Skip to main content

Radiofrequency and Irrigated Ablation: Principles and Potential for Renal Artery Denervation (RDN) in the Treatment of Resistant Arterial Hypertension

  • Chapter
  • First Online:
Renal Denervation

Abstract

Renal artery denervation (RDN) represents a relatively new technique for treating patients whose arterial hypertension persists despite three or more antihypertensive medications [1]. The main principle underlying RDN dates back 50 years or more and gave rise to surgical sympathectomy procedures [2]. Radiofrequency (RF) catheter ablation is a therapeutic procedure that delivers a controlled source of energy in order to create a lesion at the site of the target tissue. Lesion formation is restricted to a limited volume of tissue close to the ablation electrode. Since this technique was first introduced, it has become one of the most useful and widely accepted therapies in the field of cardiac electrophysiology, later followed by application in renal denervation procedures. Modifications in RF delivery and improvements in electrode design have resulted in a significant expansion of its indication such as chronic kidney disease (CKD), arrhythmias, obstructive sleep apnoea and glucose control [3, 4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Calhoun DA, Jones D, Textor S, et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51:1403–19.

    Article  CAS  PubMed  Google Scholar 

  2. Chris SM. Sympathectomy for hypertension. Br Med J. 1951;1:665–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Linz D, Hohl M, Nickel A, et al. Effect of renal denervation on neurohumoral activation triggering atrial fibrillation in obstructive sleep apnea. Hypertension. 2013;62:767–74.

    Article  CAS  PubMed  Google Scholar 

  4. Ammar S, Ladich E, Steigerwald K, Deisenhofer I, Joner M. Pathophysiology of renal denervation procedures: from renal nerve anatomy to procedural parameters. EuroIntervention. 2013;9:R89–95.

    Article  PubMed  Google Scholar 

  5. Kaltenbach B, Id D, Franke JC, et al. Renal artery stenosis after renal sympathetic denervation. J Am Coll Cardiol. 2012;60:2694–5.

    Article  PubMed  Google Scholar 

  6. Lustgarten DL, Spector PS. Ablation using irrigated radiofrequency: a hands-on guide. Heart Rhythm. 2008;5:899–902.

    Article  PubMed  Google Scholar 

  7. Haines DE. The biophysics of radiofrequency catheter ablation in the heart: the importance of temperature monitoring. Pacing Clin Electrophysiol. 1993;16:586–91.

    Article  CAS  PubMed  Google Scholar 

  8. Erez A, Shitzer A. Controlled destruction and temperature distributions in biological tissues subjected to monoactive electrocoagulation. J Biomech Eng. 1980;102:42–9.

    Article  CAS  PubMed  Google Scholar 

  9. Ko WC, Huang SK, Lin JL, Shau WY, Lai LP, Chen PH. New method for predicting efficiency of heating by measuring bioimpedance during radiofrequency catheter ablation in humans. J Cardiovasc Electrophysiol. 2001;12:819–23.

    Article  CAS  PubMed  Google Scholar 

  10. Avitall B, Mughal K, Hare J, Helms R, Krum D. The effects of electrode-tissue contact on radiofrequency lesion generation. Pacing Clin Electrophysiol. 1997;20:2899–910.

    Article  CAS  PubMed  Google Scholar 

  11. Otomo K, Yamanashi WS, Tondo C, et al. Why a large tip electrode makes a deeper radiofrequency lesion: effects of increase in electrode cooling and electrode-tissue interface area. J Cardiovasc Electrophysiol. 1998;9:47–54.

    Article  CAS  PubMed  Google Scholar 

  12. Nakagawa H, Yamanashi WS, Pitha JV, et al. Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation. Circulation. 1995;91:2264–73.

    Article  CAS  PubMed  Google Scholar 

  13. Krum H, Schlaich MP, Bohm M, et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet. 2014;383:622–9.

    Article  PubMed  Google Scholar 

  14. Worthley SG, Tsioufis CP, Worthley MI, et al. Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial. Eur Heart J. 2013;34:2132–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (the Symplicity HTN-2 trial): a randomised controlled trial. Lancet. 2010;376:1903–9.

    Article  PubMed  Google Scholar 

  16. Kandzari DE, Bhatt DL, Sobotka PA, et al. Catheter-based renal denervation for resistant hypertension: rationale and design of the SYMPLICITY HTN-3 trial. Clin Cardiol. 2012;35:528–35.

    Article  PubMed  Google Scholar 

  17. Bhatt DL, Kandzari DE, O’Neill WW, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014. doi:10.1056/NEJMoa1402670.

    Google Scholar 

  18. Templin C, Jaguszewski M, Ghadri JR, et al. Vascular lesions induced by renal nerve ablation as assessed by optical coherence tomography: pre- and post-procedural comparison with the simplicity(R) catheter system and the EnligHTN multi-electrode renal denervation catheter. Eur Heart J. 2013;34:2141–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Nakagawa H, Wittkampf FH, Yamanashi WS, et al. Inverse relationship between electrode size and lesion size during radiofrequency ablation with active electrode cooling. Circulation. 1998;98:458–65.

    Article  CAS  PubMed  Google Scholar 

  20. d’Avila A, Houghtaling C, Gutierrez P, et al. Catheter ablation of ventricular epicardial tissue: a comparison of standard and cooled-tip radiofrequency energy. Circulation. 2004;109:2363–9.

    Article  PubMed  Google Scholar 

  21. Sakakura K, Ladich E, Edelman ER, et al. Methodological standardization for the preclinical evaluation of renal sympathetic denervation. JACC Cardiovasc Interv. 2014. doi:10.1016/j.jcin.2014.04.024.

  22. Whitney KM, Schwartz Sterman AJ, O’Connor J, Foley GL, Garman RH. Light microscopic sciatic nerve changes in control beagle dogs from toxicity studies. Toxicol Pathol. 2011;39:835–40.

    Article  PubMed  Google Scholar 

  23. Burgi K, Cavalleri MT, Alves AS, Britto LR, Antunes VR, Michelini LC. Tyrosine hydroxylase immunoreactivity as indicator of sympathetic activity: simultaneous evaluation in different tissues of hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2011;300:R264–71.

    Article  CAS  PubMed  Google Scholar 

  24. DiBona GF, Esler M. Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integr Comp Physiol. 2010;298:R245–53.

    Article  CAS  PubMed  Google Scholar 

  25. Tellez A, Rousselle S, Palmieri T, et al. Renal artery nerve distribution and density in the porcine model: biologic implications for the development of radiofrequency ablation therapies. Transl Res. 2013;162:381–9.

    Article  PubMed  Google Scholar 

  26. Ahmed H, Neuzil P, Skoda J, et al. Renal sympathetic denervation using an irrigated radiofrequency ablation catheter for the management of drug-resistant hypertension. JACC Cardiovasc Interv. 2012;5:758–65.

    Article  PubMed  Google Scholar 

  27. Kiuchi MG, Maia GL, de Queiroz Carreira MA, et al. Effects of renal denervation with a standard irrigated cardiac ablation catheter on blood pressure and renal function in patients with chronic kidney disease and resistant hypertension. Eur Heart J. 2013;34:2114–21.

    Article  PubMed  Google Scholar 

  28. Remo BF, Preminger M, Bradfield J, et al. Safety and efficacy of renal denervation as a novel treatment for ventricular tachycardia storm in patients with cardiomyopathy. Heart Rhythm. 2013. doi:10.1016/j.hrthm.2013.12.038.

    PubMed  Google Scholar 

  29. Bertog SC, Sobotka PA, Sievert H. Renal denervation for hypertension. JACC Cardiovasc Interv. 2012;5:249–58.

    Article  PubMed  Google Scholar 

  30. Mahfoud F, Ewen S, Ukena C, et al. Expanding the indication spectrum: renal denervation in diabetes. EuroIntervention. 2013;9:R117–21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Joner MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Sakakura, K., Ladich, E., Fuimaono, K., Virmani, R., Joner, M. (2015). Radiofrequency and Irrigated Ablation: Principles and Potential for Renal Artery Denervation (RDN) in the Treatment of Resistant Arterial Hypertension. In: Heuser, R., Schlaich, M., Sievert, H. (eds) Renal Denervation. Springer, London. https://doi.org/10.1007/978-1-4471-5223-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5223-1_18

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5222-4

  • Online ISBN: 978-1-4471-5223-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics