Skip to main content

Renal Artery Denervation

  • Reference work entry
  • First Online:
PanVascular Medicine

Abstract

Hypertension is highly prevalent and one of the most frequent chronic diseases worldwide. Approximately 10 % of patients with high blood pressure are resistant to drug treatment in the presence of three or more antihypertensive drugs of different classes, including a diuretic, at maximal or the highest tolerated dose. Sympathetic overstimulation is one of the key components of resistant hypertension. Percutaneous catheter-based transluminal renal ablation (RDN) has emerged as a new approach to achieve sustained blood pressure reduction in patients with drug-resistant hypertension. Currently established radiofrequency- or ultrasound-based devices thermally damage the perivascular tissue of the renal artery interrupting the efferent and afferent sympathetic nerve bundles. Several position papers summarized the current evidence, unmet needs, and practical recommendations for the application of this therapeutic strategy in clinical practice. Given that there is no established intra-procedural control of ablation success, interventionalists have to be familiar with the aspects related to the anatomy and imaging of the renal arteries, the distribution of renal sympathetic fibers, the special equipment necessary for RDN, and the procedural details in order to maximize the success and minimize potential complications. This chapter summarizes the clinical background of essential hypertension, in particular resistant hypertension, currently published or presented data, and technical aspects of renal denervation. In 2013, commercially available (CE marked) renal denervation devices are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Afferent renal nerves:

Nerves travelling from the kidney to the brain.

Ambulatory blood pressure measurement (ABPM):

24-h Holter blood pressure measurement. Values are lower than office-based blood pressure values and allow excluding pseudo-resistant patients. Normal value ≤ 130/85mmHg.

Efferent renal nerves:

Nerves travelling from the brain to the kidney.

Office-based blood pressure:

Mean of three blood pressure measurements taken in a sitting position after 10min of rest. Normal value ≤ 140/90mmHg.

Percutaneous renal denervation:

Minimally invasive therapy (endovascular) targeting the renal sympathetic afferent and efferent nerves based on thermal or drug destruction of the nerve fibers.

Pseudo-resistance:

Hypertension which is probably related to poor medication adherence situational-evoked blood pressure elevation (white coat hypertension), or suboptimal drug combination.

Resistant hypertension:

Blood pressure resistant to drug treatment defined as blood pressure (>140/90mmHg > 130/80mmHg in patient with chronic kidney disease) despite the use of at least three antihypertensive agents of different classes including a diuretic, at maximum or highest tolerated doses.

Secondary hypertension:

Hypertension caused by an organic disorder such as renal artery stenosis coarctation, and other causes which are potentially reversible by organ-specific therapy.

Symplicity HTN-1 study:

The initial proof-of-concept study investigating patients with severe resistant hypertension defined as uncontrolled hypertension (office SBP ≥160mmHg) despite the use of three or more antihypertensive drugs (one of which is a diuretic) at the highest tolerated and recommended doses, with the best achievable adherence to medical treatment.

Symplicity HTN-2 study:

A multicenter prospective, randomized, controlled trial comparing radiofrequency-based renal denervation with best medical therapy in patients with severe resistant hypertension, defined as uncontrolled hypertension (office SBP ≥ 160mmHg) despite the use of three or more antihypertensive drugs (one of which is a diuretic) at the highest tolerated and recommended doses.

References

  • Atherton D, Deep N, Mendelson F (2012) Micro-anatomy of the renal sympathetic nervous system. A human postmortem histologic study. Clin Anat 25(5):628–633

    Article  PubMed  Google Scholar 

  • Beregi JP, Mauroy B, Willoteaux S, Mounier-Vehier C, Remy-Jardin M, Francke J (1999) Anatomic variation in the origin of the main renal arteries: spiral CTA evaluation. Eur Radiol 9:1330–1334

    Article  CAS  PubMed  Google Scholar 

  • Bertog S, Sobotka P, Sievert H (2012) Renal denervation for hypertension. JACC Cardiovasc Interv 5:249–258

    Article  PubMed  Google Scholar 

  • Couph NP, McBride RA, Dammin GJ, Murray JE (1961) Observations on the nature of the enlargement, the regeneration of the nerves, and the function of the canine renal autograft. Br J Exp Pathol 42:106–113

    Google Scholar 

  • DiBona GF (2005) Physiology in perspective: the Wisdom of the body. Neural control of the kidney. Am J Physiol Regul Integr Comp Physiol 289:R633–R641

    Article  CAS  PubMed  Google Scholar 

  • DiBona GF, Kopp UC (1997) Neural control of renal function. Physiol Rev 77:75–197

    CAS  PubMed  Google Scholar 

  • Drieghe B, Madaric J, Sarno G, Manoharan G, Bartunek J, Heyndrickx GR, Pijls NH, De Bruyne B (2008) Assessment of renal artery stenosis: side-by-side comparison of angiography and duplex ultrasound with pressure gradient measurements. Eur Heart J 29:517–524

    Article  PubMed  Google Scholar 

  • Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Böhm M (2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376(9756):1903–1909

    Article  PubMed  Google Scholar 

  • Garcier JM, de Fraissinette B, Filaire M, Gayard P, Therre T, Ravel A, Boyer L (2001) Origin and initial course of the renal arteries: a radiological study. Surg Radiol Anat 23:51–55

    Article  CAS  PubMed  Google Scholar 

  • Kaltenbach B, Id D, Franke JC, Sievert H, Hennersdorf M, Maier J, Bertog SC (2012) Renal artery stenosis after renal sympathetic denervation. J Am Coll Cardiol 60:2694–2695

    Article  PubMed  Google Scholar 

  • Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, Abraham WT, Esler M (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373(9671):1275–1281

    Article  PubMed  Google Scholar 

  • Krum H, Schlaich MP, Böhm M, Mahfoud F, Rocha-Singh K, Katholi R, Esler MD (2013) Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet (in press)

    Google Scholar 

  • Lenski M, Mahfoud F, Razouk A, Ukena C, Lenski D, Barth C, Linz D, Laufs U, Kindermann I, Bohm M (2013) Orthostatic function after renal sympathetic denervation in patients with resistant hypertension. Int J Cardiol (in press)

    Google Scholar 

  • Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2224–2260

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahfoud F, Himmel F, Ukena C, Schunkert H, Böhm M, Weil J (2011) Treatment strategies for resistant arterial hypertension. Dtsch Arztebl Int 108(43):725–731

    PubMed  PubMed Central  Google Scholar 

  • Mahfoud F, Cremers B, Janker J, Link B, Vonend O, Ukena C, Linz D, Schmieder R, Rump LC, Kindermann I, Sobotka PA, Krum H, Scheller B, Schlaich M, Laufs U, Böhm M (2012) Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension 60(2):419–424

    Article  CAS  PubMed  Google Scholar 

  • Mahfoud F, Lüscher TF, Andersson B, Baumgartner I, Cifkova R, Dimario C, Doevendans P, Fagard R, Fajadet J, Komajda M, Lefevre T, Lotan C, Sievert H, Volpe M, Widimsky P, Wijns W, Williams B, Windecker S, Witkowski A, Zeller T, Böhm M (2013) Expert consensus document from the European Society of Cardiology on catheter-based renal denervation. Eur Heart J 34(28):2149–2157

    Article  PubMed  Google Scholar 

  • Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, Galderisi M, Grobbee DE, Jaarsma T, Kirchhof P, Kjeldsen SE, Laurent S, Manolis AJ, Nilsson PM, Ruilope LM, Schmieder RE, Sirnes PA, Sleight P, Viigimaa M, Waeber B, Zannad F (2013) ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 34(28):2159–2219

    Article  PubMed  Google Scholar 

  • Manso JC, DiDio LJ (2000) Anatomical variations of the human suprarenal arteries. Ann Anat 182:483–488

    Article  CAS  PubMed  Google Scholar 

  • Ozkan U, Oğuzkurt L, Tercan F, Kizilkiliç O, Koç Z, Koca N (2006) Renal artery origins and variations: angiographic evaluation of 855 consecutive patients. Diagn Interv Radiol 12(4):183–186

    PubMed  Google Scholar 

  • Page IH, Heuer GJ (1935) The effect of renal denervation of patients suffering from nephritis. J Clin Invest 14:443–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papachristopoulos G, Bis KG, Shetty AN (1999) Breath-hold 3D MR angiography of the renal vasculature using a contrast- enhanced multiecho gradient-echo technique. Invest Radiol 34:731–738

    Article  CAS  PubMed  Google Scholar 

  • Persu A, Renklin J, Thijs L, Staessen J (2012) Renal denervation: ultima ratio or standard in treatment-resistant hypertension. Hypertension 60(3):596–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saba L, Sanfilippo R, Montisci R, Conti M, Mallarini G (2008) Accessory renal artery stenosis and hypertension: are these correlated? Evaluation using multidetector-row computed tomographic angiography. Acta Radiol 49:278–284

    Article  CAS  PubMed  Google Scholar 

  • Schlaich M, Schmieder R, Bakris G, Blankestijn P, Böhm M, Campese V, Francis D, Grassi G, Hering D, Katholi R, Kjeldsen S, Krum H, Mahfoud F, Mancia G, Messerli F, Narkiewicz K, Parati G, Rocha-Singh K, Ruilope L, Rump L, Sica D, Sobotka P, Tsioufis C, Vonend O, Weber M, Williams B, Zeller T, Esler M (2013) International expert position statement: percutaneous transluminal renal denervation for the treatment of resistant hypertension. J Am Coll Cardiol pii: S0735–1097(13):05092-4. doi:10.1016/j.JACC.2013.08.1616

    Google Scholar 

  • Schmid A, Ditting T, Sobotka PA, Veelken R, Schmieder RE, Uder M, Ott C (2013) Does renal artery supply indicate treatment success of renal denervation? Cardiovasc Intervent Radiol 36(4):987–991

    Article  PubMed  Google Scholar 

  • Schmieder RE, Redon J, Grassi G, Kjeldsen SE, Mancia G, Narkiewicz K, Parati G, Ruilope L, van de Borne P, Tsioufis C (2012) ESH position paper: renal denervation – an interventional therapy of resistant hypertension. J Hypertens 30:837–841

    Article  CAS  PubMed  Google Scholar 

  • Schmieder RE, Redon J, Grassi G, Kjeldsen SE, Mancia G, Narkiewicz K, Parati G, Ruilope L, van de Borne P, Tsioufis C (2013) Updated ESH position paper on interventional therapy of resistant hypertension. EuroIntervention 9(Suppl R):R58–R66

    Google Scholar 

  • Steigerwald K, Titova A, Malle C, Kennerknecht E, Jilek C, Hausleiter J, Nährig JM, Laugwitz KL, Joner M (2012) Morphological assessment of renal arteries after radiofrequency catheter – based sympathetic denervation in a porcine model. J Hypertens 30(11):2230–2239

    Article  CAS  PubMed  Google Scholar 

  • Stella A, Zanchetti A (1991) Functional role of renal afferents. Physiol Rev 71:659–682

    CAS  PubMed  Google Scholar 

  • Symplicity HTN-1 Investigators (2011) Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension 57:911–917

    Article  Google Scholar 

  • Tellez A, Rousselle S, Palmieri T, Rate WR 4th, Wicks J, Degrange A, Hyon CM, Gongora CA, Hart R, Grundy W, Kaluza GL, Granada JF (2013) Renal artery nerve distribution and density in the porcine model: biologic implications for the development of radiofrequency ablation therapies. Transl Res Jul 30 pii: S1931-5244(13)00210-7. doi:10.1016/j.trsl.2013.07.002. http://www.ncbi.nlm.nih.gov/pubmed/23911638p

  • Templin C, Jaguszewski M, Ghadri JR, Sudano I, Gaehwiler R, Hellermann JP, Schoenenberger-Berzins R, Landmesser U, Erne P, Noll G, Lüscher TF (2013) Vascular lesions induced by renal nerve ablation as assessed by optical coherence tomography: pre- and post-procedural comparison with the Simplicity(R) catheter system and the EnligHTN multi-electrode renal denervation catheter. Eur Heart J 34:2141–2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsioufis C, Kordalis A, Flessas D, Anastasopoulos I, Tsiachris D, Papademetriou V, Stefanadis C (2011) Pathophysiology of resistant hypertension: the role of sympathetic nervous system. Int J Hypertens 2011:64241

    Article  Google Scholar 

  • Turba UC, Uflacker R, Bozlar U, Hagspiel KD (2009) Normal renal arterial anatomy assessed by multidetector CT angiography: are there differences between men and women? Clin Anat 22(2):236–242

    Article  PubMed  Google Scholar 

  • Ukena C, Mahfoud F, Kindermann I, Barth C, Lenski M, Kindermann M, Brandt MC, Hoppe UC, Krum H, Esler M, Sobotka PA, Böhm M (2011) Cardiorespiratory response to exercise after renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol 58(11):1176–1182

    Article  PubMed  Google Scholar 

  • Vink A, Schoneveld AH, Poppen M, de Kleijn DP, Borst C, Pasterkamp G (2002) Morphometric and immunohistochemical characterization of the intimal layer throughout the arterial system of elderly humans. J Anat 200:97–103

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeller T, Bonvini RF, Rastan A, Sixt S (2008) Colour-coded duplex ultrasound for diagnosis of renal artery stenosis and as follow-up examination after revascularization. Catheter Cardiovasc Interv 71:995–999

    Article  PubMed  Google Scholar 

  • Zeller T, Rastan A, Macharzina R, Noory E (2013) Challenging anatomy, how to treat or not to treat. EuroIntervention 9:R67–R74

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Zeller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Zeller, T., Tsioufis, C., Mahfoud, F. (2015). Renal Artery Denervation. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37078-6_125

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37078-6_125

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37077-9

  • Online ISBN: 978-3-642-37078-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics