Skip to main content

Emergence of the First Myofibrils and Targeting Mechanisms Directing Sarcomere Assembly in Developing Cardiomyocytes

  • Chapter
Myofibrillogenesis

Part of the book series: Cardiovascular Molecular Morphogenesis ((CARDMM))

Abstract

The heart of higher vertebrates becomes functional during early development and is essential to support embryonic life. When other tissues are still in the process of determination, cardiac cells are already functional and contract. Any impairment of their performance is fatal for the embryo, as shown by the many cases of embryonic lethality in knockout mice due to malfunction of the heart. Cardiomyocytes are highly specialized cells, able to convert chemical energy into mechanical contraction, and their work is essential to move body fluids already in the very primitive embryo. During the cardiac developmental program, cells accumulate sarcomeric proteins in a characteristic mixture in the cytoplasm. Their cytoarchitecture develops and myofibrils, with their basic functional units—the sarcomeres—are assembled with astonishing precision. A sarcomere spans between two Z-disks, where the thin (actin) filaments are anchored. In the middle of the sarcomere is a defined structure called the M-band, which serves for the integration of the thick (myosin) filaments. The third filament system is composed of individual titin molecules that stretch from the Z-disk all the way to the M-band. Although the general organization appears to be identical in heart and skeletal muscle, there are slight adaptations to ensure optimal function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarkova, I., Auerbach, D., Ehler, E., and Perriard, J.-C. 2000. A novel marker for vertebrate embryonic heart: the EH-myomesin isoform. J. Biol. Chem. 275:10256–10264.

    Article  PubMed  CAS  Google Scholar 

  • Antin, P.B., Tokunaka, S., Nachmias, V.T., and Holtzer, H. 1986. Role of stress fiber-like structures in assembling nascent myofibrils in myosheets recovering from exposure to ethyl methanesulfonate. J. Cell Biol. 102:1464–1479.

    Article  PubMed  CAS  Google Scholar 

  • Atherton, B.T., Meyer, D.M., and Simpson, D.G. 1986. Assembly and remodelling of myofibrils and intercalated disks in cultured neonatal rat heart cells. J. Cell Sci. 86:233–248.

    PubMed  CAS  Google Scholar 

  • Auerbach, D., Rothen-Rutishauser, B., Bantle, S., Leu, M., Ehler, E., Helfman, D., and Perriard, J.-C. 1997. Molecular mechanisms of myofibril assembly in heart. Cell Struct. Funct. 22:139–146.

    Article  PubMed  CAS  Google Scholar 

  • Auerbach, D., Bantle, S., Keller, S., Hinderling, V., Leu, M., Ehler, E., and Perriard, J.-C. 1999. Different domains of the M-band protein myomesin are involved in myosin binding and M-band targeting. Mol. Biol. Cell 10:1297–1308.

    PubMed  CAS  Google Scholar 

  • Ayoob, J.C., Turnacioglu, K.K., Mittal, B., Sanger, J.M., and Sanger, J.W. 2000. Targeting of cardiac muscle titin fragments to the Z-bands and dense bodies of living muscle and non-muscle cells. Cell Motil. Cytoskel. 45:67–82.

    Article  CAS  Google Scholar 

  • Bantle, S., Keller, S., Haussmann, I., Auerbach, D., Perriard, E., Mühlebach, S., and Perriard, J.-C. 1996. Tissue-specific isoforms of chicken myomesin are generated by alternative splicing. J. Biol. Chem. 271:19042–19052.

    Article  PubMed  CAS  Google Scholar 

  • Becker, K.D., Gottshall, K.R., Hickey, R., Perriard, J.-C., and Chien, K.R. 1997. Point mutations in human beta cardiac myosin heavy chain have differential effects on sarcomeric structure and assembly: an ATP binding site change disrupts both thick and thin filaments, whereas hypertrophic cardiomyopathy mutations display normal assembly. J. Cell Biol. 137:131–140.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, E., Kjorell, U., Thornell, L.E., Lambertsson, A., and Strehler, E. 1982. Differentiation of the myofibrils and the intermediate filament system during postnatal development of the rat heart. Eur. J. Cell Biol. 27:62–73.

    PubMed  CAS  Google Scholar 

  • Clark, W.A., Decker, M.L., Behnke Barclay, M., Janes, D.M., and Decker, R.S. 1998. Cell contact as an independent factor modulating cardiac myocyte hypertrophy and survival in long-term primary culture. J. Mol. Cell Cardiol. 30:139–155.

    Article  PubMed  CAS  Google Scholar 

  • Claycomb, W. and Palazzo, M. 1980. Culture of the terminally differentiated adult cardiac muscle cell: a light and scanning electron microscope study. Dev. Biol. 80:466–482.

    Article  PubMed  CAS  Google Scholar 

  • Colucci-Guyon, E., Portier, M.M., Dunia, I., Paulin, D., Pournin, S., and Babinet, C. 1994. Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79:679–694.

    Article  PubMed  CAS  Google Scholar 

  • Dabiri, G.A., Turnacioglu, K.K., Sanger, J.M., and Sanger, J.W. 1997. Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc. Natl. Acad. Sci. USA 94:9493–9498.

    Article  PubMed  CAS  Google Scholar 

  • Dlugosz, A.A., Antin, P.B., Nachmias, V.T., and Holtzer, H. 1984. The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes. J. Cell Biol. 99:2268–2278.

    Article  PubMed  CAS  Google Scholar 

  • Donath, M.Y., Zapf, J., Eppenberger-Eberhardt, M., Froesch, E.R., and Eppenberger, H.M. 1994. Insulin-like growth factor I stimulates myofibril development and decreases smooth muscle alpha-actin of adult cardiomyocytes. Proc. Natl. Acad. Sci. USA 91:1686–1690.

    Article  PubMed  CAS  Google Scholar 

  • Ehler, E., Rothen, B.M., Hämmerle, S.P., Komiyama, M., and Perriard, J.-C. 1999. Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments. J. Cell Sri. 112:1529–1539.

    CAS  Google Scholar 

  • Eppenberger, H.M., Perriard, J.-C., Rosenberg, U., and Strehler, E.E. 1981. The Mr 165,000 M-protein myomesin: a specific protein of cross-striated muscle cells. J. Cell Biol. 89: 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Eppenberger, H.M., Hertig, C., and Eppenberger-Eberhardt, M. 1994. Adult rat cardiomyocytes in culture: A model system to study the plasticity of the differentiated cardiac phenotype at the molecular and cellular levels. Trends Cardiovasc. Med. 4:187–192.

    Article  PubMed  CAS  Google Scholar 

  • Eppenberger, M.E., Hauser, I., Baechi, T., Schaub, M.C., Brunner, U.T., Dechesne, C.A., and Eppenberger, H.M. 1988. Immunocytochemical analysis of the regeneration of myofibrils in long-term cultures of adult cardiomyocytes of the rat. Dev. Biol. 130:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Eppenberger-Eberhardt, M., Aigner, S., Donath, M., Kurer, V., Walther, P., Zuppinger, C., Schaub, M.C., and Eppenberger, H.M. 1997. IGF-I and bFGF differentially influence atrial natriuretic factor and alpha-smooth muscle actin expression in cultured atrial compared to ventricular adult rat cardiomyocytes. J. Mol. Cell Cardiol. 29:2027–2039.

    Article  PubMed  CAS  Google Scholar 

  • Fässler, R., Rohwedel, J., Maltsev, V., Bloch, W., Lentini, S., Guan, K., Gullberg, D., Hescheler, J., Addicks, K., and Wobus, A.M. 1996. Differentiation and integrity of cardiac muscle cells are impaired in the absence of betal integrin. J. Cell Sci. 109:2989–2999.

    PubMed  Google Scholar 

  • Fürst, D.O. and Gautel, M. 1995. The anatomy of a molecular giant: how the sarcomere cytoskeleton is assembled from immunoglobulin superfamily molecules. J. Mol. Cell Cardiol. 27:951–959.

    Article  PubMed  Google Scholar 

  • Gautel, M., Goulding, D., Bullard, B., Weber, K., and Fürst, D.O. 1996. The central Z-disk region of titin is assembled from a novel repeat in variable copy numbers. J. Cell Sci. 109:2747–2754.

    PubMed  CAS  Google Scholar 

  • Gilbert, R., Kelly, M.G., Mikawa, T., and Fischman, D.A. 1996. The carboxyl terminus of myosin binding protein C (MyBP-C, C-protein) specifies incorporation into the A-band of striated muscle. J. Cell Sci. 109:101–111.

    PubMed  CAS  Google Scholar 

  • Gilbert, R., Cohen, J.A., Pardo, S., Basu, A., and Fischman, D.A. 1999. Identification of the A-band localization domain of myosin binding proteins C and H (MyBP-C, MyBP-H) in skeletal muscle. J. Cell Sci. 112:69–79.

    PubMed  CAS  Google Scholar 

  • Goncharova, E.J., Kam, Z., and Geiger, B. 1992. The involvement of adherens junction components in myofibrillogenesis in cultured cardiac myocytes. Development 114:173–183.

    PubMed  CAS  Google Scholar 

  • Gosteli-Peter, M., Harder, B., Eppenberger, H.M., Zapf, J., and Schaub, M.C. 1996. Triiodothyronine induces over-expression of alpha-smooth muscle actin, restricts myofibrillar expansion and is permissive for the action of basic fibroblast growth factor and insulin-like growth factor I in adult rat cardiomyocytes. J. Clin. Invest. 98:1737–1744.

    Article  PubMed  CAS  Google Scholar 

  • Gregorio, C.C., Trombitas, K., Centner, T., Kolmerer, B., Stier, G., Kunke, K., Suzuki, K., Obermayr, F., Herrmann, B., Granzier, H., Sorimachi, H., and Labeit, S. 1998. The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity. J. Cell Biol. 143:1013–1027.

    Article  PubMed  CAS  Google Scholar 

  • Grove, B.K., Kurer, V., Lehner, C., Doetschman, T.C., Perriard, J.-C., and Eppenberger, H.M. 1984. Monoclonal antibodies detect new 185,000 dalton muscle M-line protein. J. Cell Biol. 98:518–524.

    Article  PubMed  CAS  Google Scholar 

  • Guan, K., Fürst, D.O., and Wobus, A.M. 1999. Modulation of sarcomere organization during embryonic stem cell-derived cardiomyocyte differentiation. Eur. J. Cell Biol. 78:813–823.

    Article  PubMed  CAS  Google Scholar 

  • Guo, J.X., Jacobson, S.L., and Brown, D.L. 1986. Rearrangement of tubulin, actin, and myosin in cultured ventricular cardiomyocytes of the adult rat. Cell Motil. Cytoskel. 6:291–304.

    Article  CAS  Google Scholar 

  • Handel, S.E., Greaser, M.L., Schultz, E., Wang, S.M., Bulinski, J.C., Lin, J.J., and Lessard, J.L. 1991. Chicken cardiac myofibrillogenesis studied with antibodies specific for titin and the muscle and nonmuscle isoforms of actin and tropomyosin. Cell Tissue Res. 263:419–430.

    Article  PubMed  CAS  Google Scholar 

  • Harder, B.A., Schaub, M.C., Eppenberger, H.M., and Eppenberger Eberhardt, M. 1996. Influence of fibroblast growth factor (bFGF) and insulin-like growth factor (IGF-I) on cytoskeletal and contractile structures and on atrial natriuretic factor (ANF) expression in adult rat ventricular cardiomyocytes in culture. J. Mol. Cell Cardiol. 28:19–31.

    Article  PubMed  CAS  Google Scholar 

  • Harder, B.A., Hefti, M.A., Eppenberger, H.M., and Schaub, M.C. 1998. Differential protein localization in sarcomeric and nonsarcomeric contractile structures of cultured cardiomyocytes. J. Struct. Biol. 122:162–175.

    Article  PubMed  CAS  Google Scholar 

  • Helfman, D.M., Berthier, C., Grossman, J., Leu, M., Ehler, E., Perriard, E., and Perriard, J.-C. 1999. Nonmuscle tropomyosin-4 requires coexpression with other low molecular weight isoforms for binding to thin filaments in cardiomyocytes. J. Cell Sci. 112:371–380.

    PubMed  CAS  Google Scholar 

  • Horackova, M. and Byczko, Z. 1997. Differences in the structural characteristics of adult guinea pig and rat cardiomyocytes during their adaptation and maintenance in long-term cultures: confocal microscopy study. Exp. Cell Res. 237:158–175.

    Article  PubMed  CAS  Google Scholar 

  • Imanaka-Yoshida, K., Knudsen, K.A., and Linask, K.K. 1998. N-cadherin is required for the differentiation and initial myofibrillogenesis of chick cardiomyocytes. Cell Motil. Cytoskel. 39:52–62.

    Article  CAS  Google Scholar 

  • Isac, C.M., Ruiz, P., Pfitzmaier, B., Haase, H., Birchmeier, W., and Morano, I. 1999. Plakoglobin is essential for myocardial compliance but dispensable for myofibril insertion into adherens junctions. J. Cell Biochem. 72:8–15.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, S. and Piper, H. 1986. Cell cultures of adult cardiomyocytes as models of the myocardium. J. Mol. Cell Cardiol. 18:661–678.

    Article  PubMed  CAS  Google Scholar 

  • Kolmerer, B., Olivieri, N., Witt, C.C., Herrmann, B.G., and Labeit, S. 1996. Genomic organisation of M line titin and its tissue-specific expression in two distinct isoforms. J. Mol. Biol. 256:556–563.

    Article  PubMed  CAS  Google Scholar 

  • Komiyama, M., Soldati, T., von Arx, P., and Perriard, J.-C. 1996. The intracompartmental sorting of myosin alkali light chain isoproteins reflects the sequence of developmental expression as determined by double epitope-tagging competition. J. Cell Sci. 109:2089–2099.

    PubMed  CAS  Google Scholar 

  • Lazarides, E. 1982. Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Annu. Rev. Biochem. 51:219–250.

    Article  PubMed  CAS  Google Scholar 

  • Lemanski, S.F., Kovacs, C.P., and Lemanski, L.F. 1997. Analysis of the three-dimensional distributions of alpha-actinin, ankyrin, and filamin in developing hearts of normal and cardiac mutant axolotls (Ambystoma mexicanum). Anat. Embryol. 195:155–163.

    Article  PubMed  CAS  Google Scholar 

  • Leu, M., Auerbach, D., Helfman, D., and Perriard, J.-C. 1999. Green fluorescent protein in living cardiomyocytes. Trends Cell Biol. CD GFP in Motion.

    Google Scholar 

  • Li, Z., Colucci-Guyon, E., Pincon, R.M., Mericskay, M., Pournin, S., Paulin, D., and Babinet, C. 1996. Cardiovascular lesions and skeletal myopathy in mice lacking desmin. Dey. Biol. 175:362–366.

    Article  CAS  Google Scholar 

  • Lin, Z.X., Holtzer, S., Schultheiss, T., Murray, J., Masaki, T., Fischman, D.A., and Holtzer, H. 1989. Polygons and adhesion plaques and the disassembly and assembly of myofibrils in cardiac myocytes. J. Cell Biol. 108:2355–2367.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Z., Hijikata, T., Zhang, Z., Choi, J., Holtzer, S., Sweeney, H.L., and Holtzer, H. 1998. Dispensability of the actin-binding site and spectrin repeats for targeting sarcomeric alpha-actinin into maturing Z bands in vivo: implications for in vitro binding studies. Dey. Biol. 199:291–308.

    Article  CAS  Google Scholar 

  • Linke, W.A., Rudy, D.E., Centner, T., Gautel, M., Witt, C., Labeit, S., and Gregorio, C.C. 1999. I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J. Cell Biol. 146:631–644.

    Article  PubMed  CAS  Google Scholar 

  • Littlefield, R. and Fowler, V.M. 1998. Defining actin filament length in striated muscle: rulers and caps or dynamic stability? Annu. Rev. Cell Dey. Biol. 14:487–525.

    Article  CAS  Google Scholar 

  • LoRusso, S.M., Rhee, D., Sanger, J.M., and Sanger, J.W. 1997. Premyofibrils in spreading adult cardiomyocytes in tissue culture: evidence for reexpression of the embryonic program for myofibrillogenesis in adult cells. Cell Motil. Cytoskel. 37:183–198.

    Article  CAS  Google Scholar 

  • Manasek, F.J. 1970. Histogenesis of the embryonic myocardium. Am. J. Cardiol. 25:149–168.

    Article  PubMed  CAS  Google Scholar 

  • Marino, T.A., Kurseryk, L., and Lauva, I.K. 1987. Role of contraction in the structure and growth of neonate rat cardiocytes. Am. J. Physiol. 253:H1391–1399.

    PubMed  CAS  Google Scholar 

  • Mayans, O., van der Ven, P.F., Wilm, M., Mues, A., Young, P., Fürst, D.O., Wilmanns, M., and Gautel, M. 1998. Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 395:863–869.

    Article  PubMed  CAS  Google Scholar 

  • Messerli, J.M., Eppenberger-Eberhardt, M.E., Rutishauser, B.M., Schwarb, P., von Arx, P., Koch-Schneidemann, S., Eppenberger, H.M., and Perriard, J.-C. 1993. Remodelling of cardiomyocyte cytoarchitecture visualized by three-dimensional (3D) confocal microscopy. Histochemistry 100:193–202.

    Article  PubMed  CAS  Google Scholar 

  • Milner, D.J., Weitzer, G., Tran, D., Bradley, A., and Capetanaki, Y. 1996. Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J. Cell Biol. 134: 1255–1270.

    Article  PubMed  CAS  Google Scholar 

  • Milner, D.J., Taffet, G.E., Wang, X., Pham, T., Tamura, T., Hartley, C., Gerdes, A.M., and Capetanaki, Y. 1999. The absence of desmin leads to cardiomyocyte hypertrophy and cardiac dilation with compromised systolic function. J. Mol. Cell Cardiol. 31:1063–1076.

    Article  Google Scholar 

  • Mues, A., van der Ven, P.F., Young, P., Fürst, D.O., and Gautel, M. 1998. Two immunoglobulin-like domains of the Z-disc portion of titin interact in a conformation-dependent way with telethonin. FEBS Lett. 428:111–114.

    Article  PubMed  CAS  Google Scholar 

  • Obermann, W.M., Plessmann, U., Weber, K., and Fürst, D.O. 1995. Purification and biochemical characterization of myomesin, a myosin-binding and titin-binding protein, from bovine skeletal muscle. Eur. J. Biochem. 233:110–115.

    Article  PubMed  CAS  Google Scholar 

  • Obermann, W.M., Gautel, M., Weber, K., and Fürst, D.O. 1997. Molecular structure of the sarcomeric M band: mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J. 16: 211–220.

    Article  PubMed  CAS  Google Scholar 

  • Obermann, W.M., van der Ven, P.F., Steiner, F., Weber, K., and Fürst, D.O. 1998. Mapping of a myosin-binding domain and a regulatory phosphorylation site in M-protein, a structural protein of the sarcomeric M band. Mol. Biol. Cell 9:829–840.

    PubMed  CAS  Google Scholar 

  • Ordahl, C.P. 1986. The skeletal and cardiac alpha-actin genes are coexpressed in early embryonic striated muscle. Dey. Biol. 117:488–492.

    Article  CAS  Google Scholar 

  • Rhee, D., Sanger, J.M., and Sanger, J.W. 1994. The premyofibril: evidence for its role in myofibrillogenesis. Cell Motil. Cytoskel. 28:1–24.

    Article  CAS  Google Scholar 

  • Rothen-Rutishauser, B.M., Ehler, E., Perriard, E., Messerli, J.M., and Perriard, J.-C. 1998. Different behaviour of the non-sarcomeric cytoskeleton in neonatal and adult rat cardiomyocytes. J. Mol. Cell Cardiol. 30:19–31.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz, P., Brinkmann, V., Ledermann, B., Behrend, M., Grund, C., Thalhammer, C., Vogel, F., Birchmeier, C., Gunthert, U., Franke, W.W., and Birchmeier, W. 1996. Targeted mutation of plakoglobin in mice reveals essential functions of desmosomes in the embryonic heart. J. Cell Biol. 135:215–225.

    Article  PubMed  CAS  Google Scholar 

  • Ruzicka, D.L. and Schwartz, R.J. 1988. Sequential activation of alpha-actin genes during avian cardiogenesis: vascular smooth muscle alpha-actin gene transcripts mark the onset of cardiomyocyte differentiation. J. Cell Biol. 107:2575–2586.

    Article  PubMed  CAS  Google Scholar 

  • Schaub, M.C., Hefti, M.A., Harder, B.A., and Eppenberger, M.E. 1998. Triiodothyronine restricts myofibrillar growth and enhances beating frequency in cultured adult rat cardiomyocytes. Basic Res. Cardiol. 93:391–395.

    Article  PubMed  CAS  Google Scholar 

  • Schiaffino, S. and Reggiani, C. 1996. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol. Rev. 76:371–423.

    PubMed  CAS  Google Scholar 

  • Schultheiss, T., Lin, Z.X., Lu, M.H., Murray, J., Fischman, D.A., Weber, K., Masaki, T., Imamura, M., and Holtzer, H. 1990. Differential distribution of subsets of myofibrillar proteins in cardiac nonstriated and striated myofibrils. J. Cell Biol. 110:1159–1172.

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi, I., Takamatsu, T., Minamikawa, T., and Fujita, S. 1992. 3-D observation of actin filaments during cardiac myofibrinogenesis in chick embryo using a confocal laser scanning microscope. Anat. Embryol. 185:401–408.

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi, I., Takamatsu, T., and Fujita, S. 1993. 3-D observation of N-cadherin expression during cardiac myofibrillogenesis of the chick embryo using a confocal laser scanning microscope. Anat. Embryol. 187:115–120.

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi, I., Takamatsu, T., and Fujita, S. 1995. Three-dimensional observation with a confocal scanning laser microscope of fibronectin immunolabeling during cardiac looping in the chick embryo. Anat. Embryol. 191:183–189.

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi, I., Simpson, D.G., Carver, W., Price, R., Hirozane, T., Terracio, L., and Borg, T.K. 1997a. Vinculin is an essential component for normal myofibrillar arrangement in fetal mouse cardiac myocytes. J. Mol. Cell Cardiol. 29:2041–2052.

    Article  CAS  Google Scholar 

  • Shiraishi, I., Takamatsu, T., Price, R.L., and Fujita, S. 1997b. Temporal and spatial patterns of phosphotyrosine immunolocalization during cardiac myofibrillogenesis of the chicken embryo. Anat. Embryol. 196:81–89.

    Article  CAS  Google Scholar 

  • Soldati, T. and Perriard, J.C. 1991. Intracompartmental sorting of essential myosin light chains: molecular dissection and in vivo monitoring by epitope tagging. Cell 66:277–289.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, F., Weber, K., and Fürst, D.O. 1998. Structure and expression of the gene encoding murine M-protein, a sarcomere-specific member of the immunoglobulin superfamily. Genomics 49:83–95.

    Article  PubMed  CAS  Google Scholar 

  • Thornell, L., Carlsson, L., Li, Z., Mericskay, M., and Paulin, D. 1997. Null mutation in the desmin gene gives rise to a cardiomyopathy. J. Mol. Cell Cardiol. 29:2107–2124.

    Article  PubMed  CAS  Google Scholar 

  • Tokuyasu, K.T. 1989. Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. III. Generation of fasciae adherentes and costameres. J. Cell Biol. 108:43–53.

    Article  PubMed  CAS  Google Scholar 

  • Tokuyasu, K.T. and Maher, P.A. 1987a. Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. I. Presence of immunofluorescent titin spots in premyofibril stages. J. Cell Biol. 105:2781–2793.

    Article  CAS  Google Scholar 

  • Tokuyasu, K.T. and Maher, P.A. 1987b. Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. II. Generation of a-actinin dots within titin spots at the time of the first myofibril formation. J. Cell Biol. 105:2795–2801.

    Article  CAS  Google Scholar 

  • Trinick, J. 1996. Titin as a scaffold and spring. Curr. Biol. 6:258–260.

    Article  PubMed  CAS  Google Scholar 

  • Trombitas, K., Greaser, M.L., and Pollack, G.H. 1997. Interaction between titin and thin filaments in intact cardiac muscle. J. Muscle Res. Cell Motil. 18:345–351.

    Article  PubMed  CAS  Google Scholar 

  • Tullio, A.N., Accili, D., Ferrans, V.J., Yu, Z.X., Takeda, K., Grinberg, A., Westphal, H., Preston, Y.A., and Adelstein, R.S. 1997. Nonmuscle myosin II-B is required for normal development of the mouse heart. Proc. Natl. Acad. Sci. USA 94:12407–12412.

    Article  PubMed  CAS  Google Scholar 

  • Turnacioglu, K.K., Mittal, B., Dabiri, G.A., Sanger, J.M., and Sanger, J.W. 1997. An N-terminal fragment of titin coupled to green fluorescent protein localizes to the Z-bands in living muscle cells: overexpression leads to myofibril disassembly. Mol. Biol. Cell 8:705–717.

    PubMed  CAS  Google Scholar 

  • van der Ven, P.F.M., Ehler, E., Perriard, J.-C., and Fürst, D.O. 1999. Thick filament assembly occurs after the formation of a cytoskeletal scaffold. J. Muscle Res. Cell Motil. 20:569–579.

    Article  PubMed  Google Scholar 

  • von Arx, P., Bande, S., Soldati, T., and Perriard, J.-C. 1995. Dominant negative effect of cytoplasmic actin isoproteins on cardiomyocyte cytoarchitecture and function. J. Cell Biol. 131:1759–1773.

    Article  Google Scholar 

  • Wang, S.M., Greaser, M.L., Schultz, E., Bulinski, J.C., Lin, J.J., and Lessard, J.L. 1988. Studies on cardiac myofibrillogenesis with antibodies to titin, actin, tropomyosin, and myosin. J. Cell Biol. 107:1075–1083.

    Article  PubMed  CAS  Google Scholar 

  • Xu, W., Baribault, H., and Adamson, E.D. 1998. Vinculin knockout results in heart and brain defects during embryonic development. Development 125:327–337.

    PubMed  CAS  Google Scholar 

  • Young, P., Ferguson, C., Banuelos, S., and Gautel, M. 1998. Molecular structure of the sarcomeric Z-disk: two types of titin interactions lead to an asymmetrical sorting of a-actinin. EMBO J. 17:1614–1624.

    Article  PubMed  CAS  Google Scholar 

  • Zajdel, R., Dube, D., and Lemanski, L. 1999. The cardiac mutant Mexican axolotl is a unique animal model for evaluation of cardiac myofibrillogenesis. Exp. Cell Res. 248:557–566.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ehler, E., Perriard, JC. (2002). Emergence of the First Myofibrils and Targeting Mechanisms Directing Sarcomere Assembly in Developing Cardiomyocytes. In: Dube, D.K. (eds) Myofibrillogenesis. Cardiovascular Molecular Morphogenesis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0199-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0199-1_3

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6658-7

  • Online ISBN: 978-1-4612-0199-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics