Skip to main content

Water and Electrolyte Management in Neurological Disease

  • Chapter
  • First Online:
Textbook of Neurointensive Care

Abstract

Water and electrolyte disturbance can significantly impact the medical course of patients with neurological diseases. Specifically, hypo- and hypernatremia are common in neuro-patients and are associated with significant morbidity and mortality. The diagnosis and treatment algorithms for management of sodium disturbance in neuro-patients are discussed in this chapter. Disorders of potassium, calcium, phosphorus, and magnesium homeostasis are also discussed, as are their treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bourque CW. Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci. 2008;9(7):519–31.

    PubMed  CAS  Google Scholar 

  2. Robertson GL, Shelton RL, Athar S. The osmoregulation of vasopressin. Kidney Int. 1976;10(1):25–37.

    PubMed  CAS  Google Scholar 

  3. Claybaugh JR, Sato AK, Crosswhite LK, Hassell LH. Effects of time of day, gender, and menstrual cycle phase on the human response to a water load. Am J Physiol Regul Integr Comp Physiol. 2000;279(3):R966–73.

    PubMed  CAS  Google Scholar 

  4. Kuramochi G, Kobayashi I. Regulation of the urine concentration mechanism by the oropharyngeal afferent pathway in man. Am J Nephrol. 2000;20(1):42–7.

    PubMed  CAS  Google Scholar 

  5. Andersen LJ, Jensen TU, Bestle MH, Bie P. Gastrointestinal osmoreceptors and renal sodium excretion in humans. Am J Physiol Regul Integr Comp Physiol. 2000;278(2):R287–94.

    PubMed  CAS  Google Scholar 

  6. Choi-Kwon S, Baertschi AJ. Splanchnic osmosensation and vasopressin: mechanisms and neural pathways. Am J Physiol. 1991;261(1 Pt 1):E18–25.

    PubMed  CAS  Google Scholar 

  7. Adachi A. Thermosensitive and osmoreceptive afferent fibers in the hepatic branch of the vagus nerve. J Auton Nerv Syst. 1984;10(3–4):269–73.

    PubMed  CAS  Google Scholar 

  8. McKinley MJ. The sensory circumventricular organs of the mammalian brain : subfornical organ, OVLT and area postrema. New York: Springer; 2003.

    Google Scholar 

  9. Thrasher TN, Brown CJ, Keil LC, Ramsay DJ. Thirst and vasopressin release in the dog: an osmoreceptor or sodium receptor mechanism? Am J Physiol. 1980;238(5):R333–9.

    PubMed  CAS  Google Scholar 

  10. Oliet SH, Bourque CW. Properties of supraoptic magnocellular neurones isolated from the adult rat. J Physiol. 1992;455:291–306.

    PubMed  CAS  Google Scholar 

  11. Oliet SH, Bourque CW. Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature. 1993;364(6435):341–3.

    PubMed  CAS  Google Scholar 

  12. Ciura S, Bourque CW. Transient receptor potential vanilloid 1 is required for intrinsic osmoreception in organum vasculosum lamina terminalis neurons and for normal thirst responses to systemic hyperosmolality. J Neurosci. 2006;26(35):9069–75.

    PubMed  CAS  Google Scholar 

  13. Morita H, Ogino T, Fujiki N, et al. Sequence of forebrain activation induced by intraventricular injection of hypertonic NaCl detected by Mn2+ contrasted T1-weighted MRI. Auton Neurosci. 2004;113(1–2):43–54.

    PubMed  CAS  Google Scholar 

  14. Colbert HA, Smith TL, Bargmann CI. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci. 1997;17(21):8259–69.

    PubMed  CAS  Google Scholar 

  15. Bourque CW. Osmoregulation of vasopressin neurons: a synergy of intrinsic and synaptic processes. Prog Brain Res. 1998;119:59–76.

    PubMed  CAS  Google Scholar 

  16. Knepper MA. Molecular physiology of urinary concentrating mechanism: regulation of aquaporin water channels by vasopressin. Am J Physiol. 1997;272(1 Pt 2):F3–12.

    PubMed  CAS  Google Scholar 

  17. Verbalis JG. Disorders of body water homeostasis. Best Pract Res Clin Endocrinol Metab. 2003;17(4):471–503.

    PubMed  CAS  Google Scholar 

  18. Rose BD, Post TW. Clinical physiology of acid base and electrolyte disorders. 6th ed. New York: McGraw-Hill; 2006.

    Google Scholar 

  19. Weidmann P, Hasler L, Gnadinger MP, et al. Blood levels and renal effects of atrial natriuretic peptide in normal man. J Clin Invest. 1986;77(3):734–42.

    PubMed  CAS  Google Scholar 

  20. Boscoe A, Paramore C, Verbalis JG. Cost of illness of hyponatremia in the United States. Cost Eff Resour Alloc. 2006;4:10.

    PubMed  Google Scholar 

  21. Anderson RJ, Chung HM, Kluge R, Schrier RW. Hyponatremia: a prospective analysis of its epidemiology and the pathogenetic role of vasopressin. Ann Intern Med. 1985;102(2):164–8.

    PubMed  CAS  Google Scholar 

  22. Bennani SL, Abouqal R, Zeggwagh AA, et al. Incidence, causes and prognostic factors of hyponatremia in intensive care. Rev Med Interne. 2003;24(4):224–9.

    PubMed  Google Scholar 

  23. Nzerue CM, Baffoe-Bonnie H, You W, Falana B, Dai S. Predictors of outcome in hospitalized patients with severe hyponatremia. J Natl Med Assoc. 2003;95(5):335–43.

    PubMed  Google Scholar 

  24. Peruzzi WTM, Shapiro BAMF, Meyer PRJMM, Krumlovsky FM, Seo B-WB. Hyponatremia in acute spinal cord injury. [Article]. Crit Care Med. 1994;22(2):252–8.

    PubMed  CAS  Google Scholar 

  25. Sherlock M, O’Sullivan E, Agha A, et al. The incidence and pathophysiology of hyponatraemia after subarachnoid haemorrhage. Clin Endocrinol (Oxf). 2006;64(3):250–4.

    Google Scholar 

  26. Sata A, Hizuka N, Kawamata T, Hori T, Takano K. Hyponatremia after transsphenoidal surgery for hypothalamo-pituitary tumors. Neuroendocrinology. 2006;83(2):117–22.

    PubMed  CAS  Google Scholar 

  27. Diringer MN, Zazulia AR. Hyponatremia in neurologic patients: consequences and approaches to treatment. Neurologist. 2006;12(3):117–26.

    PubMed  Google Scholar 

  28. Adrogue HJ. Consequences of inadequate management of hyponatremia. Am J Nephrol. 2005;25(3):240–9.

    PubMed  Google Scholar 

  29. Janicic N, Verbalis JG. Evaluation and management of hypo-osmolality in hospitalized patients. Endocrinol Metab Clin North Am. 2003;32(2):459–81, vii.

    PubMed  CAS  Google Scholar 

  30. Beukhof CM, Hoorn EJ, Lindemans J, Zietse R. Novel risk factors for hospital-acquired hyponatraemia: a matched case–control study. [Article]. Clin Endocrinol. 2007;66(3):367–72.

    Google Scholar 

  31. Gill G, Huda B, Boyd A, et al. Characteristics and mortality of severe hyponatraemia – a hospital-based study. [Article]. Clin Endocrinol. 2006;65(2):246–9.

    Google Scholar 

  32. Tierney WM, Martin DK, Greenlee MC, Zerbe RL, McDonald CJ. The prognosis of hyponatremia at hospital admission. J Gen Intern Med. 1986;1(6):380–5.

    PubMed  CAS  Google Scholar 

  33. Rossi J, Bayram M, Udelson JE, et al. Improvement in hyponatremia during hospitalization for worsening heart failure is associated with improved outcomes: insights from the Acute and Chronic Therapeutic Impact of a Vasopressin Antagonist in Chronic Heart Failure (ACTIV in CHF) trial. Acute Card Care. 2007;9(2):82–6.

    PubMed  Google Scholar 

  34. Fraser CL, Arieff AI. Epidemiology, pathophysiology, and management of hyponatremic encephalopathy. Am J Med. 1997;102(1):67–77.

    PubMed  CAS  Google Scholar 

  35. Renneboog B, Musch W, Vandemergel X, Manto MU, Decaux G. Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits. Am J Med. 2006;119(1):71 e1–8.

    Google Scholar 

  36. Arieff AI, Llach F, Massry SG. Neurological manifestations and morbidity of hyponatremia: correlation with brain water and electrolytes. Medicine (Baltimore). 1976;55(2):121–9.

    CAS  Google Scholar 

  37. Kurokawa Y, Uede T, Ishiguro M, et al. Pathogenesis of hyponatremia following subarachnoid hemorrhage due to ruptured cerebral aneurysm. Surg Neurol. 1996;46(5):500–7; discussion 507–8.

    PubMed  CAS  Google Scholar 

  38. Wijdicks EF, Vermeulen M, Hijdra A, van Gijn J. Hyponatremia and cerebral infarction in patients with ruptured intracranial aneurysms: is fluid restriction harmful? Ann Neurol. 1985;17(2):137–40.

    PubMed  CAS  Google Scholar 

  39. Hasan D, Wijdicks EF, Vermeulen M. Hyponatremia is associated with cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage. Ann Neurol. 1990;27(1):106–8.

    PubMed  CAS  Google Scholar 

  40. Qureshi AI, Suri MF, Sung GY, et al. Prognostic significance of hypernatremia and hyponatremia among patients with aneurysmal subarachnoid hemorrhage. Neurosurgery. 2002;50(4):749–55; discussion 755–6.

    PubMed  Google Scholar 

  41. Palmer BF. Hyponatremia in patients with central nervous system disease: SIADH versus CSW. Trends Endocrinol Metab. 2003;14(4):182–7.

    PubMed  CAS  Google Scholar 

  42. Maesaka JK, Gupta S, Fishbane S. Cerebral salt-wasting syndrome: does it exist? Nephron. 1999;82(2):100–9.

    PubMed  CAS  Google Scholar 

  43. Vingerhoets F, de Tribolet N. Hyponatremia hypo-osmolarity in neurosurgical patients. “Appropriate secretion of ADH” and “cerebral salt wasting syndrome”. Acta Neurochir (Wien). 1988;91(1–2):50–4.

    CAS  Google Scholar 

  44. Nelson PB, Seif SM, Maroon JC, Robinson AG. Hyponatremia in intracranial disease: perhaps not the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). J Neurosurg. 1981;55(6):938–41.

    PubMed  CAS  Google Scholar 

  45. Betjes MG. Hyponatremia in acute brain disease: the cerebral salt wasting syndrome. Eur J Intern Med. 2002;13(1):9–14.

    PubMed  CAS  Google Scholar 

  46. Damaraju SC, Rajshekhar V, Chandy MJ. Validation study of a central venous pressure-based protocol for the management of neurosurgical patients with hyponatremia and natriuresis. Neurosurgery. 1997;40(2):312–6; discussion 316–7.

    PubMed  CAS  Google Scholar 

  47. Chung HM, Kluge R, Schrier RW, Anderson RJ. Clinical assessment of extracellular fluid volume in hyponatremia. Am J Med. 1987;83(5):905–8.

    PubMed  CAS  Google Scholar 

  48. Musch W, Thimpont J, Vandervelde D, Verhaeverbeke I, Berghmans T, Decaux G. Combined fractional excretion of sodium and urea better predicts response to saline in hyponatremia than do usual clinical and biochemical parameters. Am J Med. 1995;99(4):348–55.

    PubMed  CAS  Google Scholar 

  49. Beck LH. Hypouricemia in the syndrome of inappropriate secretion of antidiuretic hormone. N Engl J Med. 1979;301(10):528–30.

    PubMed  CAS  Google Scholar 

  50. Docci D, Cremonini AM, Nasi MT, et al. Hyponatraemia with natriuresis in neurosurgical patients. Nephrol Dial Transplant. 2000;15(10):1707–8.

    PubMed  CAS  Google Scholar 

  51. Wijdicks EF, Vermeulen M, van Brummelen P, den Boer NC, van Gijn J. Digoxin-like immunoreactive substance in patients with aneurysmal subarachnoid haemorrhage. Br Med J (Clin Res Ed). 1987;294(6574):729–32.

    CAS  Google Scholar 

  52. Wijdicks EF, Ropper AH, Hunnicutt EJ, Richardson GS, Nathanson JA. Atrial natriuretic factor and salt wasting after aneurysmal subarachnoid hemorrhage. Stroke. 1991;22(12):1519–24.

    PubMed  CAS  Google Scholar 

  53. Kubo Y, Ogasawara K, Kakino S, Kashimura H, Yoshida K, Ogawa A. Cerebrospinal fluid adrenomedullin concentration correlates with hyponatremia and delayed ischemic neurological deficits after subarachnoid hemorrhage. [Article]. Cerebrovasc Dis. 2008;25(1–2):164–9.

    PubMed  Google Scholar 

  54. Diringer M, Ladenson PW, Stern BJ, Schleimer J, Hanley DF. Plasma atrial natriuretic factor and subarachnoid hemorrhage. Stroke. 1988;19(9):1119–24.

    PubMed  CAS  Google Scholar 

  55. Kern PA, Robbins RJ, Bichet D, Berl T, Verbalis JG. Syndrome of inappropriate antidiuresis in the absence of arginine vasopressin. J Clin Endocrinol Metab. 1986;62(1):148–52.

    PubMed  CAS  Google Scholar 

  56. Fraser JF, Stieg PE. Hyponatremia in the neurosurgical patient: epidemiology, pathophysiology, diagnosis, and management. Neurosurgery. 2006;59(2):222–9; discussion 222–9.

    PubMed  Google Scholar 

  57. Decaux G, Soupart A. Treatment of symptomatic hyponatremia. Am J Med Sci. 2003;326(1):25–30.

    PubMed  Google Scholar 

  58. Sterns RH, Riggs JE, Schochet Jr SS. Osmotic demyelination syndrome following correction of hyponatremia. N Engl J Med. 1986;314(24):1535–42.

    PubMed  CAS  Google Scholar 

  59. Ayus JC, Krothapalli RK, Arieff AI. Treatment of symptomatic hyponatremia and its relation to brain damage. A prospective study. N Engl J Med. 1987;317(19):1190–5.

    PubMed  CAS  Google Scholar 

  60. Zada G, Liu CY, Fishback D, Singer PA, Weiss MH. Recognition and management of delayed hyponatremia following transsphenoidal pituitary surgery. J Neurosurg. 2007;106(1):66–71.

    PubMed  CAS  Google Scholar 

  61. Decaux G. Treatment of the syndrome of inappropriate secretion of antidiuretic hormone by long loop diuretics. Nephron. 1983;35(2):82–8.

    PubMed  CAS  Google Scholar 

  62. Reeder RF, Harbaugh RE. Administration of intravenous urea and normal saline for the treatment of hyponatremia in neurosurgical patients. J Neurosurg. 1989;70(2):201–6.

    PubMed  CAS  Google Scholar 

  63. Ghali J, Koren MJ, Taylor JR, Brooks-Asplund E, Fan K, Long WA, Smith N. Efficacy and safety of oral conivaptan: a V1A/V2 vasopressin receptor antagonist, assessed in a randomized, placebo-controlled trial in patients with euvolemic or hypervolemic hyponatremia. J Clin Endocrinol Metabol. 2006;91(6):2145–52.

    CAS  Google Scholar 

  64. Schrier RW, Schrier RW, Gross P, Gheorghiade M, Berl T, Verbalis JG, Czerwiec FS, Orlandi C. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355(20):2099–112.

    PubMed  CAS  Google Scholar 

  65. Diringer M, Ladenson PW, Borel C, Hart GK, Kirsch JR, Hanley DF. Sodium and water regulation in a patient with cerebral salt wasting. Arch Neurol. 1989;46(8):928–30.

    PubMed  CAS  Google Scholar 

  66. Sivakumar V, Rajshekhar V, Chandy MJ. Management of neurosurgical patients with hyponatremia and natriuresis. Neurosurgery. 1994;34(2):269–74; discussion 274.

    PubMed  CAS  Google Scholar 

  67. Wijdicks EF, Vermeulen M, van Brummelen P, van Gijn J. The effect of fludrocortisone acetate on plasma volume and natriuresis in patients with aneurysmal subarachnoid hemorrhage. Clin Neurol Neurosurg. 1988;90(3):209–14.

    PubMed  CAS  Google Scholar 

  68. Hasan D, Lindsay KW, Wijdicks EF, et al. Effect of fludrocortisone acetate in patients with subarachnoid hemorrhage. Stroke. 1989;20(9):1156–61.

    PubMed  CAS  Google Scholar 

  69. Mori T, Katayama Y, Kawamata T, Hirayama T. Improved efficiency of hypervolemic therapy with inhibition of natriuresis by fludrocortisone in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 1999;91(6):947–52.

    PubMed  CAS  Google Scholar 

  70. Moro N, Katayama Y, Kojima J, Mori T, Kawamata T. Prophylactic management of excessive natriuresis with hydrocortisone for efficient hypervolemic therapy after subarachnoid hemorrhage. Stroke. 2003;34(12):2807–11.

    PubMed  CAS  Google Scholar 

  71. Katayama Y, Haraoka J, Hirabayashi H, et al. A randomized controlled trial of hydrocortisone against hyponatremia in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2007;38(8):2373–5.

    PubMed  CAS  Google Scholar 

  72. Adrogue HJ, Madias NE. Hypernatremia. N Engl J Med. 2000;342(20):1493–9.

    PubMed  CAS  Google Scholar 

  73. Darmon M, Timsit JF, Francais A, et al. Association between hypernatraemia acquired in the ICU and mortality: a cohort study. Nephrol Dial Transplant. 2010;25(8):2510–5.

    PubMed  CAS  Google Scholar 

  74. Lien YH, Shapiro JI, Chan L. Effects of hypernatremia on organic brain osmoles. J Clin Invest. 1990;85(5):1427–35.

    PubMed  CAS  Google Scholar 

  75. Gullans SR, Verbalis JG. Control of brain volume during hyperosmolar and hypoosmolar conditions. Annu Rev Med. 1993;44:289–301.

    PubMed  CAS  Google Scholar 

  76. Pollock AS, Arieff AI. Abnormalities of cell volume regulation and their functional consequences. Am J Physiol. 1980;239(3):F195–205.

    PubMed  CAS  Google Scholar 

  77. Mohmand HK, Issa D, Ahmad Z, Cappuccio JD, Kouides RW, Sterns RH. Hypertonic saline for hyponatremia: risk of inadvertent overcorrection. Clin J Am Soc Nephrol. 2007;2(6):1110–7.

    PubMed  Google Scholar 

  78. Tisdall M, Crocker M, Watkiss J, Smith M. Disturbances of sodium in critically ill adult neurologic patients: a clinical review. J Neurosurg Anesthesiol. 2006;18(1):57–63.

    PubMed  Google Scholar 

  79. Riggs JE. Neurologic manifestations of fluid and electrolyte disturbances. Neurol Clin. 1989;7(3):509–23.

    PubMed  CAS  Google Scholar 

  80. Abramovici MI, Singhal PC, Trachtman H. Hypernatremia and rhabdomyolysis. J Med. 1992;23(1):17–28.

    PubMed  CAS  Google Scholar 

  81. Gipstein RM, Boyle JD. Hypernatremia complicating prolonged mannitol diuresis. N Engl J Med. 1965;272:1116–7.

    PubMed  CAS  Google Scholar 

  82. Rosner MJ, Coley I. Cerebral perfusion pressure: a hemodynamic mechanism of mannitol and the postmannitol hemogram. Neurosurgery. 1987;21(2):147–56.

    PubMed  CAS  Google Scholar 

  83. Yoshida K, Corwin F, Marmarou A. Effect of THAM on brain oedema in experimental brain injury. Acta Neurochir Suppl (Wien). 1990;51:317–9.

    CAS  Google Scholar 

  84. Wolf AL, Levi L, Marmarou A, et al. Effect of THAM upon outcome in severe head injury: a randomized prospective clinical trial. J Neurosurg. 1993;78(1):54–9.

    PubMed  CAS  Google Scholar 

  85. Nemergut EC, Zuo Z, Jane Jr JA, Laws Jr ER. Predictors of diabetes insipidus after transsphenoidal surgery: a review of 881 patients. J Neurosurg. 2005;103(3):448–54.

    PubMed  Google Scholar 

  86. Wijdicks E. Acid–base disorders, hypertonic and hypotonic states. In: The clinical practice of critical care neurology. Philadelphia: Lippincott-Raven; 1997. p. 363–76.

    Google Scholar 

  87. Dumont AS, Nemergut 2nd EC, Jane Jr JA, Laws Jr ER. Postoperative care following pituitary surgery. J Intensive Care Med. 2005;20(3):127–40.

    PubMed  Google Scholar 

  88. Sands JM, Bichet DG. Nephrogenic diabetes insipidus. Ann Intern Med. 2006;144(3):186–94.

    PubMed  CAS  Google Scholar 

  89. Power BM, Van Heerden PV. The physiological changes associated with brain death – current concepts and implications for treatment of the brain dead organ donor. Anaesth Intensive Care. 1995;23(1):26–36.

    PubMed  CAS  Google Scholar 

  90. Wijdicks E, Atkinson J. Pathophysiologic responses to brain death. In: Wijdicks E, editor. Brain death. Philadelphia: Lippincot, Williams & Wilkins; 2001. p. 29–43.

    Google Scholar 

  91. Marino P. Hypertonic and hypotonic syndromes. In: Marino P, editor. The ICU book. Baltimore: Williams & Wilkins; 1998. p. 631–46.

    Google Scholar 

  92. Ayus J, Carmelo C. Sodium and potassium disorders. In: Shoemaker W, Ayres S, Grenvik A, Holbrook P, editors. Textbook of critical care. Philadelphia: WB Saunders; 2000. p. 853–61.

    Google Scholar 

  93. Oh M, Carroll H. Regulation of intracellular and extracellular volume. In: Arieff A, DeFronzo R, editors. Fluid and electrolyte, and acid–base disorders. 2nd ed. New York: Churchill Livingstone; 1995. p. 1–28.

    Google Scholar 

  94. Bagshaw SM, Townsend DR, McDermid RC. Disorders of sodium and water balance in hospitalized patients. Can J Anaesth. 2009;56(2):151–67.

    PubMed  Google Scholar 

  95. Fukuda I, Hizuka N, Takano K. Oral DDAVP is a good alternative therapy for patients with central diabetes insipidus: experience of five-year treatment. Endocr J. 2003;50(4):437–43.

    PubMed  CAS  Google Scholar 

  96. Miller M, Dalakos T, Moses AM, Fellerman H, Streeten DH. Recognition of partial defects in antidiuretic hormone secretion. Ann Intern Med. 1970;73(5):721–9.

    PubMed  CAS  Google Scholar 

  97. Stasior DS, Kikeri D, Duel B, Seifter JL. Nephrogenic diabetes insipidus responsive to indomethacin plus dDAVP. N Engl J Med. 1991;324(12):850–1.

    PubMed  CAS  Google Scholar 

  98. Lindsay RS, Seckl JR, Padfield PL. The triple-phase response – problems of water balance after pituitary surgery. Postgrad Med J. 1995;71(837):439–41.

    PubMed  CAS  Google Scholar 

  99. Vance ML. Perioperative management of patients undergoing pituitary surgery. Endocrinol Metab Clin North Am. 2003;32(2):355–65.

    PubMed  Google Scholar 

  100. Magaldi AJ. New insights into the paradoxical effect of thiazides in diabetes insipidus therapy. Nephrol Dial Transplant. 2000;15(12):1903–5.

    PubMed  CAS  Google Scholar 

  101. Brown RS. Extrarenal potassium homeostasis. Kidney Int. 1986;30:116.

    PubMed  CAS  Google Scholar 

  102. Williams ME. Endocrine crises. Hyperkalemia. Crit Care Clin. 1991;7:155–74.

    PubMed  CAS  Google Scholar 

  103. Ayus JC, Caramelo C. Sodium and potassium disorders. In: Shoemaker WC, Ayres SM, Grenvik A, Holbrook PR, editors. Textbook of critical care. 4th ed. Philadelphia: W. B. Saunders Company; 2000. p. 853–61.

    Google Scholar 

  104. Dutta D, Fischler M, McClung A. Angiotensin converting enzyme inhibitor induced hyperkalaemic paralysis. Postgrad Med J. 2001;77:114–5.

    PubMed  CAS  Google Scholar 

  105. Evers S, Engelien A, Karsch V, Hund M. Secondary hyperkalaemic paralysis. J Neurol Neurosurg Psychiatry. 1998;64:249–52.

    PubMed  CAS  Google Scholar 

  106. Freedman BI, Burkart JM. Endocrine crises. Hypokalemia. Crit Care Clin. 1991;7:143–53.

    PubMed  CAS  Google Scholar 

  107. Weiner ID, Wingo CS. Hypokalemia – consequences, causes, and correction. J Am Soc Nephrol. 1997;8:1179–88.

    PubMed  CAS  Google Scholar 

  108. Lucatello A, Sturani A, Di Nardo A, Fusaroli M. Acute renal failure in rhabdomyolysis associated with hypokalemia. Nephron. 1994;67:115–6.

    PubMed  CAS  Google Scholar 

  109. Nishihara G, Higashi H, Matsuo S, Yasunaga C, Sakemi T, Nakamoto M. Acute renal failure due to hypokalemic rhabdomyolysis in Gitelman’s syndrome. Clin Nephrol. 1998;50:330–2.

    PubMed  CAS  Google Scholar 

  110. Kruse JA, Carlson RW. Rapid correction of hypokalemia using concentrated intravenous potassium chloride infusions. Arch Intern Med. 1990;150:613–7.

    PubMed  CAS  Google Scholar 

  111. Elin RJ. Magnesium: the fifth but forgotten electrolyte. Am J Clin Pathol. 1994;102:616–22.

    PubMed  CAS  Google Scholar 

  112. Chang CJ, Chen SA, Tai CT, et al. Ventricular tachycardia in a patient with primary hyperparathyroidism. Pacing Clin Electrophysiol. 2000;23:534–7.

    PubMed  CAS  Google Scholar 

  113. Kleeman CR. Metabolic coma. Kidney Int. 1989;36:1142–58.

    PubMed  CAS  Google Scholar 

  114. Zaloga GP, Roberts PR. Calcium, magnesium, and phosphorus disorders. In: Shoemaker WC, Ayres SM, Grenvik A, Holbrook PR, editors. Textbook of critical care. 4th ed. Philadelphia: WB Saunders Company; 2000. p. 853–61.

    Google Scholar 

  115. Zaloga GP. Hypocalcemia in critically ill patients. Crit Care Med. 1992;20:251–62.

    PubMed  CAS  Google Scholar 

  116. Snowdon JA, Macfie AC, Pearce JB. Hypocalcaemic myopathy with paranoid psychosis. J Neurol Neurosurg Psychiatry. 1976;39:48–52.

    PubMed  CAS  Google Scholar 

  117. Newman JH, Neff TA, Ziporin P. Acute respiratory failure associated with hypophosphatemia. N Engl J Med. 1977;296:1101–3.

    PubMed  CAS  Google Scholar 

  118. Polderman KH, Bloemers FW, Peerdeman SM, Girbes AR. Hypomagnesemia and hypophosphatemia at admission in patients with severe head injury. Crit Care Med. 2000;28:2022–5.

    PubMed  CAS  Google Scholar 

  119. Rabinstein AA, Wijdicks EFM. Body water and electrolytes. In: Layon AJ, Gabrielli A, Friedman WA, editors. Textbook of neurointensive care. Philadelphia: WB Saunders; 2004.

    Google Scholar 

Download references

Acknowledgments

Dr. Alejandro A. Rabinstein and Dr. Eelco F. M. Wijdicks authored this chapter in the first edition of this work. We thank them for allowing us to incorporate material from that first edition chapter into this new second edition chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Rahman MD, MS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Rahman, M., Kohler, N., Bihorac, A. (2013). Water and Electrolyte Management in Neurological Disease. In: Layon, A., Gabrielli, A., Friedman, W. (eds) Textbook of Neurointensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-5226-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5226-2_18

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5225-5

  • Online ISBN: 978-1-4471-5226-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics