Skip to main content

Rigid Body Dynamics

  • Chapter
Vehicle-Manipulator Systems

Abstract

Dynamics is the study of how forces affect the motion of rigid bodies. In this chapter we introduce the fundamental topics required to derive the dynamic equations for rigid bodies with the results obtained in the previous chapters on rigid body kinematics as a starting point. In this way we obtain a well-defined formulation of the dynamics without singularities and other artifacts. The formulation can be used to derive the dynamics of bodies with different configuration spaces, i.e., both flat Euclidean spaces and non-Euclidean configuration spaces on manifolds. The equations are well suited for simulation and controller design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnold, V. I. (1989). Mathematical methods of classical mechanics. Berlin: Springer.

    Book  Google Scholar 

  • Bremer, H. (1988). Über eine zentralgleichung in der Dynamik (Vol. 68, pp. 307–311).

    Google Scholar 

  • Bullo, F., & Lewis, A. D. (2000). Geometric control of mechanical systems: modeling, analysis, and design for simple mechanical control systems. New York: Springer.

    Google Scholar 

  • Cameron, J. M., & Book, W. J. (1997). Modeling mechanisms with nonholonomic joints using the Boltzmann-Hamel equations. The International Journal of Robotics Research, 16(1), 47–59.

    Article  Google Scholar 

  • Duindam, V., & Stramigioli, S. (2007). Lagrangian dynamics of open multibody systems with generalized holonomic and nonholonomic joints. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, San Diego, CA, USA (pp. 3342–3347).

    Google Scholar 

  • Duindam, V., & Stramigioli, S. (2008). Singularity-free dynamic equations of open-chain mechanisms with general holonomic and nonholonomic joints. IEEE Transactions on Robotics, 24(3), 517–526.

    Article  Google Scholar 

  • Egeland, O., & Gravdahl, J. T. (2003). Modeling and simulation for automatic control. Trondheim: Marine Cybernetics AS.

    Google Scholar 

  • Fossen, T. I. (2002). Marine control systems. Trondheim: Marine Cybernetics AS. 3rd printing.

    Google Scholar 

  • Fossen, T. I., & Fjellstad, O. E. (1995). Nonlinear modelling of marine vehicles in 6 degrees of freedom. International Journal of Mathematical Modelling Systems, 1(1), 17–28.

    Google Scholar 

  • From, P. J. (2012a). An explicit formulation of singularity-free dynamic equations of mechanical systems in Lagrangian form—part one: single rigid bodies. Modeling, Identification and Control, 33(2), 45–60.

    Article  Google Scholar 

  • From, P. J. (2012b). An explicit formulation of singularity-free dynamic equations of mechanical systems in Lagrangian form—part two: multibody systems. Modeling, Identification and Control, 33(2), 61–68.

    Article  Google Scholar 

  • From, P. J., Duindam, V., & Stramigioli, S. (2012). Corrections to “Singularity-free dynamic equations of open-chain mechanisms with general holonomic and nonholonomic joints”. IEEE Transactions on Robotics, 28(6), 1431–1432.

    Article  Google Scholar 

  • Gibbs, J. W. (1879). On the fundamental formulae of dynamics. American Journal of Mathematics, 2(1), 49–64.

    Article  MathSciNet  MATH  Google Scholar 

  • Hamel, G. (1949). Theoretische Mechanik. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Herman, P., & Kozlowski, K. (2006). A survey of equations of motion in terms of inertial quasi-velocities for serial manipulators. Archive of Applied Mechanics, 76(9–10), 579–614.

    Article  MATH  Google Scholar 

  • Jarzbowska, E. (2008). Quasi-coordinates based dynamics modeling and control design for nonholonomic systems. Nonlinear Analysis, 71(12), 118–131.

    Article  Google Scholar 

  • Kane, T. R., & Levinson, D. A. (1985). Dynamics: theory and applications. New York: McGraw Hill.

    Google Scholar 

  • Kane, T. R., Likins, P. W., & Levinson, D. A. (1983). Spacecraft dynamics. New York: McGraw Hill.

    Google Scholar 

  • Kozlowski, K., & Herman, P. (2008). Control of robot manipulators in terms of quasi-velocities. Journal of Intelligent & Robotic Systems, 53(3), 205–221.

    Article  Google Scholar 

  • Kwatny, H. G., & Blankenship, G. (2000). Nonlinear control and analytical mechanics a computational approach. Boston: Birkhäuser.

    Book  MATH  Google Scholar 

  • Lagrange, J.-L. (1788). Mécanique analytique. Chez la Veuve Desaint.

    Google Scholar 

  • Lesser, M. (1992). A geometrical interpretation of Kanes equations. Journal of Mathematical and Physical Sciences, 436(1896), 69–87.

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis, A. D. (1996). The geometry of the Gibbs-Appel equations and Gauss’s principle of least constraint. Reports on Mathematical Physics, 38(1), 11–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Marsden, J. E., & Ratiu, T. S. (1999). Texts in applied mathematics. Introduction to mechanics and symmetry (2nd ed.). New York: Springer.

    Book  MATH  Google Scholar 

  • Maruskin, J. M., & Bloch, A. M. (2007). The Boltzmann-Hamel equations for optimal control. In IEEE conference on decision and control, San Diego, CA, USA (pp. 554–559).

    Google Scholar 

  • Murray, R. M., Li, Z., & Sastry, S. S. (1994). A mathematical introduction to robotic manipulation. Boca Raton: CRC Press.

    MATH  Google Scholar 

  • Park, F. C., Bobrow, J. E., & Ploen, S. R. (1995). A Lie group formulation of robot dynamics. The International Journal of Robotics Research, 14(6), 609–618.

    Article  Google Scholar 

  • Poincaré, H. (1901). Sur une forme nouvelle des équations de la mécanique. Bull Astron.

    Google Scholar 

  • Rao, A. (2006). Dynamics of particles and rigid bodies—a systematic approach. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rossmann, W. (2002). Lie groups—an introduction through linear algebra. Oxford: Oxford science publications.

    Google Scholar 

  • Sagatun, S. I., & Fossen, T. I. (1992). Lagrangian formulation of underwater vehicles. In Conference of systems, man and cybernetics, Charlottesville, VA, USA (pp. 1029–1034).

    Google Scholar 

  • Selig, J. M. (2000). Geometric fundamentals of robotics. New York: Springer.

    Book  Google Scholar 

  • Tanner, H. G., & Kyriakopoulos, K. J. (2001). Mobile manipulator modeling with Kane’s approach. Robotica, 19, 675–690.

    Article  Google Scholar 

  • Zefran, M., & Bullo, F. (2004). Lagrangian dynamics, robotics and automation handbook. Boca Raton: CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

From, P.J., Gravdahl, J.T., Pettersen, K.Y. (2014). Rigid Body Dynamics. In: Vehicle-Manipulator Systems. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-5463-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5463-1_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5462-4

  • Online ISBN: 978-1-4471-5463-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics