Skip to main content

Hairs on the Unicorn: Fine Structure of Monopoles and Other Solitons

  • Conference paper
Solitons

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

Intrinsically stable or “fundamental” solitons may be decorated with conserved charges which are pieces of those carried by elementary particles in the same medium. These “hairs” are always significant in principle, and in the strong-coupling regime (where solitons and particles exchange roles) they may become major factors in dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. A. M. Dirac, Proc. R. Soc. London Sec. A 133 (1931), 60.

    Article  ADS  Google Scholar 

  2. C. J. Goebel, In: Quanta (P. G. O. Freund, et al., eds.) Chicago, University Chicago, 1970, 338; A. S. Goldhaber, Magnetic Monopoles (R. A. Carrigan, Jr. and W. P. Trower, eds.) vol. 1, Plenum, New York, 1983.

    Google Scholar 

  3. A. S. Goldhaber, ITP 97-61, 1997.

    Google Scholar 

  4. A. S. Goldhaber, ITP 97-62, November 1997.

    Google Scholar 

  5. A. S. Goldhaber, In: Workshop on Foundations of Quantum Mechanics (T. D. Black, et al., eds.) World Scientific, Singapore, 1992.

    Google Scholar 

  6. A. S. Goldhaber and J. K. Jain, Phys. Lett. A 199 (1995), 267.

    Article  Google Scholar 

  7. A. S. Goldhaber and S. A. Kivelson, Phys. Lett. B 255 (1991), 445.

    Google Scholar 

  8. J. Goldstone and F. Wilczek, Phys. Rev. Lett. 47 (1981), 986.

    Article  MathSciNet  ADS  Google Scholar 

  9. R. Jackiw and C. Rebbi, Phys. Rev. D 13 (1976), 3398.

    MathSciNet  ADS  Google Scholar 

  10. R. Jackiw and J. R. Schrieffer, Nuclear Phys. B 190 (1981), 253.

    Article  MathSciNet  ADS  Google Scholar 

  11. S. Kivelson and J. R. Schrieffer, Phys. Rev. B 25 (1982), 6447; R. Rajaraman and J. S. Bell, Phys. Lett. B 116 (1982), 151; S. A. Kivelson, Phys. Rev. B 26 (1982), 4269; J. S. Bell and R. Rajaraman, Nuclear Phys. B 220 (1983), 1; Y. Frishman and B. Horovitz, Phys. Rev. B 27 (1983), 2565; R. Jackiw, A. K. Kerman, I. Klebanov, and G. Semenoff, Nuclear Phys. B 225 (1983), 233

    ADS  Google Scholar 

  12. M. P. Mattis, Chapter 19, in this book.

    Google Scholar 

  13. C. Montonen and D. Olive, Phys. Lett. B 72 (1977), 117; P. Goddard, J. Nuyts, and D. Olive, Nuclear Phys. B 125 (1977), 1; E. Witten and D. Olive, Phys. Lett. B 78 (1978), 97; H. Osborn, Phys. Lett. B 83 (1979), 321; A. Sen, Internat. J. Modern Phys. A 9 (1994), 3707; N. Seiberg and E. Witten, Nuclear Phys. B 426 (1994), 19; Erratum, Nuclear Phys. B 430 (1994), 485.

    Google Scholar 

  14. H. Poincaré, C. R. Acad. Sci. 123 (1996), 530.

    Google Scholar 

  15. M. Requardt, Comm. Math. Phys. 50 (1976), 259.

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Rho, A. S. Goldhaber, and G. E. Brown, Phys. Rev. Lett. 51 (1983), 747; J. Goldstone and R. L. Jaffe, Phys. Rev. Lett. 51 (1983), 1518.

    Article  ADS  Google Scholar 

  17. N. Seiberg and E. Witten, Nuclear Phys. B 431 (1994), 484.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. R. Shankar and E. Witten, Nuclear Phys. B 141 (1978), 349; Nuclear Phys. B 148 (1979), 538 (E); E. Witten, Nuclear Phys. B 142 (1978), 285.

    Article  ADS  Google Scholar 

  19. T. H. R. Skyrme, Proc. R. Soc. London Sec. A 260 (1961), 127.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42 (1979), 1698.

    Article  ADS  Google Scholar 

  21. F. Wilczek, Phys. Rev. Lett. 48 (1982), 1146; A. S. Goldhaber, R. MacKenzie, and F. Wilczek, Modern Phys. Lett. A 4 (1989), 21.

    Article  MathSciNet  ADS  Google Scholar 

  22. E. Witten, Nuclear Phys. B 223 (1983), 433; E. D’Hoker and E. Farhi, Phys. Lett. B 134 (1984), 86.

    Article  MathSciNet  ADS  Google Scholar 

  23. T. T. Wu and C. N. Yang, Phys. Rev. D 12 (1975), 3845.

    MathSciNet  ADS  Google Scholar 

  24. S. C. Zhang, S. Kivelson, and A. S. Goldhaber, Phys. Rev. Lett. 58 (1987), 213.

    ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this paper

Cite this paper

Goldhaber, A.S. (2000). Hairs on the Unicorn: Fine Structure of Monopoles and Other Solitons. In: MacKenzie, R., Paranjape, M.B., Zakrzewski, W.J. (eds) Solitons. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1254-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1254-6_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7063-8

  • Online ISBN: 978-1-4612-1254-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics