Skip to main content

Sodium Disorders

  • Chapter
  • First Online:
Metabolic Disorders and Critically Ill Patients
  • 1756 Accesses

Abstract

Dysnatremias are the most common electrolyte disorders, especially in critically ill and surgical patients. Brief notions of pathophysiology focused on the mechanisms and regulation of intracellular volume are needed to analyze dysnatremias. Such disorders may induce severe organ dysfunctions, especially cerebral dysfunction, and cause death. The practical diagnosis and therapeutic approach of hyponatremias and hypernatremias must follow safety rules of management to prevent iatrogenic complications. Because this book is dedicated to critically ill situations, we will focus essentially on acute and severe dysnatremias, especially for the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mount DB (2010) Hyponatremia. Semin Nephrol 29:1–317

    Google Scholar 

  2. Orban JC, Ichai C (2012) Hyponatrémies en réanimation. Encycl Med Chir (Anesthésie-Réanimation) 36-860-A-05:16

    Google Scholar 

  3. Danziger J, Zeidel ML (2014) Osmotic homeostasis. Clin J Am Soc Nephrol 10:852–862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Antunes-Rodrigues J, Ruginsk SG, Mecawi AS et al (2014) Neuroendocrinology of Hydromineral homeostasis. In: De Luca LA Jr, Menani JV, Johnson AK (eds) Neurobiology of body fluid homeostasis: transduction and integration. CRC, Boca Raton, FL. Chapter 3

    Google Scholar 

  5. Noda Y (2014) Dynamic regulation and dysregulation of the water channel aquaporin-2: a common cause of and promising therapeutic target for water balance disorders. Clin Exp Nephrol 18:558–570

    Article  CAS  PubMed  Google Scholar 

  6. Ferguson AV (2014) Circumventricular organs: integrators of circulating signals controlling hydration, energy balance, and immune function. In: De Luca LA Jr, Menani JV, Johnson AK (eds) Neurobiology of body fluid homeostasis: transduction and integration. CRC, Boca Raton, FL. Chapter 2

    Google Scholar 

  7. Harring TR, Deal NS, Kuo DC (2014) Disorders of sodium and water balance. Emerg Med Clin North Am 32:379–401

    Article  PubMed  Google Scholar 

  8. Petitclerc T (2013) Disorders in sodium-water balance. Nephrol Ther 9:38–49

    Article  PubMed  Google Scholar 

  9. Spasovski G, Vanholder R, Allolio R et al (2014) Hyponatraemia guideline development group. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Intensive Care Med 40:320–331

    Article  PubMed  Google Scholar 

  10. Adrogue HJ, Madias NE (2014) Diagnosis and treatment of hyponatremia. Am J Kidney Dis 64:681–684

    Article  PubMed  Google Scholar 

  11. Knepper MA, Tae-Hwan K, Nielsen S (2015) Molecular physiology of water balance. N Engl J Med 372:1349–1358

    Article  CAS  PubMed  Google Scholar 

  12. Prager-Khoutorsky M, Bourque CW (2015) Mechanical basis of osmosensory transduction in magnocellular neurosecretory neurons of the rat supraoptic nucleus. J Neuroendocrinol 27:507–515

    Article  CAS  PubMed  Google Scholar 

  13. Sterns RH (2015) Disorders of plasma sodium: causes, consequences and correction. N Engl J Med 372:55–65

    Article  PubMed  CAS  Google Scholar 

  14. Ciura S, Liedtke W, Bourque CW (2011) Hypertonicity sensing in organum vasculosum lamina terminalis neurons: a mechanical process involving TRPV1 but not TRPV4. J Neurosci 31:14669–14676

    Article  CAS  PubMed  Google Scholar 

  15. Bourque CW (2008) Central mechanisms of osmosensation and systemic osmoregulation. Neuroscience 9:519–531

    CAS  PubMed  Google Scholar 

  16. Daniels D (2014) Diverse role of angiotensin receptor intracellular pathways in the control of water and salt intake. In: De Luca LA Jr, Menani JV, Johnson AK (eds) Neurobiology of body fluid homeostasis: transduction and integration. CRC, Boca Raton, FL. Chapter 5

    Google Scholar 

  17. Robertson GL, Athat S (1976) The interaction of blood osmolality and blood volume in regulating plasma vasopressin in man. J Clin Endocrinol Metab 42:613–620

    Article  CAS  PubMed  Google Scholar 

  18. Juul KV, Bichet DG, Nielsen S, NØrgaard JP (2014) The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors. Am J Physiol Renal Physiol 306:F931–F941

    Article  CAS  PubMed  Google Scholar 

  19. Huber VJ, Tsujita M, Nakada T (2012) Aquaporins in drug discovery and pharmacotherapy. Mol Asp Med 33:691–703

    Article  CAS  Google Scholar 

  20. Kortenoeven ML, Frenton RA (2014) Renal aquaporins and water balance disorders. Biochim Biophys Acta 1840:1533–1549

    Article  CAS  PubMed  Google Scholar 

  21. Wilson JL, Miranda CA, Knepper NA (2013) Vasopressin and the regulation of aquaporin-2. Clin Exp Nephrol 17:751–764

    Article  CAS  PubMed  Google Scholar 

  22. Holmes RP (2012) The role of renal water channels in health and disease. Mol Asp Med 33:547–552

    Article  CAS  Google Scholar 

  23. Verbalis JG, Goldsmith SR, Greenberg A et al (2013) Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am J Med 126:S1–42

    Article  PubMed  Google Scholar 

  24. Bhardwaj A (2006) Neurological impact of vasopressin dysregulation and hyponatremia. Ann Neurol 59:229–236

    Article  CAS  PubMed  Google Scholar 

  25. Ayus JC, Achinger SG, Arieff A (2008) Brain cell volume regulation: role of sex, age, vasopressin and hypoxia. Am J Physiol Renal Physiol 295:F619–F624

    Article  CAS  PubMed  Google Scholar 

  26. Pasantes-Morales H, Lezama RA, Ramos-Mandujano G et al (2006) Mechanisms of cell volume regulation in hypo-osmolality. Am J Med 119:S4–11

    Article  CAS  PubMed  Google Scholar 

  27. Sterns R, Silver SM (2006) Brain volume regulation in response to hypo-osmolality and its correction. Am J Med 119(Suppl 7A):S12–S16

    Article  CAS  PubMed  Google Scholar 

  28. Sardini A, Amey JS, Weyland KH et al (2003) Cell volume regulation and swelling-activated channels. Biochem Biophys Acta 1618:153–162

    Article  CAS  PubMed  Google Scholar 

  29. De Mello W (2014) Regulation of cell volume and water transport – an old fundamental role of the renin-angiotensin aldosterone system components ate the cellular level. Peptides 58:74–77

    Article  PubMed  CAS  Google Scholar 

  30. Sterns RH, Hix JK, Silver SM (2013) Management of hyponatremia in the ICU. Chest 144:672–679

    Article  PubMed  Google Scholar 

  31. Verkman AS, Galietta LJV (2009) Chloride channels as drugs targets. Nature 8:153–171

    CAS  Google Scholar 

  32. Kahle KT, Staley KJ, Naheb BV et al (2008) Roles of the cation-chloride cotransporters in neurological disease. Nature Clin Parct 4:490–503

    Article  CAS  Google Scholar 

  33. Badaut J, Fukuda AM, Jullienne A, Petry KG (2014) Aquaporin and brain diseases. Biochim Biophys Acta 1840:1554–1565

    Article  CAS  PubMed  Google Scholar 

  34. Zeynalov E, Chen CH, Froehener SC et al (2008) The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med 36:2634–2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Manley GT, Fukimura M, Ma T et al (2000) Aquaporin-4 depletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159–163

    Article  CAS  PubMed  Google Scholar 

  36. Papadopoulos MC, Manley GT, Krishna S, Verkman AS (2004) Aquaporin-4 facilitates reabsoprtion of excess fluid in vasogenic brain edema. FASEB 18:1291–1293

    CAS  Google Scholar 

  37. Wenner MM, Stachenfeld NS (2012) Blood pressure and water regulation: understanding sex hormone effects within and between men and women. J Physiol 590:5949–5961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sladek CD, Somponpun SJ (2008) Estrogen receptors: their roles in regulation of vasopressin release for maintenance of fluid and electrolyte homeostasis. Front Neuroendocrinol 29:114–127

    Article  CAS  PubMed  Google Scholar 

  39. Hoorn EJ, Lindemans J, Zietse R (2006) Development of severe hyponatraemia in hospitalized patients: treatment-related risk factors and inadequate management. Nephrol Dial Transplant 21:70–76

    Article  PubMed  Google Scholar 

  40. Thompson CJ (2010) Hyponatraemia: new associations and new treatments. Eur J Endocrinol 162:S1–S3

    Article  CAS  PubMed  Google Scholar 

  41. Corona G, Giuliani C, Parenti G et al (2013) Moderate hyponatremia is associated with increased risk of mortality: evidence from a meta-analysis. PLoS One 8:e80451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Sherlock M, Sullivan EO, Agha A et al (2009) Incidence and pathophysiology of severe hyponatraemia in neurosurgical patients. Postgrad Med J 85:171–175

    Article  CAS  PubMed  Google Scholar 

  43. Chawla A, Sterns RH, Nigwekar SU, Cappuccio JD (2011) Mortality and serum sodium: do patients die from or with hyponatremia? Clin J Am Soc Nephrol 6:960–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huda MS, Boyd A, Skagen K et al (2009) Investigation and management of severe hyponatraemia in a hospital setting. Postgrad Med J 82:216–219

    Article  Google Scholar 

  45. Darmon M, Pichon M, Schwebel C et al (2014) Influence of early Dysnatraemia correction on survival of critically ill patients. Shock 41:394–399

    Article  PubMed  Google Scholar 

  46. Stelfox HT, Ahmed SB, Khandwala F et al (2008) The epidemiology of intensive care unit-acquired hyponatremia and hypernatremia in medical-surgical intensive care units. Crit Care 12:R162

    Article  PubMed  PubMed Central  Google Scholar 

  47. Funk GC, Lindner G, Drumml W et al (2010) Incidence and prognosis of dysnatraemias present on ICU admission. Intensive Care Med 36:304–311

    Article  PubMed  Google Scholar 

  48. Sakr Y, Rother S, Mendoca Pires Ferreira A et al (2013) Fluctuations in serum sodium level are associated with an increased risk of death in surgical ICU patients. Crit Care Med 41:133–142

    Article  CAS  PubMed  Google Scholar 

  49. Palmer BF (2009) Hyponatremia in the intensive care unit. Semin Nephrol 29:257–270

    Article  CAS  PubMed  Google Scholar 

  50. Padhi R, Panda BN, Jagati S, Patra SC (2014) Hyponatremia in critically ill patients. Ind J Crit Care Med 18:83–87

    Article  Google Scholar 

  51. Sterns RH, Silver SM (2016) Complications and management of hyponatremia. Curr Opin Nephrol Hypertens 25:114–119

    Article  PubMed  Google Scholar 

  52. Thompson C, Berl T, Tejedor A, Johannsson G (2012) Differential diagnosis of hyponatraemia. Best Pract Res Clin Endocr Metab 26(suppl1):S1–S6

    Article  Google Scholar 

  53. Turchin A, Seifter JL, Seely EW (2003) Clinical problem-solving. Mind the gap. N Engl J Med 349:1465–1469

    Article  CAS  PubMed  Google Scholar 

  54. Hillier TA, Abbott RD, Barrett EJ (1999) Hyponatremia: evaluating the correction factor for hyperglycemia. Am J Med 106:399–403

    Article  CAS  PubMed  Google Scholar 

  55. Sterns RH, Hix JK, Silver S (2010) Treating profound hyponatremia: a strategy for controlled correction. Am J Kidney Dis 56:774–779

    Article  CAS  PubMed  Google Scholar 

  56. Schrier RW, Bansal S (2008) Diagnosis and management of hyponatremia in acute illness. Curr Opin Crit Care 14:627–634

    Article  PubMed  PubMed Central  Google Scholar 

  57. Arieff AI (2006) Influence of hypoxia and sex on hyponatremic encephalopathy. Am J Med 119(Suppl 7A):S59–S64

    Article  CAS  PubMed  Google Scholar 

  58. Adrogué HJ, Madias NE (2012) The challenge of hyponatremia. J Am Soc Nephrol 23:1140–1148

    Article  PubMed  Google Scholar 

  59. Thompson C, Hoorn EL (2012) Hyponatraemia: an overview of frequency, clinical presentation and complications. Best Pract Res Clin Endocr Metab 26(suppl1):S7–15

    Article  Google Scholar 

  60. Lee JJ, Kilonzo K, Nistico A, Yeates K (2014) Management of hyponatremia. CMAJ 186:E281–E286

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ayus JC, Negri AL, Kalantar-Zadeh K, Moritz ML (2012) Is chronic hyponatremia a novel risk factor for hip fracture in the elderly? Nephrol Dial Transplant 27:3725–3731

    Article  PubMed  Google Scholar 

  62. Zaino CJ, Maheshwari AV, Goldfarb DS (2013) Impact of mild hyponatremia on falls, fractures, osteoporosis, and death. Am J Orthop 42:522–527

    PubMed  Google Scholar 

  63. Kinsella S, Moran S, Sullivan MO et al (2010) Hyponatremia independent of osteoporosis is associated with fracture occurrence. Clin J Am Soc Nephrol 5:275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hoorn EJ, Rivadeneira F, van Meurs JB et al (2011) Mild hyponatremia as a risk factor for fractures: the Rotterdam study. J Bone Miner Res 26:1822–1828

    Article  CAS  PubMed  Google Scholar 

  65. Verbalis JG, Barsony J, Sugimura Y et al (2010) Hyponatremia-induced osteoporosis. J Bone Miner Res 25:554–563

    Article  CAS  PubMed  Google Scholar 

  66. Hannon MJ, Verbalis JG (2014) Sodium homeostasis and bone. Curr Opin Nephrol Hypertens 23:370–376

    Article  CAS  PubMed  Google Scholar 

  67. Chung HM, Kluge R, Schrier RW, Anderson RJ (1987) Clinical assessment of extracellular fluid volume in hyponatremia. Am J Med 83:905–908

    Article  CAS  PubMed  Google Scholar 

  68. Fenske W, Maier SK, Blechschmidt A et al (2010) Utility and limitations of the traditional diagnostic approach to hyponatremia: a diagnostic study. Am J Med 123:652–657

    Article  PubMed  Google Scholar 

  69. Fenkse W, Störk S, Koschker AC et al (2008) Value of fractional uric acid excretion in differential diagnosis of hyponatremic patients on diuretics. J Clin Endocrinol Metab 93:2991–2997

    Article  CAS  Google Scholar 

  70. Hsu CY, Chen CL, Huang WC et al (2014) Retrospective evaluation of standard diagnostic procedures in identification of the causes of new-onset syndrome of inappropriate antidiuresis. Int J Med Sci 11:192–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Musch W, Decaux G (2001) Utility and limitations of biochemical parameters in the evaluation of hyponatremia in elderly. Int Urology Nephrol 32:475–493

    Article  CAS  Google Scholar 

  72. Decaux G (2009) The syndrome of inappropriate secretion of antidiuretic hormone (SIADH). Semin Nephrol 29:239–256

    Article  CAS  PubMed  Google Scholar 

  73. Fenkse W, Störk S, Bleschschmidt A, Maier SG, Morgenthaler NG, Allolio B (2009) Copeptin in the differential diagnosis of hyponatremia. J Clin Endocrinol Metab 94:123–129

    Article  CAS  Google Scholar 

  74. Peri A, Giuliani C (2014) Management of euvolemic hyponatremia attributed to SIADH in the hospital setting. Minerva Endocrinol 39:33–41

    CAS  PubMed  Google Scholar 

  75. Ramos-Levi AM, Duran Rodriguez-Hervada A, Mendez-Bailon M, Marco-Martinez J (2014) Drug-induced hyponatremia: an update review. Minerva Endocrinol 39:1–12

    CAS  PubMed  Google Scholar 

  76. Hix JK, Silver S, Sterns RH (2011) Diuretic-associated hyponatremia. Semin Nephrol 31:553–566

    Article  CAS  PubMed  Google Scholar 

  77. Rodenburg EM, Hoorn EJ, Ruiter R et al (2013) Thiazide-associated hyponatremia: a population-based study. Am J Kidney Dis 62:67–72

    Article  CAS  PubMed  Google Scholar 

  78. Bennani SL, Abouqal R, Zeggwagh AA et al (2003) Incidence, étiologies et facteurs pronostiques de l'hyponatrémie en réanimation. Rev Med Interne 24:224–229

    Article  PubMed  Google Scholar 

  79. Ichai C, Lena D (2008) Hyponatremia in the setting of acute heart failure syndrome. In: Mebazaa A, Gheorghiade M, Zannad FM, Parrillo JE (eds) Acute heart failure. Springer, London, pp 786–796

    Chapter  Google Scholar 

  80. Angeli P, Wong F, Watson H, Ginès, Investigators CAPPS (2006) Hyponatremia in cirrhosis: results of a patient population survey. Hepatology 44:1535–1542

    Article  CAS  PubMed  Google Scholar 

  81. Gianotti RJ, Cardenas A (2014) Hyponatremia and cirrhosis. Gastroenterol Rep (Oxf) 2:21–26

    Article  Google Scholar 

  82. Combs S, Berl T (2014) Dysnatremias in patients with kidney disease. Am J Kidney Dis 63:294–303

    Article  CAS  PubMed  Google Scholar 

  83. Rahman M, Friedman WA (2009) Hyponatremia in neurosurgical patients: clinical guidelines development. Neurosurgery 65:925–935

    Article  PubMed  Google Scholar 

  84. Kirkman MA (2014) Managing hyponatremia in neurosurgical patients. Minerva Endocrinol 39:13–26

    CAS  PubMed  Google Scholar 

  85. Verbalis JG (2014) Hyponatremia with intracranial disease: not often cerebral salt wasting. J Clin Endocrinol Metab 99:59–62

    Article  CAS  PubMed  Google Scholar 

  86. Maesaka JK, Imbriano LJ, Ali NM, Ilamathi E (2009) Is it cerebral or renal salt wasting? Kidney Int 76:934–938

    Article  PubMed  Google Scholar 

  87. Hannon MJ, Thompson J (2010) The syndrome of inappropriate antidiuretic hormone: prevalence, causes and consequences. J Endocrinol Metab 162:S5–12

    CAS  Google Scholar 

  88. Grant P, Ayuk J, Bouloux PM et al (2015) The diagnosis and management of inpatient hyponatremia and SIADH. Eur J Clin Investig 45:888–894

    Article  Google Scholar 

  89. Liamis G, Milionis H, Elisaf A (2008) A review of drug-induced hyponatremia. Am J Kideny Dis 52:144–153

    Article  CAS  Google Scholar 

  90. van Blijderveen JC, Straus SM, Rodenburg EM et al (2014) Risk of hyponatremia with diuretics: chlortalidone versus hydrochlorothiazide. Am J Med 127:763–771

    Article  PubMed  CAS  Google Scholar 

  91. Leung AA, Wright A, Pazo V et al (2011) Risk of thiazide-induced hyponatremia in patients with hypertension. Am J Med 124:1064–1072

    Article  CAS  PubMed  Google Scholar 

  92. Schrier R (2008) Vasopressin and aquaporin 2 in clinical disorders of water homeostasis. Semin Nephrol 28:289–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Armed Forces Health Surveillance Center (AFHSC) (2014) Update: Exertional hyponatremia, active component, U. S. armed forces, 1999-2014. MSMR 21:18–21

    Google Scholar 

  94. Hew-Butler T, Rosner MH, Fowkes-Godek S et al (2015) Statement of the 3rd international exercise-associated Hyponatremia consensus development conference, Carlsbad, California. Br J Sports Med 49:1432–1446

    Article  PubMed  Google Scholar 

  95. Urso C, Brucculeri S, Caimi G (2014) Physiopathological, epidemiological, clinical and therapeutic aspects of exercise-associated Hyponatremia. J Clin Med 3:1258–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Severac M, Orban JC, Leplatois T, Ichai C (2013) A near -fatal case of exercise-associated hyponatremia. Am J Emerg Med 813:e1–e2

    Google Scholar 

  97. Chung HM, Kluge R, Schrier RW, Anderson RJ (1986) Postoperative hyponatremia. A prospective study. Arch Intern Med 146:333–336

    Article  CAS  PubMed  Google Scholar 

  98. Gardner LB, Preston RA (2000) University of Miami Division of clinical pharmacology therapeutic rounds: the water-intolerant patient and perioperative hyponatremia. Am J Ther 7:23–30

    Article  CAS  PubMed  Google Scholar 

  99. Harris B, Schopflin C, Khaghani C et al (2015) Perioperative intravenous fluid prescribing: a multi-centre audit. Crit Care 4:15

    Google Scholar 

  100. Hannon MJ, Finucane FM, Sherlock M et al (2012) Clinical review: disorders of water homeostasis in neurosurgical patients. J Clin Endocrinol Metab 97:1423–1433

    Article  CAS  PubMed  Google Scholar 

  101. Hannon MJ, Thompson CJ (2014) Neurosurgical hyponatremia. J Clin Med 14:1084–1104

    Article  CAS  Google Scholar 

  102. Kleindienst A, Hannon MJ, Buchfelder M, Verbalis JG (2015) Hyponatremia in neurotrauma: the role of vasopressin. J Neurotrauma 33(7):615–624

    Article  PubMed  Google Scholar 

  103. Gritti P, Lanterna LA, Rotasperti L et al (2014) Clinical evaluation of hyponatremia and hypovolemia in critically ill adult neurologic patients: contribution of the use of cumulative balance of sodium. J Anesth 28:687–695

    Article  PubMed  Google Scholar 

  104. Hahn RG (2006) Fluid absorption in endoscopic surgery. Br J Anaesth 96:8–20

    Article  CAS  PubMed  Google Scholar 

  105. Cooper JM, Brady RM (2000) Intraoperative and early postoperative complications of operative hysteroscopy. Obstet Gynecol Clin N Am 27:347–366

    Article  CAS  Google Scholar 

  106. Ichai C, Ciais JF, Roussel LJ et al (1996) Intravascular absorption of glycine irrigating solution during shoulder arthroscopy: a case report and follow-up study. Anesthesiology 85:1481–1485

    Article  CAS  PubMed  Google Scholar 

  107. Decaux G, Andres C, Gankam KF, Kengne F, Soupart A (2010) Treatment of euvolemic hyponatremia in the intensive care unit by urea. Crit Care 14:R184

    Article  PubMed  PubMed Central  Google Scholar 

  108. Tamman AE, Ahmed HH, Abdella AH, Taha SA (2015) Comparative study between monopolar electrodes and bipolar electrodes in hysteroscopic surgery. J Clin Diagn Res 9:QC11–QC13

    Google Scholar 

  109. Berl T (2015) Vasopressin antagonists. N Engl J Med 372:2207–2216

    Article  CAS  PubMed  Google Scholar 

  110. Runkle I, Navarro A, Pose A et al (2013) El tratamiento de la hiponatremia secundaria al sındrome de secrecion inadecuada de la hormona antidiuretica. Med Clin (Barc) 141:507.e1–507e10

    Article  Google Scholar 

  111. Moritz ML, Ayus JC (2010) 100 cc 3% sodium chloride bolus: a novel treatment for hyponatremic encephalopathy. Metab Brain Dis 25:91–96

    Article  PubMed  Google Scholar 

  112. Rosner MH (2015) Preventing deaths due to exercise-associated hyponatremia. Clin J Sport Med 25:301–302

    Article  PubMed  Google Scholar 

  113. Mohmand HK, Issa D, Ahmad Z, Cappuccio JD, Kouides RW, Sterns RH (2007) Hypertonic saline for hyponatremia: risk of inadvertent overcorrection. J Am Soc Nephrol 2:1110–1117

    Article  Google Scholar 

  114. MacMillan TE, Tang T, Cavalcanti RB (2015) Desmopressin to prevent rapid sodium correction in severe hyponatremia: a systematic review. Am J Med 12:1362.e15–1362.e24

    Article  CAS  Google Scholar 

  115. Gharaibeh KA, Cgraig MJ, Koch CA et al (2013) Desmopressin is an effective adjunct treatment for reversing excessive hyponatremia overcorrection. World J Clin Cases 16:155–158

    Article  Google Scholar 

  116. Rafat C, Schortgen F, Gaudry S et al (2014) Use of desmopressin acetate in severe hyponatremia in the intensive care unit. Clin J Am Soc Nephrol 9:229–237

    Article  CAS  PubMed  Google Scholar 

  117. Sood L, Sterns RH, Hix JK, Silver SM, Chen L (2013) Hypertonic saline and desmopressin: a simple strategy for safe correction of severe hyponatremia. Am J Kidney Dis 61:571–578

    Article  CAS  PubMed  Google Scholar 

  118. Singh TD, Fugate JE, Rabinstein AA (2014) Central pontine and extrapontine myelinolysis: a systematic review. Eur J Neurol 21:1443–1450

    Article  CAS  PubMed  Google Scholar 

  119. Norenberg MD (2010) Central pontine myelinolysis: historical and mechanistic considerations. Metab Brain Dis 25:97–106

    Article  PubMed  Google Scholar 

  120. Murase T, Sugimura Y, Takefuji S, Oiso Y, Murata Y (2006) Mechanisms and therapy of osmotic demyelination. Am J Med 119(suppl7A):S69–S73

    Article  CAS  PubMed  Google Scholar 

  121. Gankam-Kengne F, Couturier BS, Soupart A, Decaux G (2015) Urea minimizes brain complications following rapid correction of chronic hyponatremia compared with vasopressin antagonists or hypertonic saline. Kidney Int 87:323–331

    Article  CAS  PubMed  Google Scholar 

  122. Takagi H, Sugimura Y, Suzuki H et al (2014) Minocycline prevents osmotic demyelination associated with aquaresis. Kidney Int 86:954–964

    Article  CAS  PubMed  Google Scholar 

  123. Silver SM, Schroeder BM, Sterns RH, Rojiani AM (2006) Myoinositol administration improves survival and reduces myelinolysis after rapid correction of chronic hyponatremia in rats. Exp Neurol 65:37–44

    CAS  Google Scholar 

  124. Moritz ML, Ayus JC (2014) Management of hyponatremia in various clinical situations. Curr Treat Options Neurol 16:310

    Article  PubMed  Google Scholar 

  125. Soupart A, Coffernils M, Couturier B et al (2012) Efficacy and tolerance of urea compared with vaptans for long-term treatment of patients with SIADH. Clin J Am Soc Nephrol 7:742–747

    Article  CAS  PubMed  Google Scholar 

  126. Coussement J, Danguy C, Zouaoui-Boudjeltia K et al (2012) Treatment of the syndrome of inappropriate secretion of antidiuretic hormone with urea in critically ill patients. Am J Nephrol 35:265–270

    Article  CAS  PubMed  Google Scholar 

  127. Palmer BF (2013) The role of V2 receptor antagonists in the treatment of hyponatremia. Electrolyte Blood Press 11:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nagler EV, Vanmassenhove J, van der Veer SN et al (2014) Diagnosis and treatment of hyponatremia: a systematic review of clinical practice guidelines and consensus statements. BMC Med 12:231

    Article  CAS  Google Scholar 

  129. Verbalis JG, Grossman A, Höybye C, Runkle I (2014) Review and analysis of differing regulatory indications and expert panel guidelines for the treatment of hyponatremia. Curr Med Res Opin 30:1201–1207

    Article  PubMed  Google Scholar 

  130. Verbalis JG, Adler S, Schrier RW, Berl T, Zhao Q, Czerwiec FS, For the SALT Investigators (2011) Efficacy and safety of oral tolvaptan therapy in patients with the syndrome of inappropriate antidiuretic hormone secretion. Eur J Endocrinol 164:725–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Udelson JE, Bilsker M, Hauptman PJ et al (2011) A multicenter, randomized, double-blind, placebo-controlled study of tolvaptan monotherapy compared to furosemide and the combination of tolvaptan and furosemide in patients with heart failure and systolic dysfunction. J Card Fail 17:973–981

    Article  CAS  PubMed  Google Scholar 

  132. Hauptman PJ, Burnett JC Jr, Gheorghiade M et al (2013) Clinical course of patients with hyponatremia and decompensated systolic heart failure and the effect of vasopressin receptor antagonism with tolvaptan. J Card Fail 19:390–397

    Article  CAS  PubMed  Google Scholar 

  133. Rozen-Zvi B, Yahav D, Gheorghiade M, Korzets A, Leibovici L, Gafter U (2010) Vasopressin receptor antagonists for the treatment of hyponatremia: systematic review and meta-analysis. Am J Kidney Dis 56:325–337

    Article  CAS  PubMed  Google Scholar 

  134. Jaber BL, Almarzouqi L, Borgi L, Seabra VF, Balk EM, Madias NE (2010) Short-term efficacy and safety of vasopressin receptor antagonists for treatment of hyponatremia. Am J Med 124:977.e1–977.e9

    Article  CAS  Google Scholar 

  135. Greenberg A, Verbalis J, Amin A et al (2015) Hyponatremia: current treatment practice and outcomes report of the hyponatremia registry: an observational multicenter international study. Kidney Int 88:167–177

    Article  PubMed  PubMed Central  Google Scholar 

  136. Food and Drug Administration. FDA Safety Communications (2013) FDA limits duration and usage of Samsca (tolvaptan) due to possible liver injury leading to organ transplant or death. http://www.fda.gov/Drugs/DrugSafety/ucm350062.htm

  137. Di Benedetto G, See M (2012) Direct Health-care Professional Communication on the risk of increases in serum sodium with tolvaptan (Samsca) which are too rapid. http://www.mhra.gov.uk/home/groups/comms-ic/documents/websiteresources/con146921.pdf. Accessed 26 March 2011

  138. Malhotra I, Gopinath S, Janca KC et al (2014) Unpredictable nature of tolvaptan in treatment of hypervolemic hyponatremia: case review on role of vaptans. Case Rep Endocrinol 2014:807054

    PubMed  PubMed Central  Google Scholar 

  139. Lehrich RW, Ortiz-Melo DI, Patel MB, Greenberg A (2013) Role of vaptans in the management of hyponatremia. Am J Kidney Dis 62:364–372

    Article  CAS  PubMed  Google Scholar 

  140. Gross P (2014) Panel recommendations on hyponatremia. Am J Med 127:e29

    Article  PubMed  Google Scholar 

  141. Adrogue HJ, Madias NE (2000) Hypernatremia. N Engl J Med 342:1493–1499

    Article  CAS  PubMed  Google Scholar 

  142. Garofeanu CG, Weir M, Rosas-Arellano MP et al (2005) Causes of reversible nephrogenic diabetes insipidus: a systematic review. Am J Kidney Dis 45:626–637

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole Ichai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Ichai, C., Orban, JC. (2018). Sodium Disorders. In: Ichai, C., Quintard, H., Orban, JC. (eds) Metabolic Disorders and Critically Ill Patients. Springer, Cham. https://doi.org/10.1007/978-3-319-64010-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64010-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64008-2

  • Online ISBN: 978-3-319-64010-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics