Skip to main content

Other Anterior Segment Applications of In Vivo Confocal Microscopy and Future Developments

  • Chapter
  • First Online:
In Vivo Confocal Microscopy in Eye Disease

Abstract

In vivo confocal microscopy (IVCM) is now an established technology in the field of ophthalmology and in recent years, improvement in optical design and the use of laser technology have improved both the resolution and the image quality of assessing ocular tissues. In addition to the main applications of IVCM that have been described thus far, further clinical applications of IVCM include subbasal nerve plexus mosaicking, corneal thickness measurement, evaluating corneal transparency, corneal endothelial cell density estimation, and in diagnosing rare conditions such as iridocorneal endothelial syndrome. Non-contact IVCM has been described for the evaluation of the human tear film, further applications include the visualization of other anterior segment structures such as the iris and the crystalline lens. Other technological enhancements to IVCM that can improve diagnostic precision include the development of confocal fluorescence microscopy and in multimodal imaging platforms such as optical coherence tomography (OCT) guided IVCM. Aside from IVCM, there are emerging technologies that have the potential of augmenting or superseding IVCM, such as multiphoton microscopy, in imaging ocular tissues. In this chapter, further usages of IVCM for evaluating anterior segment anatomy and pathology are reviewed. In addition, new advances and further developments in IVCM related technologies and other forms of ophthalmic imaging are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hara M, Morishige N, Chikama T, Nishida T. Comparison of confocal biomicroscopy and noncontact specular microscopy for evaluation of the corneal endothelium. Cornea. 2003;22(6):512–5.

    Article  PubMed  Google Scholar 

  2. Klais CM, Bühren J, Kohnen T. Comparison of endothelial cell count using confocal and contact specular microscopy. Ophthalmologica. 2003;217(2):99–103.

    Article  PubMed  Google Scholar 

  3. Jonuscheit S, Doughty MJ, Ramaesh K. In vivo confocal microscopy of the corneal endothelium: comparison of three morphometry methods after corneal transplantation. Eye. 2011;25(9):1130–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salvetat ML, Zeppieri M, Miani F, Parisi L, Felletti M, Brusini P. Comparison between laser scanning in vivo confocal microscopy and noncontact specular microscopy in assessing corneal endothelial cell density and central corneal thickness. Cornea. 2011;30(7):754–9.

    Article  PubMed  Google Scholar 

  5. Li HF, Petroll WM, Møller-Pedersen T, Maurer JK, Cavanagh HD, Jester JV. Epithelial and corneal thickness measurements by in vivo confocal microscopy through focusing (CMTF). Curr Eye Res. 1997;16(3):214–21.

    Article  CAS  PubMed  Google Scholar 

  6. Petroll WM, Robertson DM. In vivo confocal microscopy of the cornea: new developments in image acquisition, reconstruction, and analysis using the HRT-rostock corneal module. Ocul Surf. 2015;13(3):187–203.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cheng AC, Lam DS. Corneal thickness measurement by confocal microscopy, ultrasound, and scanning slit methods. Am J Ophthalmol. 2005;139(2):391. author reply 391–2

    Article  PubMed  Google Scholar 

  8. McLaren JW, Nau CB, Erie JC, Bourne WM. Corneal thickness measurement by confocal microscopy, ultrasound, and scanning slit methods. Am J Ophthalmol. 2004;137(6):1011–20.

    Article  PubMed  Google Scholar 

  9. Jester JV, Ghee Lee Y, Li J, Chakravarti S, Paul J, Petroll WM, Dwight CH. Measurement of corneal sublayer thickness and transparency in transgenic mice with altered corneal clarity using in vivo confocal microscopy. Vis Res. 2001;41(10-11):1283–90.

    Article  CAS  PubMed  Google Scholar 

  10. McLaren JW, Bourne WM, Patel SV. Standardization of corneal haze measurement in confocal microscopy. Invest Ophthalmol Vis Sci. 2010;51(11):5610–6.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Erie JC, Patel SV, McLaren JW, Hodge DO, Bourne WM. Corneal keratocyte deficits after photorefractive keratectomy and laser in situ keratomileusis. Am J Ophthalmol. 2006;141(5):799–809.

    Article  PubMed  Google Scholar 

  12. Niederer RL, Perumal D, Sherwin T, McGhee CN. Laser scanning in vivo confocal microscopy reveals reduced innervation and reduction in cell density in all layers of the keratoconic cornea. Invest Ophthalmol Vis Sci. 2008;49(7):2964–70.

    Article  PubMed  Google Scholar 

  13. Silva L, Najafi A, Suwan Y, Teekhasaenee C, Ritch R. The iridocorneal endothelial syndrome. Surv Ophthalmol. 2018;63:665–76.

    Article  PubMed  Google Scholar 

  14. Shields CL, Shields MV, Viloria V, Pearlstein H, Say EA, Shields JA. Iridocorneal endothelial syndrome masquerading as iris melanoma in 71 cases. Arch Ophthalmol. 2011;129:1023–9.

    Article  PubMed  Google Scholar 

  15. Malhotra C, Pandav SS, Gupta A, Jain AK. Phenotypic heterogeneity of corneal endothelium in iridocorneal endothelial syndrome by in vivo confocal microscopy. Cornea. 2014;33:634–7.

    Article  PubMed  Google Scholar 

  16. Grupcheva CN, McGhee CN, Dean S, Craig JP. In vivo confocal microscopic characteristics of iridocorneal endothelial syndrome. Clin Exp Ophthalmol. 2004;32:275–83.

    Article  PubMed  Google Scholar 

  17. Laganowski HC, Kerr Muir MG, Hitchings RA. Glaucoma and the iridocorneal endothelial syndrome. Arch Ophthalmol. 1992;110:346–50.

    Article  CAS  PubMed  Google Scholar 

  18. Sbeity Z, Palmiero PM, Tello C, Liebmann JM, Ritch R. Noncontact in vivo confocal laser scanning microscopy of exfoliation syndrome. Trans Am Ophthalmol Soc. 2008;106:46–54.

    PubMed  PubMed Central  Google Scholar 

  19. Li M, Cheng H, Guo P, Zhang C, Tang S, Wang S. Iris ultrastructure in patients with synechiae as revealed by in vivo laser scanning confocal microscopy: In vivo iris ultrastructure in patients with Synechiae by Laser Scanning Confocal Microscopy. BMC Ophthalmol. 2016;15(Suppl 1):46.

    Article  PubMed  Google Scholar 

  20. Bruni E, Pedrotti E, Sarro PPD, Passilongo M, Marchini G. In vivo confocal microscopy of iris in recessive cornea plana with anterior synechiae. Indian J Ophthalmol. 2018;66(9):1311–3.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sbeity Z, Palmiero PM, Tello C, Liebmann JM, Ritch R. Non-contact in vivo confocal scanning laser microscopy in exfoliation syndrome, exfoliation syndrome suspect and normal eyes. Acta Ophthalmol. 2011;89(3):241–7.

    Article  PubMed  Google Scholar 

  22. Rajadhyaksha M, Marghoob A, Rossi A, Halpern AC, Nehal KS. Reflectance confocal microscopy of skin in vivo: From bench to bedside. Lasers Surg Med. 2017;49(1):7–19.

    Article  PubMed  Google Scholar 

  23. Nehal KS, Gareau D, Rajadhyaksha M. Skin imaging with reflectance confocal microscopy. Semin Cutan Med Surg. 2008;27(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  24. Cinotti E, Singer A, Labeille B, Grivet D, Rubegni P, Douchet C, Cambazard F, Thuret G, Gain P, Perrot JL. Handheld in vivo reflectance confocal microscopy for the diagnosis of eyelid margin and conjunctival tumors. JAMA Ophthalmol. 2017;135(8):845–51.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cinotti E, Perrot JL, Campolmi N, Labeille B, Espinasse M, Grivet D, Thuret G, Gain P, Douchet C, Forest F, Haouas M, Cambazard F. The role of in vivo confocal microscopy in the diagnosis of eyelid margin tumors: 47 cases. J Am Acad Dermatol. 2014;71(5):912–8.

    Article  PubMed  Google Scholar 

  26. Gao YY, Di Pascuale MA, Li W, et al. High prevalence of Demodex in eyelashes with cylindrical dandruff. Invest Ophthalmol Vis Sci. 2005;46:3089–94.

    Article  PubMed  Google Scholar 

  27. Kojima T, Ishida R, Sato EA, Kawakita T, Ibrahim OM, Matsumoto Y, Kaido M, Dogru M, Tsubota K. In vivo evaluation of ocular demodicosis using laser scanning confocal microscopy. Invest Ophthalmol Vis Sci. 2011;52(1):565–9.

    Article  PubMed  Google Scholar 

  28. Randon M, Liang H, El Hamdaoui M, Tahiri R, Batellier L, Denoyer A, Labbé A, Baudouin C. In vivo confocal microscopy as a novel and reliable tool for the diagnosis of Demodex eyelid infestation. Br J Ophthalmol. 2015;99(3):336–41.

    Article  PubMed  Google Scholar 

  29. Guthoff RF, Baudouin C, Stave J. Atlas of confocal laser scanning in-vivo microscopy in ophthalmology. Springer Science & Business Media; 2007.

    Google Scholar 

  30. Mocan MC, Irkec M. Fluorescein enhanced confocal microscopy in vivo for the evaluation of corneal epithelium. Clin Exp Ophthalmol. 2007;35(1):38–43.

    Article  PubMed  Google Scholar 

  31. Stachs O, Guthoff RF, Aumann S. In vivo confocal scanning laser microscopy. High resolution imaging in microscopy and ophthalmology. Springer. 2019:263–84.

    Google Scholar 

  32. Mazlin V, Irsch K, Paques M, Sahel J-A, Fink M, Boccara CA. Curved-field optical coherence tomography: large-field imaging of human corneal cells and nerves. Optica. 2020;7:872–80.

    Article  CAS  Google Scholar 

  33. Ang M, Konstantopoulos A, Goh G, Htoon HM, Seah X, Lwin NC, Liu X, Chen S, Liu L, Mehta JS. Evaluation of a micro-optical coherence tomography for the corneal endothelium in an animal model. Sci Rep. 2016;6:29769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bohn S, Sperlich K, Allgeier S, Bartschat A, Prakasam R, Reichert KM, Stolz H, Guthoff R, Mikut R, Köhler B, Stachs O. Cellular in vivo 3D imaging of the cornea by confocal laser scanning microscopy. Biomed Opt Express. 2018;9(6):2511–25.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science. 1990;248(4951):73–6.

    Article  CAS  PubMed  Google Scholar 

  36. Chen W-L, Sun Y, Lo W, Tan H-Y, Dong C-Y. Combination of multiphoton and reflective confocal imaging of cornea. Microsc Res Tech. 2008;71(2):83–5.

    Article  PubMed  Google Scholar 

  37. Chen W-L, Lo W, Sun Y, Lin S-J, Tan H-Y and Dong C-Y. The combination of mutiphoton and reflected confocal microscopy for cornea imaging. In: Ophthalmic technologies XVI 2006, p. 61380M. International Society for Optics and Photonics.

    Google Scholar 

  38. Kojima S, Inoue T, Kikuta J, Furuya M, Koga A, Fujimoto T, Ueta M, Kinoshita S, Ishii M, Tanihara H. Visualization of intravital immune cell dynamics after conjunctival surgery using multiphoton microscopy. Invest Ophthalmol Vis Sci. 2016;57(3):1207–12.

    Article  CAS  PubMed  Google Scholar 

  39. Allgeier S, Zhivov A, Eberle F, Koehler B, Maier S, Bretthauer G, Guthoff RF, Stachs O. Image reconstruction of the subbasal nerve plexus with in vivo confocal microscopy. Invest Ophthalmol Vis Sci. 2011;52(9):5022–8.

    Article  PubMed  Google Scholar 

  40. Zhivov A, Winter K, Peschel S, Guthoff RF, Stachs O, Harder V, Schober HC, Koehler B. Quantitative Analyse des subbasalen Nervenplexus der Kornea mittels in vivo konfokaler Laser-Scanning-Mikroskopie [Quantitative analysis of corneal subbasal nerve plexus with in vivo confocal laser scanning microscopy]. Klin Monatsbl Augenheilkd. 2011;228(12):1067–72.

    Article  CAS  PubMed  Google Scholar 

  41. Allgeier S, Winter K, Bretthauer G, Guthoff RF, Peschel S, Reichert KM, Stachs O, Köhler B. A novel approach to analyze the progression of measured corneal sub-basal nerve fiber length in continuously expanding mosaic images. Curr Eye Res. 2017;42(4):549–56.

    Article  PubMed  Google Scholar 

  42. Allgeier S, Maier S, Mikut R, Peschel S, Reichert KM, Stachs O, Köhler B. Mosaicking the subbasal nerve plexus by guided eye movements. Invest Ophthalmol Vis Sci. 2014;55(9):6082–9.

    Article  PubMed  Google Scholar 

  43. Allgeier S, Bartschat A, Bohn S, Peschel S, Reichert KM, Sperlich K, Walckling M, Hagenmeyer V, Mikut R, Stachs O, Köhler B. 3D confocal laser-scanning microscopy for large-area imaging of the corneal subbasal nerve plexus. Sci Rep. 2018;8(1):7468.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bohn S, Allgeier S, Bartschat A, Guthoff RF, Köhler B, Mikut R, Reichert K-M, Sperlich K, Stolz H, Stachs O. Concepts for automated fast focal plane control in subbasal nerve plexus mosaicking to reliably quantify a biomarker for diabetic peripheral neuropathy. Invest Ophthalmol Vis Sci. 2017;58(8):1431.

    Google Scholar 

Download references

Acknowledgement

We wish to thank Maryam Kasiri for her assistance in providing images used in this chapter.

Disclosures

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa Abdi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag London Ltd., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdi, P., Atighehchian, M., Hau, S. (2022). Other Anterior Segment Applications of In Vivo Confocal Microscopy and Future Developments. In: In Vivo Confocal Microscopy in Eye Disease. Springer, London. https://doi.org/10.1007/978-1-4471-7517-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-7517-9_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-7516-2

  • Online ISBN: 978-1-4471-7517-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics