Skip to main content

Confocal Scan

  • Chapter
  • First Online:
Diagnostics in Ocular Imaging
  • 1130 Accesses

Abstract

Microscopic evaluation of the ocular structures has always been a challenge for ophthalmic clinicians and researchers. In Vivo Confocal Microscopy utilized ophthalmologists and scientists to evaluate the anterior segment and revolutionized some aspects of diagnosis and management the patients. Nowadays confocal microscopy is becoming an indispensable tool for studying living cornea and other ocular surface structures at a cellular level. This technology provides fast and non-invasive images of different layers in both normal and pathologic eyes which are so helpful in studying of normal cornea, diagnosis of several disorders and monitoring the patients. The purpose of this chapter is to describe the principles of confocal microscopy and its different types and finally summarize several applications of confocal microscopy and characteristics findings in some of clinical states such as infectious keratitis, dry eye, ocular allergy and contact lens wearing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Minsky M. Memoir on inventing the confocal scanning microscope. Scanning. 1988;10(4):128–38.

    Article  Google Scholar 

  2. Egger MD, Petran M. New reflected-light microscope for viewing unstained brain and ganglion cells. Science. 1967;157(3786):305–7.

    Article  CAS  PubMed  Google Scholar 

  3. Petroll WM, Jester JV, Cavanagh HD. In vivo confocal imaging. Int Rev Exp Pathol. 1996;36:93–129.

    CAS  PubMed  Google Scholar 

  4. Petroll WM, Robertson DM. In vivo confocal microscopy of the cornea: new developments in image acquisition, reconstruction, and analysis using the HRT-Rostock corneal module. Ocular Surface. 2015;13(3):187–203.

    Article  Google Scholar 

  5. Labbé A, Khammari C, Dupas B, Gabison E, Brasnu E, Labetoulle M, et al. Contribution of in vivo confocal microscopy to the diagnosis and management of infectious keratitis. Ocular Surface. 2009;7(1):41–52.

    Article  Google Scholar 

  6. Jalbert I, Stapleton F, Papas E, Sweeney D, Coroneo M. In vivo confocal microscopy of the human cornea. Br J Ophthalmol. 2003;87(2):225–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leduc C, Dupas B, Ott-Benoist A, Baudouin C. Advantages of the in vivo HRT2 corneal confocal microscope for investigation of the ocular surface epithelia. J Fr Ophtalmol. 2004;27(9 Pt 1):978–86.

    Article  CAS  PubMed  Google Scholar 

  8. Zhivov A, Stachs O, Kraak R, Stave J, Guthoff RF. In vivo confocal microscopy of the ocular surface. Ocular Surface. 2006;4(2):81–93.

    Article  Google Scholar 

  9. Patel DV, McGhee CN. Quantitative analysis of in vivo confocal microscopy images: a review. Surv Ophthalmol. 2013;58(5):466–75.

    Article  PubMed  Google Scholar 

  10. Guthoff RF, Zhivov A, Stachs O. In vivo confocal microscopy, an inner vision of the cornea–a major review. Clin Exp Ophthalmol. 2009;37(1):100–17.

    Article  PubMed  Google Scholar 

  11. Efron N, Morgan PB, Makrynioti D. Chronic morbidity of corneal infiltrative events associated with contact lens wear. Cornea. 2007;26(7):793–9.

    Article  PubMed  Google Scholar 

  12. Vaddavalli PK, Garg P, Sharma S, Sangwan VS, Rao GN, Thomas R. Role of confocal microscopy in the diagnosis of fungal and Acanthamoeba keratitis. Ophthalmology. 2011;118(1):29–35.

    Article  PubMed  Google Scholar 

  13. Kobayashi A, Mawatari Y, Yokogawa H, Sugiyama K. In vivo laser confocal microscopy after Descemet stripping with automated endothelial keratoplasty. Am J Ophthalmol. 2008;145(6):977–85. e1.

    Google Scholar 

  14. Bouheraoua N, Jouve L, El Sanharawi M, Sandali O, Temstet C, Loriaut P, et al. Optical coherence tomography and confocal microscopy following three different protocols of corneal collagen-crosslinking in Keratoconus. Invest Ophthalmol Vis Sci. 2014;55(11):7601–9.

    Article  PubMed  Google Scholar 

  15. Petroll WM, Cavanagh HD, Jester JV. Clinical confocal microscopy. Curr Opin Ophthalmol. 1998;9(4):59–65.

    Article  CAS  PubMed  Google Scholar 

  16. Tervo T, Moilanen J. In vivo confocal microscopy for evaluation of wound healing following corneal refractive surgery. Prog Retinal Eye Res. 2003;22(3):339–58.

    Article  Google Scholar 

  17. Kaufman SC, Kaufman HE. How has confocal microscopy helped us in refractive surgery? Curr Opin Ophthalmol. 2006;17(4):380–8.

    Article  PubMed  Google Scholar 

  18. Jester JV, Petroll WM, Cavanagh HD. Corneal stromal wound healing in refractive surgery: the role of Myofibroblasts. Prog Retinal Eye Res. 1999;18(3):311–56.

    Article  CAS  Google Scholar 

  19. Villani E, Baudouin C, Efron N, Hamrah P, Kojima T, Patel SV, et al. In vivo confocal microscopy of the ocular surface: from bench to bedside. Curr Eye Res. 2014;39(3):213–31.

    Article  PubMed  Google Scholar 

  20. Ulrich M, Lange-Asschenfeldt S. In vivo confocal microscopy in dermatology: from research to clinical application. J Biomed Optics. 2013;18(6):061212.

    Article  Google Scholar 

  21. Mazzotta C, Hafezi F, Kymionis G, Caragiuli S, Jacob S, Traversi C, et al. In vivo confocal microscopy after corneal collagen crosslinking. Ocular Surface. 2015;13(4):298–314.

    Article  Google Scholar 

  22. Lemp MA, Dilly PN, Boyde A. Tandem-scanning (confocal) microscopy of the full-thickness cornea. Cornea. 1985;4(4):205–9.

    Article  PubMed  Google Scholar 

  23. Cavanagh HD, Jester JV, Essepian J, Shields W, Lemp MA. Confocal microscopy of the living eye. The CLAO J. 1990;16(1):65–73.

    Google Scholar 

  24. Petroll WM, Cavanagh HD, Jester J. Three-dimensional imaging of corneal cells using in vivo confocal microscopy. J Microsc. 1993;170(3):213–9.

    Article  CAS  PubMed  Google Scholar 

  25. Masters BR, Thaer AA. Real-time scanning slit confocal microscopy of the in vivo human cornea. Appl Opt. 1994;33(4):695–701.

    Article  CAS  PubMed  Google Scholar 

  26. Brakenhoff G, Visscher K. Confocal imaging with bilateral scanning and array detectors. J Microsc. 1992;165(1):139–46.

    Article  Google Scholar 

  27. Erie EA, McLaren JW, Kittleson KM, Patel SV, Erie JC, Bourne WM. Corneal subbasal nerve density: a comparison of two confocal microscopes. Eye Contact Lens. 2008;34(6):322.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhivov A, Stachs O, Stave J, Guthoff RF. In vivo three-dimensional confocal laser scanning microscopy of corneal surface and epithelium. Br J Ophthalmol. 2009;93(5):667–72.

    Article  CAS  PubMed  Google Scholar 

  29. Wilson T. Confocal microscopy. Microanalysis of Solids: Springer; 1994. p. 219–32.

    Google Scholar 

  30. Guthoff RF, Baudouin C, Stave J. Atlas of confocal laser scanning in-vivo microscopy in ophthalmology: Springer Science & Business Media; 2007.

    Google Scholar 

  31. Eckard A, Stave J, Guthoff RF. In vivo investigations of the corneal epithelium with the confocal Rostock Laser Scanning Microscope (RLSM). Cornea. 2006;25(2):127–31.

    Article  PubMed  Google Scholar 

  32. del Castillo JMBt, Wasfy MA, Fernandez C, Garcia-Sanchez J. An in vivo confocal masked study on corneal epithelium and subbasal nerves in patients with dry eye. Investigative ophthalmology & visual science. 2004;45(9):3030–5.

    Google Scholar 

  33. Ceresara G, Fogagnolo P, De Cillà S, Panizzo V, Danelli PG, Orzalesi N, et al. Corneal involvement in Crohn’s disease: an in vivo confocal microscopy study. Cornea. 2011;30(2):136–42.

    Article  PubMed  Google Scholar 

  34. Patel D, Ku J, Johnson R, McGhee C. Laser scanning in vivo confocal microscopy and quantitative Aesthesiometry reveal decreased corneal innervation and sensation in Keratoconus. Eye. 2009;23(3):586.

    Article  CAS  PubMed  Google Scholar 

  35. Matsuda H. Electron microscopic study of the corneal nerve with special reference to the nerve endings. Nippon Ganka Gakkai Zasshi. 1968;72(7):880–93.

    CAS  PubMed  Google Scholar 

  36. Ueda S, del Cerro M, LoCascio JA, Aquavella JV. Peptidergic and catecholaminergic fibers in the human corneal epithelium: an immunohistochemical and electron microscopic study. Acta Ophthalmol. 1989;67(S192):80–90.

    Article  Google Scholar 

  37. Auran JD, Koester CJ, Kleiman NJ, Rapaport R, Bomann JS, Wirotsko BM, et al. Scanning slit confocal microscopic observation of cell morphology and movement within the normal human anterior cornea. Ophthalmology. 1995;102(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  38. Oliveira-Soto L, Efron N. Morphology of corneal nerves using confocal microscopy. Cornea. 2001;20(4):374–84.

    Article  CAS  PubMed  Google Scholar 

  39. Patel DV, McGhee CN. Contemporary in vivo confocal microscopy of the living human cornea using white light and laser scanning techniques: a major review. Clin Exp Ophthalmol. 2007;35(1):71–88.

    Article  PubMed  Google Scholar 

  40. Jester JV, Moller-Pedersen T, Huang J, Sax CM, Kays WT, Cavangh HD, et al. The cellular basis of corneal transparency: evidence for ‘corneal crystallins.’ J Cell Sci. 1999;112(5):613–22.

    Article  CAS  PubMed  Google Scholar 

  41. Zhivov A, Stachs O, Kraak R, Guthoff R. Cellular laser microscopy of corneal ulcer and infiltrate. Klin Monatsbl Augenheilkd. 2008;225(1):86–90.

    Article  CAS  PubMed  Google Scholar 

  42. Mastropasqua L, Nubile M, Lanzini M, Carpineto P, Ciancaglini M, Pannellini T, et al. Epithelial dendritic cell distribution in normal and inflamed human cornea: in vivo confocal microscopy study. American journal of ophthalmology. 2006;142(5):736–44. e2.

    Google Scholar 

  43. Zhivov A, Stave J, Vollmar B, Guthoff R. In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the normal human corneal epithelium. Graefe’s Arch Clin Exp Ophthalmol. 2005;243(10):1056–61.

    Article  Google Scholar 

  44. Zhivov A, Stave J, Vollmar B, Guthoff R. In vivo confocal microscopic evaluation of langerhans cell density and distribution in the corneal epithelium of healthy volunteers and contact lens wearers. Cornea. 2007;26(1):47–54.

    Article  PubMed  Google Scholar 

  45. Thomas PA, Geraldine P. Infectious keratitis. Curr Opin Infect Dis. 2007;20(2):129–41.

    Article  PubMed  Google Scholar 

  46. Keay L, Edwards K, Naduvilath T, Taylor HR, Snibson GR, Forde K, et al. Microbial keratitis: predisposing factors and morbidity. Ophthalmology. 2006;113(1):109–16.

    Article  PubMed  Google Scholar 

  47. Pachigolla G, Blomquist P, Cavanagh H. A 5-year review of 132 cases of microbial keratitis at a major urban county hospital. Eye Contact Lens. 2007;33(4):207.

    Article  PubMed  Google Scholar 

  48. Chew S-J, Beuerman RW, Assouline M, Kaufman HE, Barron BA, Hill JM. Early diagnosis of infectious keratitis with in vivo real time confocal microscopy. The CLAO J. 1992;18(3):197–201.

    Google Scholar 

  49. Linna T, Mikkilä H, Karma A, Seppälä I, Petroll WM, Tervo T. In vivo confocal microscopy: a new possibility to confirm the diagnosis of Borrelia keratitis? Cornea. 1996;15(6):639.

    Article  CAS  PubMed  Google Scholar 

  50. Kaufman SC, Laird JA, Cooper R, Beuerman RW. Diagnosis of bacterial contact lens related keratitis with the white-light confocal microscope. The CLAO J. 1996;22(4):274–7.

    Google Scholar 

  51. Vaddavalli PK, Garg P, Sharma S, Thomas R, Rao GN. Confocal microscopy for Nocardia keratitis. Ophthalmology. 2006;113(9):1645–50.

    Article  PubMed  Google Scholar 

  52. Cavanagh HD, Petroll WM, Alizadeh H, He Y-G, McCulley JP, Jester JV. Clinical and diagnostic use of in vivo confocal microscopy in patients with corneal disease. Ophthalmology. 1993;100(10):1444–54.

    Article  CAS  PubMed  Google Scholar 

  53. Rosenberg ME, Tervo TM, Müller LJ, Moilanen JA, Vesaluoma MH. In vivo confocal microscopy after herpes keratitis. Cornea. 2002;21(3):265–9.

    Article  PubMed  Google Scholar 

  54. Dosso AA, Rungger-Brändle E. Clinical course of epidemic keratoconjunctivitis: evaluation by in vivo confocal microscopy. Cornea. 2008;27(3):263–8.

    Article  PubMed  Google Scholar 

  55. Asbell P, Stenson S. Ulcerative keratitis: survey of 30 years’ laboratory experience. Arch Ophthalmol. 1982;100(1):77–80.

    Article  CAS  PubMed  Google Scholar 

  56. Leck A, Thomas P, Hagan M, Kaliamurthy J, Ackuaku E, John M, et al. Aetiology of suppurative corneal ulcers in Ghana and south India, and epidemiology of fungal keratitis. Br J Ophthalmol. 2002;86(11):1211–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Upadhyay MP, Karmacharya PC, Koirala S, Tuladhar NR, Bryan LE, Smolin G, et al. Epidemiologic characteristics, predisposing factors, and etiologic diagnosis of corneal ulceration in Nepal. Am J Ophthalmol. 1991;111(1):92–9.

    Article  CAS  PubMed  Google Scholar 

  58. Liesegang TJ, Forster RK. Spectrum of microbial keratitis in South Florida. Am J Ophthalmol. 1980;90(1):38–47.

    Article  CAS  PubMed  Google Scholar 

  59. Patel A, Hammersmith K. Contact lens-related microbial keratitis: recent outbreaks. Curr Opin Ophthalmol. 2008;19(4):302–6.

    Article  PubMed  Google Scholar 

  60. Kanavi MR, Javadi M, Yazdani S, Mirdehghanm S. Sensitivity and specificity of confocal scan in the diagnosis of infectious keratitis. Cornea. 2007;26(7):782–6.

    Article  PubMed  Google Scholar 

  61. Winchester K, Mathers WD, Sutphin JE. Diagnosis of Aspergillus keratitis in vivo with confocal microscopy. Cornea. 1997;16(1):27–31.

    Article  CAS  PubMed  Google Scholar 

  62. Avunduk A, Beuerman R, Varnell E, Kaufman H. Confocal microscopy of Aspergillus fumigatus keratitis. Br J Ophthalmol. 2003;87(4):409–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brasnu E, Bourcier T, Dupas B, Degorge S, Rodallec T, Laroche L, et al. In vivo confocal microscopy in fungal keratitis. Br J Ophthalmol. 2007;91(5):588–91.

    Article  PubMed  Google Scholar 

  64. Sagoo MS, Mehta JS, Hau S, Irion LD, Curry A, Bonshek RE, et al. Microsporidium stromal keratitis: in vivo confocal findings. Cornea. 2007;26(7):870–3.

    Article  PubMed  Google Scholar 

  65. Shah GK, Pfister D, Probst LE, Ferrieri P, Holland E. Diagnosis of microsporidial keratitis by confocal microscopy and the chromatrope stain. Am J Ophthalmol. 1996;121(1):89–91.

    Article  CAS  PubMed  Google Scholar 

  66. Kumar RL, Cruzat A, Hamrah P, editors. Current state of in vivo confocal microscopy in management of microbial keratitis. Semin Ophthalmol. 2010, Taylor & Francis.

    Google Scholar 

  67. Foulks GN. Acanthamoeba keratitis and contact lens wear: static or increasing problem? Eye Contact Lens. 2007;33(6):412–4.

    Article  PubMed  Google Scholar 

  68. Mathers WD. Acanthamoeba: a difficult pathogen to evaluate and treat. LWW. 2004.

    Google Scholar 

  69. Claerhout I, Goegebuer A, Van Den Broecke C, Kestelyn P. Delay in diagnosis and outcome of Acanthamoeba keratitis. Graefe’s Arch Clin Exp Ophthalmol. 2004;242(8):648–53.

    Article  CAS  Google Scholar 

  70. Awwad ST, Petroll WM, McCulley JP, Cavanagh HD. Updates in Acanthamoeba keratitis. Eye Contact Lens. 2007;33(1):1–8.

    Article  PubMed  Google Scholar 

  71. Mathers WD, Nelson SE, Lane JL, Wilson ME, Allen RC, Folberg R. Confirmation of confocal microscopy diagnosis of Acanthamoeba keratitis using polymerase chain reaction analysis. Arch Ophthalmol. 2000;118(2):178–83.

    Article  CAS  PubMed  Google Scholar 

  72. Tu EY, Joslin CE, Sugar J, Booton GC, Shoff ME, Fuerst PA. The relative value of confocal microscopy and superficial corneal scrapings in the diagnosis of Acanthamoeba keratitis. Cornea. 2008;27(7):764–72.

    Article  PubMed  Google Scholar 

  73. Kobayashi A, Ishibashi Y, Oikawa Y, Yokogawa H, Sugiyama K. In vivo and ex vivo laser confocal microscopy findings in patients with early-stage Acanthamoeba keratitis. Cornea. 2008;27(4):439–45.

    Article  PubMed  Google Scholar 

  74. Auran JD, Starr MB, Koester CJ, LaBombardi VJ. In vivo scanning slit confocal microscopy of Acanthamoeba keratitis. A case report. Cornea. 1994;13(2):183–5.

    Article  CAS  PubMed  Google Scholar 

  75. Winchester K, Mathers WD, Sutphin JE, Daley TE. Diagnosis of Acanthamoeba keratitis in vivo with confocal microscopy. Cornea. 1995;14(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  76. Pfister DR, Cameron JD, Krachmer JH, Holland EJ. Confocal microscopy findings of Acanthamoeba keratitis. Am J Ophthalmol. 1996;121(2):119–28.

    Article  CAS  PubMed  Google Scholar 

  77. Cho B-J, Holland EJ. In vivo tandem scanning confocal microscopy in Acanthamoeba keratitis. Korean J Ophthalmol. 1998;12(2):112–207.

    Article  CAS  PubMed  Google Scholar 

  78. Bourcier T, Dupas B, Borderie V, Chaumeil C, Larricart P, Baudouin C, et al. Heidelberg retina tomograph II findings of Acanthamoeba keratitis. Ocular Immunol Inflam. 2005;13(6):487–92.

    Article  Google Scholar 

  79. Matsumoto Y, Dogru M, Sato EA, Katono Y, Uchino Y, Shimmura S, et al. The application of in vivo confocal scanning laser microscopy in the management of Acanthamoeba keratitis. Mol Vis. 2007;13(7):1319–26.

    CAS  PubMed  Google Scholar 

  80. Mathers WD, Sutphin JE, Folberg R, Meier PA, Wenzel RP, Elgin RG. Outbreak of keratitis presumed to be caused by Acanthamoeba. Am J Ophthalmol. 1996;121(2):129–42.

    Article  CAS  PubMed  Google Scholar 

  81. Parmar DN, Awwad ST, Petroll WM, Bowman RW, McCulley JP, Cavanagh HD. Tandem scanning confocal corneal microscopy in the diagnosis of suspected Acanthamoeba keratitis. Ophthalmology. 2006;113(4):538–47.

    Article  PubMed  Google Scholar 

  82. Su P-Y, Hu F-R, Chen Y-M, Han J-H, Chen W-L. Dendritiform cells found in central cornea by in-vivo confocal microscopy in a patient with mixed bacterial keratitis. Ocular Immunol Inflam. 2006;14(4):241–4.

    Article  Google Scholar 

  83. Nakano E, Oliveira M, Portellinha W, de Freitas D, Nakano K. Confocal microscopy in early diagnosis of Acanthamoeba keratitis. J Refract Surg. 2004;20(5):S737–40.

    Article  PubMed  Google Scholar 

  84. Tan DT, Mehta JS. Future directions in lamellar corneal transplantation. Cornea. 2007;26:S21–8.

    Article  PubMed  Google Scholar 

  85. McLaren JW, Patel SV. Modeling the effect of forward scatter and aberrations on visual acuity after endothelial keratoplasty. Invest Ophthalmol Vis Sci. 2012;53(9):5545–51.

    Article  PubMed  Google Scholar 

  86. Baratz KH, McLaren JW, Maguire LJ, Patel SV. Corneal haze determined by confocal microscopy 2 years after Descemet stripping with endothelial keratoplasty for Fuchs corneal dystrophy. Arch Ophthalmol. 2012;130(7):868–74.

    Article  PubMed  Google Scholar 

  87. Patel SV, Baratz KH, Hodge DO, Maguire LJ, McLaren JW. The effect of corneal light scatter on vision after Descemet stripping with endothelial keratoplasty. Arch Ophthalmol. (Chicago, Ill: 1960). 2009;127(2):153–60.

    Google Scholar 

  88. Patel SV, McLaren JW. In vivo confocal microscopy of Fuchs endothelial dystrophy before and after endothelial keratoplasty. JAMA Ophthalmol. 2013;131(5):611–8.

    Article  CAS  PubMed  Google Scholar 

  89. Van Der Meulen IJ, Patel SV, Lapid-Gortzak R, Nieuwendaal CP, McLaren JW, Van Den Berg TJ. Quality of vision in patients with Fuchs endothelial dystrophy and after Descemet stripping endothelial keratoplasty. Arch Ophthalmol. 2011;129(12):1537–42.

    Article  PubMed  Google Scholar 

  90. Patel SV, Erie JC, McLaren JW, Bourne WM. Keratocyte density and recovery of subbasal nerves after penetrating keratoplasty and in late endothelial failure. Arch Ophthalmol. 2007;125(12):1693–8.

    Article  PubMed  Google Scholar 

  91. Ahuja Y, Baratz KH, McLaren JW, Bourne WM, Patel SV. Decreased corneal sensitivity and abnormal corneal nerves in Fuchs endothelial dystrophy. Cornea. 2012;31(11):1257.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Al-Aqaba M, Alomar T, Lowe J, Dua HS. Corneal nerve aberrations in bullous keratopathy. Am J Ophthalmol. 2011;151(5):840–9. e1.

    Google Scholar 

  93. Patel SV, Baratz KH, Maguire LJ, Hodge DO, McLaren JW. Anterior corneal aberrations after Descemet’s stripping endothelial keratoplasty for Fuchs’ endothelial dystrophy. Ophthalmology. 2012;119(8):1522–9.

    Article  PubMed  Google Scholar 

  94. Raecker ME, McLaren JW, Kittleson KM, Patel SV. Endothelial image quality after descemet stripping with endothelial keratoplasty: a comparison of three microscopy techniques. Eye Contact Lens. 2011;37(1):6–10.

    Article  PubMed  Google Scholar 

  95. Seery LS, Nau CB, McLaren JW, Baratz KH, Patel SV. Graft thickness, graft folds, and aberrations after Descemet stripping endothelial keratoplasty for Fuchs dystrophy. Am J Ophthalmol. 2011;152(6):910–6.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Shortt AJ, Allan BD, Evans JR. Laser‐assisted in‐situ keratomileusis (LASIK) versus photorefractive keratectomy (PRK) for myopia. Cochrane Database Systemat Rev. 2013(1).

    Google Scholar 

  97. McLaren JW, Bourne WM, Patel SV. Stromal reflectance after photorefractive keratectomy: a paired comparison between epithelial removal by rotary brush and excimer laser-scrape. Invest Ophthalmol Visual Sci. 2012;53(14):1469.

    Google Scholar 

  98. McLaren JW, Bourne WM, Patel SV. Standardization of corneal haze measurement in confocal microscopy. Invest Ophthalmol Vis Sci. 2010;51(11):5610–6.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Erie JC, McLaren JW, Hodge DO, Bourne WM. Recovery of corneal subbasal nerve density after PRK and LASIK. Am J Ophthalmol. 2005;140(6):1059–64. e1.

    Google Scholar 

  100. Patel SV, McLaren JW, Kittleson KM, Bourne WM. Subbasal nerve density and corneal sensitivity after laser in situ keratomileusis: femtosecond laser vs mechanical microkeratome. Arch Ophthalmol. 2010;128(11):1413–9.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Calvo R, McLaren JW, Hodge DO, Bourne WM, Patel SV. Corneal aberrations and visual acuity after laser in situ keratomileusis: femtosecond laser versus mechanical microkeratome. Am J Ophthalmol. 2010;149(5):785–93.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Klingler KN, McLaren JW, Bourne WM, Patel SV. Corneal endothelial cell changes 5 years after laser in situ keratomileusis: femtosecond laser versus mechanical microkeratome. J Cataract Refract Surg. 2012;38(12):2125–30.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Patel SV, Bourne WM. Corneal endothelial cell loss 9 years after excimer laser keratorefractive surgery. Arch Ophthalmol. 2009;127(11):1423–7.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lee SJ, Kim JK, Seo KY, Kim EK, Lee HK. Comparison of corneal nerve regeneration and sensitivity between LASIK and laser epithelial keratomileusis (LASEK). Am J Ophthalmol. 2006;141(6):1009–15. e1.

    Google Scholar 

  105. Lee BH, McLaren JW, Erie JC, Hodge DO, Bourne WM. Reinnervation in the cornea after LASIK. Invest Ophthalmol Vis Sci. 2002;43(12):3660–4.

    PubMed  Google Scholar 

  106. Kallinikos P, Berhanu M, O’Donnell C, Boulton AJ, Efron N, Malik RA. Corneal nerve tortuosity in diabetic patients with neuropathy. Invest Ophthalmol Vis Sci. 2004;45(2):418–22.

    Article  PubMed  Google Scholar 

  107. Stapleton F, Hayward KB, Bachand N, Trong PH, Teh DW, Deng KM, et al. Evaluation of corneal sensitivity to mechanical and chemical stimuli after LASIK: a pilot study. Eye Contact Lens. 2006;32(2):88–93.

    Article  PubMed  Google Scholar 

  108. Stachs O, Zhivov A, Kraak R, Hovakimyan M, Wree A, Guthoff R. Structural-functional correlations of corneal innervation after LASIK and penetrating keratoplasty. J Refract Surg. 2010;26(3):159–67.

    Article  PubMed  Google Scholar 

  109. Tuisku IS, Lindbohm N, Wilson SE, Tervo TM. Dry eye and corneal sensitivity after high myopic LASIK. J Refract Surg. 2007;23(4):338–42.

    Article  PubMed  Google Scholar 

  110. Ambrósio R Jr, Tervo T, Wilson SE. LASIK-associated dry eye and neurotrophic epitheliopathy: pathophysiology and strategies for prevention and treatment. J Refract Surg. 2008;24(4):396–407.

    Article  PubMed  Google Scholar 

  111. Rosenthal P, Baran I, Jacobs DS. Corneal pain without stain: is it real? Ocular Surface. 2009;7(1):28–40.

    Article  Google Scholar 

  112. Nettune GR, Pflugfelder SC. Post-LASIK tear dysfunction and dysesthesia. Ocular Surface. 2010;8(3):135–45.

    Article  Google Scholar 

  113. Hamrah P, Cruzat A, Dastjerdi MH, Zheng L, Shahatit BM, Bayhan HA, et al. Corneal sensation and subbasal nerve alterations in patients with herpes simplex keratitis: an in vivo confocal microscopy study. Ophthalmology. 2010;117(10):1930–6.

    Article  PubMed  Google Scholar 

  114. Hamrah P, Cruzat A, Dastjerdi MH, Prüss H, Zheng L, Shahatit BM, et al. Unilateral herpes zoster ophthalmicus results in bilateral corneal nerve alteration: an in vivo confocal microscopy study. Ophthalmology. 2013;120(1):40–7.

    Article  PubMed  Google Scholar 

  115. Rosenberg ME, Tervo TM, Immonen IJ, Müller LJ, Grönhagen-Riska C, Vesaluoma MH. Corneal structure and sensitivity in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci. 2000;41(10):2915–21.

    CAS  PubMed  Google Scholar 

  116. Martone G, Alegente M, Balestrazzi A, Nuti E, Traversi C, Pichierri P, et al. In vivo confocal microscopy in bilateral herpetic keratitis: a case report. London, UK: SAGE Publications; 2008.

    Google Scholar 

  117. Patel DV, McGhee CN. Laser scanning in vivo confocal microscopy demonstrating significant alteration of human corneal nerves following herpes zoster ophthalmicus. Arch Neurol. 2010;67(5):640–1.

    Article  PubMed  Google Scholar 

  118. Hamrah P, Schrems W, Hoesl L, Dastjerdi M, Dana R, Pavan-Langston D. Corneal epithelial and stromal changes in patients with herpes simplex keratitis: An in vivo confocal microscopy study. Invest Ophthalmol Visual Sci. 2009;50(13):2389.

    Google Scholar 

  119. Patel DV, Tavakoli M, Craig JP, Efron N, McGhee CN. Corneal sensitivity and slit scanning in vivo confocal microscopy of the subbasal nerve plexus of the normal central and peripheral human cornea. Cornea. 2009;28(7):735–40.

    Article  PubMed  Google Scholar 

  120. Mocan MC, Yilmaz PT, Irkec M, Orhan M. In vivo confocal microscopy for the evaluation of corneal microstructure in keratoconus. Curr Eye Res. 2008;33(11–12):933–9.

    Article  PubMed  Google Scholar 

  121. Patel DV, McGhee CN. Mapping the corneal sub-basal nerve plexus in keratoconus by in vivo laser scanning confocal microscopy. Invest Ophthalmol Vis Sci. 2006;47(4):1348–51.

    Article  PubMed  Google Scholar 

  122. Niederer RL, Perumal D, Sherwin T, McGhee CN. Laser scanning in vivo confocal microscopy reveals reduced innervation and reduction in cell density in all layers of the keratoconic cornea. Invest Ophthalmol Vis Sci. 2008;49(7):2964–70.

    Article  PubMed  Google Scholar 

  123. Mannion LS, Tromans C, O’Donnell C. An evaluation of corneal nerve morphology and function in moderate keratoconus. Contact Lens and Anterior Eye. 2005;28(4):185–92.

    Article  Google Scholar 

  124. Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66(1):97–103.

    Article  CAS  PubMed  Google Scholar 

  125. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-A–induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620–7.

    Article  CAS  PubMed  Google Scholar 

  126. Al-Aqaba M, Calienno R, Fares U, Otri AM, Mastropasqua L, Nubile M, et al. The effect of standard and transepithelial ultraviolet collagen cross-linking on human corneal nerves: an ex vivo study. Am J Ophthalmol. 2012;153(2):258–66. e2.

    Google Scholar 

  127. Spadea L, Salvatore S, Paroli MP, Vingolo EM. Recovery of corneal sensitivity after collagen crosslinking with and without epithelial debridement in eyes with keratoconus. J Cataract Refract Surg. 2015;41(3):527–32.

    Article  PubMed  Google Scholar 

  128. Dyck PJ, Overland CJ, Low PA, Litchy WJ, Davies JL, Dyck PJB, et al. Signs and symptoms versus nerve conduction studies to diagnose diabetic sensorimotor polyneuropathy: Cl vs. NPhys Trial. Muscle Nerve. 2010;42(2):157–64.

    Article  PubMed  Google Scholar 

  129. Petropoulos IN, Green P, Chan AW, Alam U, Fadavi H, Marshall A, et al. Corneal confocal microscopy detects neuropathy in patients with type 1 diabetes without retinopathy or microalbuminuria. PLoS ONE. 2015;10(4):e0123517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Misra SL, Craig JP, Patel DV, McGhee CN, Pradhan M, Ellyett K, et al. In vivo confocal microscopy of corneal nerves: an ocular biomarker for peripheral and cardiac autonomic neuropathy in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci. 2015;56(9):5060–5.

    Article  PubMed  Google Scholar 

  131. Bitirgen G, Ozkagnici A, Malik R, Kerimoglu H. Corneal nerve fibre damage precedes diabetic retinopathy in patients with type 2 diabetes mellitus. Diabet Med. 2014;31(4):431–8.

    Article  CAS  PubMed  Google Scholar 

  132. Palejwala NV, Walia HS, Yeh S. Ocular manifestations of systemic lupus erythematosus: a review of the literature. Autoimmune Dis. 2012;2012.

    Google Scholar 

  133. Marsovszky L, Resch MD, Németh J, Toldi G, Medgyesi E, Kovács L, et al. In vivo confocal microscopic evaluation of corneal Langerhans cell density, and distribution and evaluation of dry eye in rheumatoid arthritis. Innate Immun. 2013;19(4):348–54.

    Article  PubMed  CAS  Google Scholar 

  134. Mohsenin A, Huang JJ. Ocular manifestations of systemic inflammatory diseases. Conn Med. 2012;76(9):533–44.

    PubMed  Google Scholar 

  135. Villani E, Beretta S, De Capitani M, Galimberti D, Viola F, Ratiglia R. In vivo confocal microscopy of meibomian glands in Sjögren’s syndrome. Invest Ophthalmol Vis Sci. 2011;52(2):933–9.

    Article  PubMed  Google Scholar 

  136. Hong J, Zhu W, Zhuang H, Xu J, Sun X, Le Q, et al. In vivo confocal microscopy of conjunctival goblet cells in patients with Sjögren’s syndrome dry eye. Br J Ophthalmol. 2010;94(11):1454–8.

    Article  PubMed  Google Scholar 

  137. Enríquez-de-Salamanca A, Bonini S, Calonge M. Molecular and cellular biomarkers in dry eye disease and ocular allergy. Curr Opin Allergy Clin Immunol. 2012;12(5):523–33.

    Article  PubMed  CAS  Google Scholar 

  138. Kari O, Saari KM. Diagnostics and new developments in the treatment of ocular allergies. Curr Allergy Asthma Rep. 2012;12(3):232–9.

    Article  CAS  PubMed  Google Scholar 

  139. Miljanović B, Dana R, Sullivan DA, Schaumberg DA. Impact of dry eye syndrome on vision-related quality of life. Am J Ophthalmol. 2007;143(3):409–15. e2.

    Google Scholar 

  140. Matsumoto Y, Sato EA, Ibrahim OM, Dogru M, Tsubota K. The application of in vivo laser confocal microscopy to the diagnosis and evaluation of meibomian gland dysfunction. Mol Vision. 2008;14:1263.

    CAS  Google Scholar 

  141. Ibrahim OM, Matsumoto Y, Dogru M, Adan ES, Wakamatsu TH, Goto T, et al. The efficacy, sensitivity, and specificity of in vivo laser confocal microscopy in the diagnosis of meibomian gland dysfunction. Ophthalmology. 2010;117(4):665–72.

    Article  PubMed  Google Scholar 

  142. Villani E, Ceresara G, Beretta S, Magnani F, Viola F, Ratiglia R. In vivo confocal microscopy of meibomian glands in contact lens wearers. Invest Ophthalmol Vis Sci. 2011;52(8):5215–9.

    Article  PubMed  Google Scholar 

  143. Matsumoto Y, Shigeno Y, Sato EA, Ibrahim OM, Saiki M, Negishi K, et al. The evaluation of the treatment response in obstructive meibomian gland disease by in vivo laser confocal microscopy. Graefe’s Arch Clin Exp Ophthalmol. 2009;247(6):821–9.

    Article  Google Scholar 

  144. Ban Y, Ogawa Y, Ibrahim OM, Tatematsu Y, Kamoi M, Uchino M, et al. Morphologic evaluation of meibomian glands in chronic graft-versus-host disease using in vivo laser confocal microscopy. Mol Vis. 2011;17:2533.

    PubMed  PubMed Central  Google Scholar 

  145. Villani E, Canton V, Magnani F, Viola F, Nucci P, Ratiglia R. The aging Meibomian gland: an in vivo confocal study. Invest Ophthalmol Vis Sci. 2013;54(7):4735–40.

    Article  PubMed  Google Scholar 

  146. Villani E, Galimberti D, Papa ND, Nucci P, Ratiglia R. Inflammation in dry eye associated with rheumatoid arthritis: cytokine and in vivo confocal microscopy study. Innate Immun. 2013;19(4):420–7.

    Article  PubMed  CAS  Google Scholar 

  147. Alhatem A, Cavalcanti B, Hamrah P, editors. In vivo confocal microscopy in dry eye disease and related conditions. Semin Ophthalmol. 2012, Taylor & Francis.

    Google Scholar 

  148. Cruzat A, Witkin D, Baniasadi N, Zheng L, Ciolino JB, Jurkunas UV, et al. Inflammation and the nervous system: the connection in the cornea in patients with infectious keratitis. Invest Ophthalmol Vis Sci. 2011;52(8):5136–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tuominen IS, Konttinen YT, Vesaluoma MH, Moilanen JA, Helintö M, Tervo TM. Corneal innervation and morphology in primary Sjogren’s syndrome. Invest Ophthalmol Vis Sci. 2003;44(6):2545–9.

    Article  PubMed  Google Scholar 

  150. Villani E, Galimberti D, Viola F, Mapelli C, Ratiglia R. The cornea in Sjogren’s syndrome: an in vivo confocal study. Invest Ophthalmol Vis Sci. 2007;48(5):2017–22.

    Article  PubMed  Google Scholar 

  151. Zhang X, Chen Q, Chen W, Cui L, Ma H, Lu F. Tear dynamics and corneal confocal microscopy of subjects with mild self-reported office dry eye. Ophthalmology. 2011;118(5):902–7.

    Article  PubMed  Google Scholar 

  152. Efron N. Contact lens-induced changes in the anterior eye as observed in vivo with the confocal microscope. Prog Retinal Eye Res. 2007;26(4):398–436.

    Article  Google Scholar 

  153. Villani E, Viola F, Sala R, Salvi M, Mapelli C, Curro N, et al. Corneal involvement in Graves’ orbitopathy: an in vivo confocal study. Invest Ophthalmol Vis Sci. 2010;51(9):4574–8.

    Article  PubMed  Google Scholar 

  154. Lin H, Li W, Dong N, Chen W, Liu J, Chen L, et al. Changes in corneal epithelial layer inflammatory cells in aqueous tear–deficient dry eye. Invest Ophthalmol Vis Sci. 2010;51(1):122–8.

    Article  PubMed  Google Scholar 

  155. Matsumoto Y, Ibrahim OM. Application of in vivo confocal microscopy in dry eye disease. Invest Ophthalmol Visual Sci. 2018;59(14):DES41–DES7.

    Google Scholar 

  156. Benítez-del-Castillo JM, Acosta MC, Wassfi MA, Díaz-Valle D, Gegúndez JA, Fernandez C, et al. Relation between corneal innervation with confocal microscopy and corneal sensitivity with noncontact esthesiometry in patients with dry eye. Invest Ophthalmol Vis Sci. 2007;48(1):173–81.

    Article  PubMed  Google Scholar 

  157. Villani E, Galimberti D, Viola F, Mapelli C, Del Papa N, Ratiglia R. Corneal involvement in rheumatoid arthritis: an in vivo confocal study. Invest Ophthalmol Vis Sci. 2008;49(2):560–4.

    Article  PubMed  Google Scholar 

  158. Wakamatsu TH, Sato EA, Matsumoto Y, Ibrahim OM, Dogru M, Kaido M, et al. Conjunctival in vivo confocal scanning laser microscopy in patients with Sjögren syndrome. Invest Ophthalmol Vis Sci. 2010;51(1):144–50.

    Article  PubMed  Google Scholar 

  159. Iaccheri B, Torroni G, Cagini C, Fiore T, Cerquaglia A, Lupidi M, et al. Corneal confocal scanning laser microscopy in patients with dry eye disease treated with topical cyclosporine. Eye. 2017;31(5):788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Levy O, Labbé A, Borderie V, Hamiche T, Dupas B, Laroche L, et al. Increased corneal sub-basal nerve density in patients with Sjögren syndrome treated with topical cyclosporine A. Clin Exp Ophthalmol. 2017;45(5):455–63.

    Article  PubMed  Google Scholar 

  161. Messmer E, Torres ES, Mackert M, Zapp D, Kampik A. In vivo confocal microscopy in blepharitis. Klin Monatsbl Augenheilkd. 2005;222(11):894–900.

    Article  CAS  PubMed  Google Scholar 

  162. Irkec MT, Bozkurt B. Molecular immunology of allergic conjunctivitis. Curr Opin Allergy Clin Immunol. 2012;12(5):534–9.

    Article  CAS  PubMed  Google Scholar 

  163. Hu Y, Matsumoto Y, Adan ES, Dogru M, Fukagawa K, Tsubota K, et al. Corneal in vivo confocal scanning laser microscopy in patients with atopic keratoconjunctivitis. Ophthalmology. 2008;115(11):2004–12.

    Article  PubMed  Google Scholar 

  164. Le Q, Hong J, Zhu W, Sun X, Xu J. In vivo laser scanning confocal microscopy of vernal keratoconjunctivitis. Clin Exp Ophthalmol. 2011;39(1):53–60.

    PubMed  Google Scholar 

  165. Leonardi A, Lazzarini D, Bortolotti M, Piliego F, Midena E, Fregona I. Corneal confocal microscopy in patients with vernal keratoconjunctivitis. Ophthalmology. 2012;119(3):509–15.

    Article  PubMed  Google Scholar 

  166. Ibrahim OM, Matsumoto Y, Dogru M, Adan ES, Wakamatsu TH, Shimazaki J, et al. In vivo confocal microscopy evaluation of meibomian gland dysfunction in atopic-keratoconjunctivitis patients. Ophthalmology. 2012;119(10):1961–8.

    Article  PubMed  Google Scholar 

  167. Ladage PM, Petroll WM, Jester JV, Fisher S, Bergmanson JP, Cavanagh HD. Spherical indentations of human and rabbit corneal epithelium following extended contact lens wear1. Eye Contact Lens. 2002;28(4):177–80.

    Google Scholar 

  168. Craig JP, Sherwin T, Grupcheva CN, McGhee CN. An evaluation of mucin balls associated with high-DK silicone-hydrogel contact lens wear. Springer: Lacrimal Gland, Tear Film, and Dry Eye Syndromes 3; 2002. p. 917–23.

    Google Scholar 

  169. Millar TJ, Papas EB, Ozkan J, Jalbert I, Ball M. Clinical appearance and microscopic analysis of mucin balls associated with contact lens wear. Cornea. 2003;22(8):740–5.

    Article  PubMed  Google Scholar 

  170. Ladage PM, Yamamoto K, Ren DH, Li L, Jester JV, Petroll WM, et al. Effects of rigid and soft contact lens daily wear on corneal epithelium, tear lactate dehydrogenase, and bacterial binding to exfoliated epithelial cells. Ophthalmology. 2001;108(7):1279–88.

    Article  CAS  PubMed  Google Scholar 

  171. Sindt CW, Grout TK, Critser DB, Kern JR, Meadows DL. Dendritic immune cell densities in the central cornea associated with soft contact lens types and lens care solution types: a pilot study. Clin Ophthalmol (Auckland, NZ). 2012;6:511.

    Article  CAS  Google Scholar 

  172. Böhnke M, Masters BR. Long-term contact lens wear induces a corneal degeneration with microdot deposits in the corneal stroma. Ophthalmology. 1997;104(11):1887–96.

    Article  PubMed  Google Scholar 

  173. Hollingsworth JG, Efron N. Confocal microscopy of the corneas of long-term rigid contact lens wearers. Contact Lens Anterior Eye. 2004;27(2):57–64.

    Article  PubMed  Google Scholar 

  174. Ma X, He L, He D, Xu J. Chloroquine keratopathy of rheumatoid arthritis patients detected by in vivo confocal microscopy. Curr Eye Res. 2012;37(4):293–9.

    Article  CAS  PubMed  Google Scholar 

  175. Sbeity Z, Palmiero PM, Tello C, Liebmann JM, Ritch R. Non-contact in vivo confocal scanning laser microscopy in exfoliation syndrome, exfoliation syndrome suspect and normal eyes. Acta Ophthalmol. 2011;89(3):241–7.

    Article  PubMed  Google Scholar 

  176. Mocan MC, Eldem B, Irkec M. In vivo confocal microscopic findings of two siblings with Maroteaux-Lamy syndrome. Cornea. 2007;26(1):90–3.

    Article  PubMed  Google Scholar 

  177. Efron N, Mutalib HA. Confocal microscopy observations of the cornea in response to contact lens wear. Die Kontaktlinse. 2001;35(1):4–16.

    Google Scholar 

  178. Nagel S, Wiegand W, Thaer A, Geyer O. Light scattering study of the cornea in contact lens patients. In vivo studies using confocal slit scanning microscopy. Der Ophthalmologe: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 1996;93(3):252–6.

    Google Scholar 

  179. Rong B, Yan X. Changes of corneal limbus in long-term soft contact lens wearers by using laser confocal microscope. [Zhonghua yan ke za zhi] Chin J Ophthalmol. 2007;43(6):514–8.

    Google Scholar 

  180. Efron N, Al-Dossari M, Pritchard N. Confocal microscopy of the bulbar conjunctiva in contact lens wear. Cornea. 2010;29(1):43–52.

    Article  PubMed  Google Scholar 

  181. Labbé A, Dupas B, Hamard P, Baudouin C. In vivo confocal microscopy study of blebs after filtering surgery. Ophthalmology. 2005;112(11):1979. e1–e9.

    Google Scholar 

  182. Guthoff R, Klink T, Schlunck G, Grehn F. In vivo confocal microscopy of failing and functioning filtering blebs: results and clinical correlations. J Glaucoma. 2006;15(6):552–8.

    Article  PubMed  Google Scholar 

  183. Messmer EM, Zapp DM, Mackert MJ, Thiel M, Kampik A. In vivo confocal microscopy of filtering blebs after trabeculectomy. Arch Ophthalmol. 2006;124(8):1095–103.

    Article  PubMed  Google Scholar 

  184. Amar N, Labbé A, Hamard P, Dupas B, Baudouin C. Filtering blebs and aqueous pathway: an immunocytological and in vivo confocal microscopy study. Ophthalmology. 2008;115(7):1154–61. e4.

    Google Scholar 

  185. Martone G, Frezzotti P, Tosi GM, Traversi C, Mittica V, Malandrini A, et al. An in vivo confocal microscopy analysis of effects of topical antiglaucoma therapy with preservative on corneal innervation and morphology. American journal of ophthalmology. 2009;147(4):725–35. e1.

    Google Scholar 

  186. Baratz KH, Nau CB, Winter EJ, McLaren JW, Hodge DO, Herman DC, et al. Effects of glaucoma medications on corneal endothelium, keratocytes, and subbasal nerves among participants in the ocular hypertension treatment study. Cornea. 2006;25(9):1046–52.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

I would like to express my special thanks to Dr. Kasra CHeraqpour for his effort in preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Soleimani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soleimani, M. (2021). Confocal Scan. In: Mohammadpour, M. (eds) Diagnostics in Ocular Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-54863-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54863-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54862-9

  • Online ISBN: 978-3-030-54863-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics