Skip to main content

Asymptotic Studies of the Painlevé Equations

  • Chapter
The Painlevé Property

Part of the book series: CRM Series in Mathematical Physics ((CRM))

  • 1172 Accesses

Abstract

The main aim of this chapter is to explain direct and natural rigorous methods for carrying out local and some global asymptotic studies near fixed singular points of the classical Painlevé equations. Such methods were first developed by Boutroux (around 1913). Here we review these methods and improve Boutroux’s results. Moreover, we show that these methods can also be used to obtain asymptotic behavior in other limits, e.g., when a parameter of the equation becomes large. The methods and results are illustrated here for the first and second Painlevé equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Hille, Analytic Function Theory I and II (Chelsea, New York, 1982).

    Google Scholar 

  2. E. Hille, Ordinary Differential Equations in the Complex Domain (John Wiley and Sons, New York, 1976).

    MATH  Google Scholar 

  3. N. Joshi and M.D. Kruskal, A direct proof that the solutions of the six Painlevé equations have no movable singularities except poles, Stud. Appl. Math. 93 (1994), 187–207.

    MathSciNet  MATH  Google Scholar 

  4. P. Painlevé, Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale générale est uniforme, Acta Math. 25 (1902), 1–85.

    Article  MathSciNet  Google Scholar 

  5. B. Gambier, Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est à points critiques fixes, Acta Math. 33 (1910), 1–55.

    Article  MathSciNet  Google Scholar 

  6. R. Fuchs, Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen, Math. Annalen 63 (1907), 301–321.

    Article  MATH  Google Scholar 

  7. M.J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981).

    MATH  Google Scholar 

  8. M.J. Ablowitz and P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, volume 149 of London Mathematical Society Lecture Notes in Mathematics (Cambridge University Press, Cambridge, 1991).

    Book  MATH  Google Scholar 

  9. M.J. Ablowitz, A. Ramani, and H. Segur, A connection between nonlinear evolution equations and ordinary differential equations of P-type I and II, J. Math. Phys. 21 (1980), 715–721, 1006-1015.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. A.S. Fokas and X. Zhou, On the solvability of Painlevé II and IV, Comm. Math. Phys. 144 (1992), 601–622.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. A.S. Fokas, U. Mugan, and X. Zhou, On the solvability of Painlevé I, III and V, Inverse Problems 8 (1992), 757–785.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. F.W.J. Olver, Asymptotics and Special Functions (Academic Press, London, 1992).

    Google Scholar 

  13. P. Boutroux, Recherches sur les transcendantes de M. Painlevé et l’étude asymptotique des équations différentielles du second ordre, Ann. École Norm. 30 (1913), 265–375.

    MathSciNet  Google Scholar 

  14. P. Boutroux, Recherches sur les transcendantes de M. Painlevé et l’étude asymptotique des équations différentielles du second ordre, Ann. École Norm. 31 (1914), 99–159.

    MathSciNet  Google Scholar 

  15. B. McCoy, Spin systems, statistical mechanics, and Painlevé functions, Painlevé transcendents, their asymptotics and physical applications, eds. D. Levi and P. Winternitz, NATO ASI Scries B, (Plenum, New York, 1992), pages 377–391.

    Google Scholar 

  16. B. McCoy, C. Tracy, and T.T. Wu, Painlevé functions of the third kind, J. Math. Phys. 18 (1977), 1058–1092.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. M.J. Ablowitz and H. Segur, Asymptotic solutions of the KortewegdeVries equation, Stud. Appl. Math. 57 (1977), 13–44.

    MathSciNet  ADS  Google Scholar 

  18. H. Segur and M.J. Ablowitz, Connection results for the second Painlevé equation, Physica D 3 (1981), 165–184.

    Article  ADS  MATH  Google Scholar 

  19. S.P. Hastings and J.B. McLeod, A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation, Arch. Rational Mech. Anal. 73 (1980), 31–51.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. P.A. Clarkson and J.B. McLeod, A connection formula for the second Painlevé transcendent. Arch. Rational Mech. Anal. 103 (1988), 97–138.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. M. Jimbo, T. Miwa, Y. Môri and M. Sato, Density Matrix of an Impenetrable Bose Gas and the Fifth Painlevé Transcendent, Physica 1D (1980), 80–158.

    ADS  Google Scholar 

  22. A.R. Its and V.Yu. Novokshenov, The Isomonodromic Deformation Method in the Theory of Painlevé Equations, Lecture Notes in Math. 1191 (Springer-Verlag, Berlin, 1986).

    Google Scholar 

  23. A.R. Its, A.S. Fokas, and A.A. Kapaev, On the asymptotic analysis of the Painlevé equations via the isomonodromy method, Nonlinearity 7 (1994), 1291–1325.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. A.R. Its and A.A. Kapaev, The method of isomonodromy deformations and connection formulas for the second Painlevé transcendent, Math. USSR Izvestiya 31 (1988), 193–207.

    Article  MathSciNet  ADS  Google Scholar 

  25. A.V. Kitaev, Isomonodromic technique and elliptic asymptotic formulas for the first Painlevé transcendent, St. Petersburg Math. J. 5 (1994), 577–605.

    MathSciNet  Google Scholar 

  26. P. Deift and X. Zhou, Asymptotics of the Painlevé II equation, Comm. Pure Appl. Math. 48 (1995), 277–337.

    Article  MathSciNet  MATH  Google Scholar 

  27. A.V. Kitaev, Elliptic asymptotics of the first and the second Painlevé transcendents, Russian Math. Surveys 49 (1994), 81–150.

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Bassom, P.A. Clarkson, C. Law, and J.B. McLeod, Applications of uniform asymptotics to the second Painlevé transcendent, Arch. Rat. Meeh. Anal., 143 (1998), 241–271.

    Article  MathSciNet  MATH  Google Scholar 

  29. N. Joshi and M.D. Kruskal, An asymptotic approach to the connection problem for the first and the second Painlevé equations, Phys. Lett. A 130 (1988), 129–137.

    Article  MathSciNet  ADS  Google Scholar 

  30. N. Joshi and M.D. Kruskal, Connection results for the first Painlevé equation, Painlevé Transcendents, Their Asymptotics and Physical Applications, eds. D. Levi and P. Winternitz, NATO ASI Series B, (Plenum, New York, 1992), pages 61–79.

    Google Scholar 

  31. N. Joshi and M.D. Kruskal, The Painlevé connection problem: an asymptotic approach I, Stud. Appl. Math. 86 (1992), 315–376.

    MathSciNet  MATH  Google Scholar 

  32. N. Joshi and M.D. Kruskal, The connection problem for Painlevé transcendents, Physica D 18 (1986), 215–216.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. C. Bender and S. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978).

    MATH  Google Scholar 

  34. E. Ince, Ordinary Differential Equations (Longmans, Green and Co., London and New York, 1926). Reprinted (Dover, New York, 1954).

    Google Scholar 

  35. T. Kawai and Y. Takei, On the structure of Painlevé transcendents with a large parameter, Proc. Japan Acad. Ser. A Math. Sci 69 (1993), 224–229.

    Article  MathSciNet  MATH  Google Scholar 

  36. T. Kawai and Y. Takei, WKB analysis of Painlevé transcendents with a large parameter I, Adv. Math. 118 (1996), 1–33.

    Article  MathSciNet  MATH  Google Scholar 

  37. T. Kawai and Y. Takei, On the structure of Painlevé transcendents with a large parameter II, Proc. Japan Acad. Ser. A Math. Sci 72 (1996), 144–147.

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Abramowitz and I. Stegun (eds.), Handbook of Mathematical Functions (Dover, New York, 1972).

    MATH  Google Scholar 

  39. M.D. Kruskal, Asymptotic theory of Hamiltonian and other systems with all solutions nearly periodic, J. Math. Phys. 3 (1962), 806–828.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. P. Doran-Wu and N. Joshi, Direct asymptotic analysis of the second Painlevé equation: three limits, J. Phys. A 30, 4701–4708.

    Google Scholar 

  41. N. Joshi, Local asymptotics of the first discrete Painlevé equation as the discrete independent variable approaches infinity, Methods and applications of analysis 4 (1997), 124–133.

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Joshi, N. (1999). Asymptotic Studies of the Painlevé Equations. In: Conte, R. (eds) The Painlevé Property. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1532-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1532-5_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98888-7

  • Online ISBN: 978-1-4612-1532-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics