • Burke, I.C., D.S. Schimel, C.M. Yonker, W.J. Parton, L.A. Joyce, and W.K. Lauenroth. 1990. Regional modeling of grassland biogeochemistry using GIS.Landscape Ecology4:45–54.

    Article  Google Scholar 

  • Caraco, N.F. 1995. Influence of human populations on P transfers to aquatic systems: a regional scale study using large rivers. Pages 235–44 in H. Tiessen, ed.Phosphorus in the global environment. SCOPE. John Wiley & Sons, Ltd., New York.

    Google Scholar 

  • Chase, T.N., R.A. Pielke, T.G.F. Kittel, R. Nemani, and S.W. Running. 1996. Sensitivity of a general circulation model to global changes in leaf area index.Journal of Geophysical Research101:7393–7408.

    Article  Google Scholar 

  • Claussen, M. 1994. On coupling global biome models with climate models.Climate Research4:203–221.

    Article  Google Scholar 

  • Cohen, W.B., M.E. Harmon, D.O. Wallin, and M. Fiorella. 1996. Two decades of carbon flux from forests of the Pacific Northwest.BioScience46:836–844.

    Article  Google Scholar 

  • Cole, J.J., B.L. Peierls, N.F. Caraco, and M.L. Pace. 1993. Nitrogen loading of rivers as a human-driven process. Pages 163–74 in M.J. McDonnell and S.T.A. Pickett, eds.Humans as components of ecosystems.Springer-Verlag, New York.

    Google Scholar 

  • Coleman, M.B., T.L. Bearly, I.C. Burke, and W.K. Lauenroth. 1994. Linking ecological simulation models to geographic information systems: an automated solution. Pages 397–412 in W. Michener and J. Brunt, eds.Environmental information management and analysis: ecosystem to global scales. E. Taylor and Francis, London, England.

    Google Scholar 

  • Costanza, R., F.H. Sklar, and M.L. White. 1990. Modeling coastal landscape dynamics.BioScience40:91–107.

    Article  Google Scholar 

  • Cramer, W., and A. Fischer. 1996. Data requirements for global terrestrial ecosystem modelling. Pages 529–565 in B. Walker and W. Steffen, eds.Global change and terrestrial ecosystems.Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Crawford, E. 1997. Arrhenius: 1896 model of the greenhouse effect in context.Ambio26:6–11.

    Google Scholar 

  • Denman, K., E. Hofman, and H. Marchant. 1996. Marine biotic responses to environmental change and feedbacks to climate. Pages 483–516 in J.T. Houghton, L.G. Meirra Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell, eds.Climate change 1995. The science of climate change.Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Dockuchaiev, V.V. 1883,1967. Russian chernozem. InCollected writings volume 3.Israel Progress in Science Transactions, Jerusalem.

    Google Scholar 

  • Dumas, J.B.A., and M.J.B. Boussingault. 1841. Lecon sur la statique chimique des entres organises.Philosophical Magazine19:337–347, 456–469.

    Google Scholar 

  • Elzinga, A. 1997. From Arrhenius to megascience: interplay between science and public decisionmaking.Ambio26:72–80.

    Google Scholar 

  • Emanuel, W.R., H.H. Shugart, and M.P. Stevenson. 1985. Climatic change and the broad-scale distribution of terrestrial ecosystem complexes.Climatic Change7:29–43.

    Article  Google Scholar 

  • Fennessy, M.J., and Y. Xue. 1997. Impact of USGS vegetation map on GCM simulations over the U.S.Ecological Applications7:22–33.

    Article  Google Scholar 

  • Field, C.B., J.T. Randerson, and C.M. Malmstrom. 1995. Global net primary production: combining ecology and remote sensing.Remote Sensing of Environment51:74–88.

    Article  Google Scholar 

  • Fung, I.Y., C.J. Tucker, and K.C. Prentice. 1987. Application of advanced very high resolution radiometer vegetation index to study atmosphere-biosphere exchange of CO2.Journal of Geophysical Research923:2999–3015.

    Article  Google Scholar 

  • Goudriaan, J. 1996. Predicting crop yields under climate change. Pages 260–274 in B. Walker and W. Steffen, eds.Global change and terrestrial ecosystems.Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Goulden, M.L., J.W. Munger, S.-M. Fan, B.C. Daube, and S.C. Wofsy. 1996. Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability.Science271:1576–1578.

    Article  CAS  Google Scholar 

  • Goward, S.N., C.J. Tucker, and D.G. Dye. 1985. North American vegetation patterns observed with the NOAA-7 advanced very resolution.Vegetatio64:3–14.

    Article  Google Scholar 

  • Grisebach, A.R.H. 1872.Die vegetation der Erde.Engleman, Leipsig.

    Google Scholar 

  • Groffman, P.M., and G.E. Likens. 1994.Integrated regional models.Chapman &Hall, New York.

    Book  Google Scholar 

  • Hall, F.G., D.B. Botkin, D.E. Strebel, K.D. Woods, and S.J. Goetz. 1991. Large-scale patterns of forest succession as determined by remote sensing.Ecology72:628–640.

    Article  Google Scholar 

  • Hall, F.G., and P.J. Sellers. 1995. First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) in 1995.Journal of Geophysical Research100:25,383–25,395.

    Article  Google Scholar 

  • Harriss, R.C., S.C. Wofsy, M. Garstang, L.C.B. Molion, R.S. McNeal, J.M. Hoell, R.J. Bendura et al. 1988. The Amazon boundary layer experiment.Journal of Geophysical Research93:1351–1360.

    Article  Google Scholar 

  • Heimann, M. 1997. A review of the contemporary global carbon cycle and as seen a century ago by Arrhenius and Hogbom.Ambio26:17–24.

    Google Scholar 

  • Heimann, M., and E. Maier-Reimer. 1996. On the relations between the oceanic uptake of carbon dioxide and its carbon isotopes.Global Biogeochemical Cycles10:89–110.

    Article  CAS  Google Scholar 

  • Henderson-Sellers, A., K. McGuthrie, and C. Gross. 1995. Sensitivity of global climate model simulations to increased stomatal resistance.Journal of Climate8:1738–1756.

    Article  Google Scholar 

  • Heywood, V.H. ed. 1995.Global biodiversity assessment. United Nations Environment Programme. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Holdridge, L.R. 1947. Determination of world plant formations from simple climatic data.Science105:367–368.

    Article  PubMed  CAS  Google Scholar 

  • Holland, E.A., A.R. Townsend, and P.M. Vitousek. 1995. Variability in temperature regulation of CO, fluxes and N mineralization from five Hawaiian soils: implications for a changing climate.Global Change Biology1:115–123.

    Article  Google Scholar 

  • Houghton, R.A. 1991. Releases of carbon to the atmosphere from degradation of forests in tropical Asia.Canadian Journal of Forest Research21:132–142.

    Article  CAS  Google Scholar 

  • Houghton, R.A. 1995. Land-use change and the carbon cycle.Global Change Biology1:275–287.

    Article  Google Scholar 

  • Houghton, R.A. Emissions of carbon from land-use change. In T.M.L. Wigley and D. Schimel, eds.The carbon cycle.Cambridge University Press, Stanford, CA: in press.

    Google Scholar 

  • Howarth, R.W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J.A. Downing et al. 1996. Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic ocean: natural and human influences.Biogeochemistry35:75–139.

    Article  CAS  Google Scholar 

  • Humboldt, A. von. 1817.De distributionae geographica plantarum. Libraria GraecoLatino-Germanica, Paris, France.

    Google Scholar 

  • Hutchinson, G.E. 1944a. A century of atmospheric biogeochemistry.American Scientist32:129–132.

    CAS  Google Scholar 

  • Hutchinson, G.E. 1944b. Nitrogen in the biogeochemistry of the atmosphere.American Scientist32:178–195.

    CAS  Google Scholar 

  • Hutchinson, G.E. 1949. A note on two aspects of the geochemistry of carbon.American Journal of Science247:27–32.

    Article  CAS  Google Scholar 

  • Hutchinson, G.E. 1948. On living in the biosphere.The Scientific MonthlyLXVII:393–398.

    Google Scholar 

  • Hutchinson, G.E. 1952. The biogeochemistry of phosphorus. Pages 1–35 in L.F. Wolterink, ed.The biology of phosphorus.Michigan State College Press, East Lansing, Michigan.

    Google Scholar 

  • Innis, G.S. 1976.Grassland simulation model.Springer-Verlag, New York.

    Google Scholar 

  • International Geosphere-Biosphere Programme 1988.A study of global change: a plan for action.Special Committee for IGBP Report No. 4:200.

    Google Scholar 

  • IPCC. 1990.Climate change. The IPCC scientific assessment. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • IPCC. 1995.Climate change 1994. Radiative forcing of climate change and an evaluation of the IPCC IS92 Emission Scenarios. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • IPCC. 1996.Climate change 1995. The science of climate change. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Jenny, H. 1941.Factors of soil formation: a system of quantitative pedology.McGraw-Hill, New York.

    Google Scholar 

  • Jenny, H. 1961. Derivation of state factor equations for soil and ecosystems.Soil Science Society of America Proceedings25:385–388.

    Article  Google Scholar 

  • Jenny, H. 1980.The soil resource: origin and behavior.Springer-Verlag, New York.

    Google Scholar 

  • Justice, C.O., J.R.G. Townshend, B.N. Holben, and C.J. Tucker. 1985. Analysis of the phenology of global vegetation using meteorological satellite data.International Journal of Remote Sensing6:1271–1318.

    Article  Google Scholar 

  • Kareiva, P., and Anderson, M. 1988. Spatial aspects of species interactions: the wedding of models and experiments. Pages 35–50 in A. Hastings, ed.Community ecology. Lecture Notes in Biomathematics77. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Keeling, R.F., S.C. Piper, and M. Heimann. 1996. Global and hemispheric CO2sinks deduced from changes in atmospheric 02concentration.Nature381:218–221.

    Article  CAS  Google Scholar 

  • Keller, M., and W.A. Reiners. 1994. Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the atlantic lowlands of Costa Rica.Global Biogeochemical Cycles8(4):399–409.

    Article  CAS  Google Scholar 

  • Keeling, R.F., and S.R. Shertz. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle.Nature358:723–727.

    Article  CAS  Google Scholar 

  • Kirchner, J.W. 1991. The Gaia hypotheses: are they testable? are they useful? Pages 38–46 in S. Schneider and P. Boston, eds.Scientists on Gaia.MIT Press, Cambridge, MA.

    Google Scholar 

  • Koster, R.D., and M.J. Suarez. 1994. The components of a “SVAT” scheme and their effects on a GCM’s hydrological cycle.Advances in Water Research17:61–78.

    Article  Google Scholar 

  • Kuhn, T.S. 1972.The structure of scientific revolutions2d ed. The University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Lauenroth, W.K. 1979. Grassland primary production: North American grasslands in perspective. Pages 3–24 in French N.R., ed.Perspectives in Grassland Ecology.Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Lauenroth, W.K., and O.E. Sala. 1992. Long-term forage production of North American shortgrass steppe.Ecological Applications2:397–403.

    Article  Google Scholar 

  • Leemans, R. 1992. Modelling ecological and agricultural impacts of global change on a global scale.Journal of Scientific and Industrial Research51:709–724.

    Google Scholar 

  • Leemans, R., and W. Cramer. 1991.The IIASA database for mean monthly values of temperature precipitation and cloudiness on a global terrestrial gird. Research Report RR-91–18. International Institute of Applied Systems Analyses, Laxenburg, Austria.

    Google Scholar 

  • Lieth, H. 1978. Primary productivity in ecosystems: comparative analysis of global patterns. Pages 300–321 in H.F.H. Lieth, ed.Patterns of primary production in the biosphere. Dowden, Hutchinson and Ross, Inc., Stroudsburg, PA.

    Google Scholar 

  • Lieth, H., and R.H. Whittaker. 1975.Primary production of the biosphere.Ecological Studies 14.Springer-Verlag, New York.

    Book  Google Scholar 

  • Lovelock, J.E. 1988.The ages of Gaia. W.W. Norton Company, New York.

    Google Scholar 

  • Lovelock, J.E., and L. Margulis. 1974. Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis.Tellus22:2–9.

    Google Scholar 

  • Major, J. 1951. A functional factorial approach to plant ecology.Ecology32:392–412.

    Article  Google Scholar 

  • Margulis, L., and G. Hinkle. 1991. The biota and gaia: 150 years of support for environmental sciences. Pages 11–18 in S. Schneider and P. Boston, eds.Scientists on Gaia.MIT Press, Cambridge, MA.

    Google Scholar 

  • Margulis, L., and J.E. Lovelock. 1974. Biological modulation of the earth’s atmosphere.Icarus21:471–489.

    Article  CAS  Google Scholar 

  • Matson, P.A., and R.C. Harriss. 1995.Biogenic trace gases: measuring emissions from soil and water. Blackwell Science Ltd., Oxford, England.

    Google Scholar 

  • Matson, P.A., and R.C. Harriss. 1988. Prospects for aircraft-based gas exchange measurements in ecosystem studies.Ecology69:1318–1325.

    Article  Google Scholar 

  • Matson, P.A., and S.L. Ustin. 1991. Special Feature: the future of remote sensing in ecological studies.Ecology76:19–17.

    Google Scholar 

  • Matson, P.A., P.M. Vitousek, and D.S. Schimel. 1989. Regional extrapolation of trace gas flux based on soils and ecosystems. Pages 97–108 in M.O. Andreae and D.S. Schimel, eds.Exchange of trace gases between terrestrial ecosystems and the atmosphere.John Wiley & Sons, Chichester, England.

    Google Scholar 

  • McGuire, D.A., J.M. Melillo, and L.A. Joyce. 1995. The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon dioxide.Annual Review of Ecology and Systematics26:473–503.

    Article  Google Scholar 

  • Meentemeyer, V. 1984. The geography of organic decomposition rates.Annals of the Association of American Geographers74:551–560.

    Article  Google Scholar 

  • Meentemeyer, V., E.O. Box, and R. Thompson. 1982. World patterns and amounts of terrestrial plant litter production.BioScience32:125–128.

    Article  Google Scholar 

  • Melillo, J.M. 1996. Carbon and nitrogen interactions in the terrestrial biosphere: anthropogenic effects. Pages 431–50 in B. Walker and W. Steffen, eds.Global change and terrestrial ecosystems.Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Melillo, J.M., A.D. McGuire, D.W. Kicklighter, B. Vorosmarty III, C.J. Moore, and A.L. Schloss. 1993. Global climate change and terrestrial net primary production.Nature363:234–240.

    Article  CAS  Google Scholar 

  • Melillo, J.M., I.C. Prentice, G.D. Farquhar, E.-D. Schulze, and O.E. Sala. 1996. Terrestrial biotic responses to environmental change and feedbacks to climate. Pages 449–81 in J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell, eds.Climate change 1994. The Science of Climate Change.Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Miller, R.B. 1994. Interactions and collaboration in global change across the social and natural sciences.Ambio23:19–24.

    Google Scholar 

  • Montzka, S.A., J.H. Butler, R.C. Myers, T.M. Thompson, T.H. Swanson, A.D. Clarke et al. 1996. Decline in the tropospheric abundance of halogen from halocarbons: implications for stratospheric ozone depletion.Science272:1318–1322.

    Article  PubMed  CAS  Google Scholar 

  • Mosier, A.R., D. Schimel, D. Valentine, K. Bronson, and W. Parton. 1991. Methane and nitrous oxide fluxes in native, fertilized, and cultivated grasslands.Nature350:330–332.

    Article  CAS  Google Scholar 

  • Nemani, R.R., S.W. Running, R.A. Pielke, and T.N. Chase. 1996. Global vegetation cover changes from coarse resolution satellite data.Journal of Geophysical Research101:7157–7162.

    Article  Google Scholar 

  • Noddack, W. 1937. Der kohlenstoff im haushalt der natur.Zeit. Ang. Chem.50: 505–510.

    Article  CAS  Google Scholar 

  • Odum, H.T. 1955. Trophic structure and productivity of Silver Springs, Florida.Ecological Monographs27:55–112.

    Article  Google Scholar 

  • Parry, M.L., J.E. Hossell, R. Bunce, P.J. Jones, R. Rehman, R.B. Tranter, J.S. Marsh et al. 1996. Global and regional land use responses to climate change. Pages 466–483 in B. Walker and W. Steffen, eds.Global change and terrestrial ecosystems.Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Paruelo, J.M., and R.A. Golluscio. 1994. Range assessment using remote sensing in northwest Patagonia (Argentina).Journal of Range Management47:498–502.

    Article  Google Scholar 

  • Peierls, B.L., N.F. Caraco, M.L. Pace, and J.J. Cole. 1991. Human influence on river nitrogen.Nature350:386–387.

    Article  Google Scholar 

  • Perring, F.H. 1958. A theoretical approach to a study of chalk grassland.Journal of Ecology46:665–679.

    Article  Google Scholar 

  • Peterson, D.L., and R.H. Waring. 1994. Overview of the Oregon transect ecosystem research project.Ecological Applications4(2):211–225.

    Article  Google Scholar 

  • Pickett, S.T.A. 1989. Space-for-time substitution as an alternative to long-term studies. Pages 110–135 in G.E. Likens, ed.Long-term studies in ecology.Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Pielke, R.A., G. Dalu, J.S. Snook, T.J. Lee, and T.G.F. Kittel. 1991. Nonlinear influence of mesoscale land use on weather and climate.Journal of Climate4:1053–1069.

    Article  Google Scholar 

  • Pielke, R.A., T.J. Lee, J.H. Copeland, J.L. Eastman, C.L. Ziegller, and C.A. Finley. 1997. Use of USGS-provided data to improve weather and climate simulations.Ecological Applications7:3–21.

    Google Scholar 

  • Pollard, D., and S.L. Thompson. 1995. The effect of doubling stomatal resistance in a global climate model.Global Planet Change10:1–4.

    Article  Google Scholar 

  • Potter, C.S., J.T. Randerson, C.B. Field, P.A. Matson, P.M. Vitousek, H.A. Mooney, and S.A. Klooster. 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data.Global Biogeochemical Cycles7:811–841.

    Article  Google Scholar 

  • Prather, M., P. Midgley, F. Sherwood Rowland, and R. Stolarski. 1996. The ozone layer: the road not taken.Nature381:551–554.

    Article  CAS  Google Scholar 

  • Prentice, I.C., W. Cramer, S.P. Harrison, R. Leemans, R.A. Monserud, and A.M. Solomon. 1992. A global biome model based on plant physiology and dominance, soil properties and climate.Journal of Biogeography19:117–134.

    Article  Google Scholar 

  • Prentice, K.C. 1990. Bioclimatic distribution of vegetation for general circulation model studies.Journal of Geophysical Research95:11811–11830.

    Article  Google Scholar 

  • Prince, S.D., and S.N. Goward. 1995. Global primary production: a remote sensing approach.Journal of Biogeography22:815–835.

    Article  Google Scholar 

  • Quay, P.D., B. Tilbrook, and C.S. Wong. 1992. Oceanic uptake of fossil fuel CO2: Carbon-13 evidence.Science256:74–79.

    Article  PubMed  CAS  Google Scholar 

  • Redfield, A.C. 1958. The biological control of chemical factors in the environment.American ScientistAutumn205–221.

    Google Scholar 

  • Revelle, R., and H.E. Suess. 1957. Carbon dioxide exchange between the atmosphere and ocean, and the question of an increase in atmospheric CO, during the past decades.Tellus9:18–27.

    Article  CAS  Google Scholar 

  • Riebsame, W.E., K.A. Galvin, R. Young, W.J. Parton, I.C. Burke, L. Bohren, and E. Knop. 1994. An integrated model of causes of and responses to environmental change: land use/cover in the Central Great Plains.BioScience44:350–356.

    Article  Google Scholar 

  • Riley, G.A. 1944. The carbon metabolism and photosynthetic efficiency of the earth as a whole.American Scientist32:132–134.

    CAS  Google Scholar 

  • Rodhe, H., R. Charlson, and E. Crawford. 1997. Svante Arrhenius and the greenhouse effect.Ambio26:2–5.

    Google Scholar 

  • Rodin, L.E., and N.I. Bazilevich. 1967.Production and mineral cycling in terrestrial vegetation. Oliver & Boyd. Edinburgh, London, England.

    Google Scholar 

  • Rosenzweig, C.M., and L. Parry. 1994. Potential impact of climate change on world food supply.Nature367:133–138.

    Article  Google Scholar 

  • Rosenzweig, M.L. 1968. Net primary productivity of terrestrial communities: prediction from climatological data.American Naturalist102:67–74.

    Article  Google Scholar 

  • Roughgarden, J., S.W. Running, and P.A. Matson. 1991. What does remote sensing do for ecology?Ecology72:1918–1922.

    Article  Google Scholar 

  • Running, S.W. 1986. Global primary production from terrestrial vegetation: estimates integrating satellite remote sensing and computer simulation technology.Science of the Total Environment56:233–242.

    Article  Google Scholar 

  • Running, S.W. 1994. Testing forest-BGC ecosystem process simulations across a climatic gradient in Oregon.Ecological Applications4:238–247.

    Article  Google Scholar 

  • Running, S.W., and J.C. Coughlan. 1988. A general model of forest ecosystem process for regional applications. 1. Hydrologic balance, canopy gas exchange and primary production processes.Ecological Applications42:125–54.

    CAS  Google Scholar 

  • Running, S.W., T. Loveland, and L.L. Pierce. 1994. A vegetation classification logic based on remote sensing for use in global biogeochemical models.Ambio23:7781.

    Google Scholar 

  • Rutherford, M.C. 1980. Annual plant production precipitation relations in arid and semi arid regions.South African Journal of Science76:53–56.

    Google Scholar 

  • Sala, O.E., W.J. Parton, L.A. Joyce, and W.K. Lauenroth. 1988. Primary production of the central grassland region of the United States.Ecology69:40–45.

    Article  Google Scholar 

  • Sarmiento, J.L. 1993. Carbon cycle: atmospheric CO, stalled.Nature365:697–698.

    Article  Google Scholar 

  • Sato, N., P.J. Sellers, D.A. Randall, E.K. Schneider, J. Shukla, J.L. Kinter III et al. 1989. Effects of implementing the simple biosphere model in a general circulation model.Journal of Atmospheric Sciences46:2757–2769.

    Article  Google Scholar 

  • Schimel, D.S. 1994. Introduction. Pages 3–10 in P.M. Groffman and G.E. Likens, eds.Integrated regional models. Interactions between humans and their environment.Chapman & Hall, New York.

    Google Scholar 

  • Schimel, D.S., and I.C. Burke. 1992. Spatial interactive models of atmosphere-ecosystem coupling. Pages 284–289 in M.F. Goodchild, B.O. Parks, and L.T. Steyaert, eds.Environmental Modeling with GIS.Oxford University Press, New York.

    Google Scholar 

  • Schimel, D.S., B.H. Braswell, E.A. Holland, R. McKeown, D.S. Ojima, T.H. Painter et al. 1994a. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils.Global Biogeochemical Cycles8:279–293.

    Article  CAS  Google Scholar 

  • Schimel, D.S, I.G. Enting, M. Heimann, T.M.L. Wigley, D. Raynaud, D. Alves, et al. 1994b. CO2and the carbon cycle. Pages 35–72 in J.T. Houghton, L.G. Meira Filho, H. Lee, B.A. Callander, E. Haites, N. Harris, et al. eds.Climate Change 1994. Intergovernmental Panel on Climate Change.Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Schindler, D.W., and S.E. Bayley. 1993. The biosphere as an increasing sink for atmospheric carbon: estimates from increased nitrogen deposition.Global Biogeochemical Cycles7:717–733.

    Article  CAS  Google Scholar 

  • Schneider, S., and P. Boston. 1991.Scientists on Gaia. MIT Press. Cambridge, MA.

    Google Scholar 

  • Schwartz, S.E. 1989. Acid deposition: unraveling a regional phenomenon.Science243:753–762.

    Article  PubMed  CAS  Google Scholar 

  • Segal, M., and R.W. Arritt. 1992. Non-classical mesoscale circulations caused by surface sensible heat flux gradients.Bulletin of the American Meteorological Society73:1593–1604.

    Article  Google Scholar 

  • Sellers, P. 1995. The Boreal Ecosystem-Atmosphere Study (BOREAS): an overview and early results from the 1994 field year.Bulletin of the American Meteorological Society76:15–49.

    Article  Google Scholar 

  • Sellers, P., F. Hall, H. Margolis, R. Kelly, D. Baldocchi, G. den Hartog, J. Cihlar et al. 1995. The Boreal Ecosystem-Atmosphere Study (BOREAS): an overview and early results from the 1994 field year.Bulletin of the American Meteorological Society76:1549–1577.

    Article  Google Scholar 

  • Sellers, P.J. 1987. Modeling effects of vegetation on climate. Pages 133–62 in R.E. Dickson, ed.The geophysiology of Amazonia.John Wiley & Sons, New York.

    Google Scholar 

  • Sellers, P.J., F.G. Hall, and G. Asrar. 1992. An overview of the First International Satellite Land Surface Climatology Project (ISLSCP) field Experiment (FIFE).Journal of Geophysical Research97:18345–18371.

    Article  Google Scholar 

  • Shroeder, H. 1919. Die jährliche gesamptpruduktion der grünen pflanzendecke der Erde.Naturwiss7:8–12.

    Article  Google Scholar 

  • Shaw, C.E. 1930. Potent factors in soil formation.Ecology11:239–245.

    Article  CAS  Google Scholar 

  • Skole, D., and C. Tucker. 1993. Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988.Science260:1905–1910.

    Article  PubMed  CAS  Google Scholar 

  • Smith, T.M., H.H. Shugart, G.B. Bonan, and J.B. Smith. 1993. The transient response of terrestrial carbon storage to a perturbed climate.Nature361:523–526.

    Article  Google Scholar 

  • Steayart, L.T., T.R. Loveland, and W.J. Parton. 1997. Land cover characterization and land surface parameterization research.Ecological Applications7:1–2.

    Google Scholar 

  • Tans, P.P., P.S. Bakwin, and D.W. Guenther. 1996. A feasible global carbon cycle observing system: a plan to decipher today’s carbon cycle based on observations.Global Change Biology2:309–318.

    Article  Google Scholar 

  • Tans, P.P., J.A. Berry, and R.F. Keeling. 1993. Oceanic 13C/12C observations: a new window on ocean CO2uptake.Global Biogeochemical Cycles7:353–368.

    Article  CAS  Google Scholar 

  • Tans, P.P., I.Y. Fung, and T. Takahashi. 1990. Observational constraints on the global atmospheric CO2budget.Science247:1431–1438.

    Article  PubMed  CAS  Google Scholar 

  • Tilman, D. 1989. Ecological experimentation: strengths and conceptual problems. Pages 136–157 in G.E. Likens, ed.Long-term studies in ecology.Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Townsend, A.R., P.M. Vitousek, and E.A. Holland. 1992. Tropical soils could dominate the short-term carbon cycle feedbacks to increased global temperatures.Climatic Change22:293–303.

    Article  CAS  Google Scholar 

  • Tucker, C.J., J.R.G. Townshend, and T.E. Goff. 1985. African land cover classification using satellite data.Science227:369–376.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, C.J., C. Vanpraet, E. Boerwinkel, and A. Gaston. 1983. Satellite remote sensing of dry matter production in the Sentalese Sahel.Remote Sensing of Environment13:461–474.

    Article  Google Scholar 

  • Van Dyne, G.M. 1977. Content, evolution and educational impacts of a systems ecology course sequence. Pages 9–23 in G.S. Innis, ed.New directions in the analysis of ecological systems. Part I.The Society of Computer Simulation. La Jolla, California.

    Google Scholar 

  • Van Dyne, G.M. 1972. Organization and management of an integrated ecological research program-with special emphasis on systems analysis, universities and scientific cooperation. Pages 111–72 in J.N. Jeffers, ed.Mathematical models in ecology.Blackwell Scientific Publishers, Oxford, England.

    Google Scholar 

  • VEMAP Members. 1995. Vegetation/ecosystem modeling and analysis project: comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2doubling.Global Biogeochemical Cycles9:407–437.

    Article  Google Scholar 

  • Vernadsky, W.I. 1944. Problems of biogeochemistry, II.Transactions of the Connecticut Academy of Arts and Sciences35:483–517.

    Google Scholar 

  • Vernadsky, W.I. 1945. The biosphere and the noosphere.American Scientist33: 1–12.

    Google Scholar 

  • Vitousek, P.M., J. Aber, R.W. Howarth, G.E. Likens, P.A. Matson, D.W. Schindler, W.H. Schlesinger, and D.G. Tilrnan 1997. Human alteration of the global nitrogen cycle: sources and consequences.Ecological Applications7:737–750.

    Google Scholar 

  • Walker, B., and Steffen, W. 1996.Global change and terrestrial ecosystems. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Webb, W.L., W.K. Lauenroth, S.R. Szarek, and R.S. Kinerson. 1983. Primary production and abiotic controls in forests, grasslands, and desert ecosystems in the U.S.Ecology64:134–151.

    Article  Google Scholar 

  • Wessman, C.A. 1992. Spatial scales and global change: bridging the gap from plots to GCM grid cells.Annual Review of Ecological Systems23:175–200.

    Article  Google Scholar 

  • Wessman, C.A., J.D. Aber, D.L. Peterson, and J.M. Melillo. 1988. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems.Nature6186:154–256.

    Article  Google Scholar 

  • Wessman, C.A., C.A. Bateson, and T.L. Benning. 1997. Detecting fire and grazing patterns in tallgrass prairie using spectral mixture analysis.Ecological Applications7:493–511.

    Article  Google Scholar 

  • Wofsy, S.C., M.L. Goulden, J.W. Munber et al. 1993. Net exchange of CO, in a mid-latitude forest.Science260:1314–1317.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, F.I. 1996. Developing the potential for describing the terrestrial biosphere’s response to a changing climate. Pages 511–28 in B.H. Walker and W.L. Steffen, eds.Global change and terrestrial ecosystems.Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Woodwell, G.M., and E.V. Pecan. 1973.Carbon and the biosphere. United States Atomic Energy Commission, Springfield, VA.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Burke, I.C., Lauenroth, W.K., Wessman, C.A. (1998). Progress in Understanding Biogeochemical Cycles at Regional to Global Scales. In: Pace, M.L., Groffman, P.M. (eds) Successes, Limitations, and Frontiers in Ecosystem Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1724-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1724-4_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98475-9

  • Online ISBN: 978-1-4612-1724-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics