Skip to main content

Arterial Stiffness and the Sympathetic Nervous System

  • Chapter
  • First Online:
Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases

Abstract

This chapter addresses the complex relationship between sympathetic activity and the main factors affecting arterial distensibility. Sympathetic nervous system is considered one of the major elements involved in the regulation of mean arterial pressure, affecting heart rate, left ventricular contractility, and systemic vascular resistance. Actually, in hypertensive patients a permanent increase in mean arterial pressure may cause structural changes in viscoelastic properties of arterial wall, causing a permanent reduction in arterial distensibility. Moreover, heart rate, left ventricular function, and mean arterial pressure can also be considered major functional factors which can cause transient changes in arterial viscoelastic properties. Evidence is available that sympathetic activity plays a major role in modulating the mechanical properties of muscular arteries. This explains the reduction in distensibility of muscular arteries shown under particular conditions of stress, such as exposure to high altitude and, in general, to hypoxia. Changes in sympathetic activity may be influenced by baroreflex regulation of cardiovascular homeostasis. Reflex changes of arterial tone and modifications of cardiac output are the result of this regulation. A carotid and aortic stiffness may be associated with reduced cardiovagal baroreflex sensitivity, with a consequent increase in blood pressure variability, and also with a higher speed of changes in beat-to-beat systolic blood pressure fluctuations typical of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salvi P. Pulse waves. How vascular hemodynamics affects blood pressure. Milan: Springer; 2012.

    Google Scholar 

  2. Lantelme P, Khettab F, Custaud MA, Rial MO, Joanny C, Gharib C, et al. Spontaneous baroreflex sensitivity: toward an ideal index of cardiovascular risk in hypertension? J Hypertens. 2002;20(5):935–44.

    Article  CAS  PubMed  Google Scholar 

  3. Lantelme P, Mestre C, Lievre M, Gressard A, Milon H. Heart rate: an important confounder of pulse wave velocity assessment. Hypertension. 2002;39(6):1083–7.

    Article  CAS  PubMed  Google Scholar 

  4. Albaladejo P, Copie X, Boutouyrie P, Laloux B, Declere AD, Smulyan H, et al. Heart rate, arterial stiffness, and wave reflections in paced patients. Hypertension. 2001;38(4):949–52.

    Article  CAS  PubMed  Google Scholar 

  5. Sa Cunha R, Pannier B, Benetos A, Siche JP, London GM, Mallion JM, et al. Association between high heart rate and high arterial rigidity in normotensive and hypertensive subjects. J Hypertens. 1997;15(12 Pt 1):1423–30.

    Article  CAS  PubMed  Google Scholar 

  6. Weissler AM, Harris WS, Schoenfeld CD. Systolic time intervals in heart failure in man. Circulation. 1968;37(2):149–59.

    Article  CAS  PubMed  Google Scholar 

  7. Campese VM, Shaohua Y, Huiquin Z. Oxidative stress mediates angiotensin II-dependent stimulation of sympathetic nerve activity. Hypertension. 2005;46(3):533–9.

    Article  CAS  PubMed  Google Scholar 

  8. Mircoli L, Mangoni AA, Giannattasio C, Mancia G, Ferrari AU. Heart rate-dependent stiffening of large arteries in intact and sympathectomized rats. Hypertension. 1999;34(4 Pt 1):598–602.

    Article  CAS  PubMed  Google Scholar 

  9. Mangoni AA, Mircoli L, Giannattasio C, Mancia G, Ferrari AU. Effect of sympathectomy on mechanical properties of common carotid and femoral arteries. Hypertension. 1997;30(5):1085–8.

    Article  CAS  PubMed  Google Scholar 

  10. Mangoni AA, Mircoli L, Giannattasio C, Ferrari AU, Mancia G. Heart rate-dependence of arterial distensibility in vivo. J Hypertens. 1996;14(7):897–901.

    Article  CAS  PubMed  Google Scholar 

  11. Armentano RL, Barra JG, Levenson J, Simon A, Pichel RH. Arterial wall mechanics in conscious dogs. Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. Circ Res. 1995;76(3):468–78.

    Article  CAS  PubMed  Google Scholar 

  12. Tan I, Butlin M, Liu YY, Ng K, Avolio AP. Heart rate dependence of aortic pulse wave velocity at different arterial pressures in rats. Hypertension. 2012;60(2):528–33.

    Article  CAS  PubMed  Google Scholar 

  13. Salvi P, Palombo C, Salvi GM, Labat C, Parati G, Benetos A. Left ventricular ejection time, not heart rate, is an independent correlate of aortic pulse wave velocity. J Appl Physiol. 2013;115(11):1610–7.

    Article  PubMed  Google Scholar 

  14. Boudoulas H. Systolic time intervals. Eur Heart J. 1990;11(Suppl I):93–104.

    Article  PubMed  Google Scholar 

  15. Reant P, Dijos M, Donal E, Mignot A, Ritter P, Bordachar P, et al. Systolic time intervals as simple echocardiographic parameters of left ventricular systolic performance: correlation with ejection fraction and longitudinal two-dimensional strain. Eur J Echocardiogr. 2010;11(10):834–44.

    Article  PubMed  Google Scholar 

  16. Boudoulas H, Karayannacos PE, Lewis RP, Leier CV, Vasko JS. Effect of afterload on left ventricular performance in experimental animals. Comparison of the pre-ejection period and other indices of left ventricular contractility. J Med. 1982;13(5–6):373–85.

    CAS  PubMed  Google Scholar 

  17. Boutouyrie P, Lacolley P, Girerd X, Beck L, Safar M, Laurent S. Sympathetic activation decreases medium-sized arterial compliance in humans. Am J Physiol. 1994;267(4 Pt 2):H1368–76.

    CAS  PubMed  Google Scholar 

  18. Giannattasio C, Mangoni AA, Stella ML, Carugo S, Grassi G, Mancia G. Acute effects of smoking on radial artery compliance in humans. J Hypertens. 1994;12(6):691–6.

    Article  CAS  PubMed  Google Scholar 

  19. Perret F, Mooser V, Waeber B, Yanik T, Jean-Jacques M, Mooser E, et al. Effect of cold pressor test on the internal diameter of the radial artery. Am J Hypertens. 1989;2(9):727–8.

    Article  CAS  PubMed  Google Scholar 

  20. Failla M, Grappiolo A, Emanuelli G, Vitale G, Fraschini N, Bigoni M, et al. Sympathetic tone restrains arterial distensibility of healthy and atherosclerotic subjects. J Hypertens. 1999;17(8):1117–23.

    Article  CAS  PubMed  Google Scholar 

  21. Grassi G, Giannattasio C, Failla M, Pesenti A, Peretti G, Marinoni E, et al. Sympathetic modulation of radial artery compliance in congestive heart failure. Hypertension. 1995;26(2):348–54.

    Article  CAS  PubMed  Google Scholar 

  22. Sonesson B, Vernersson E, Hansen F, Lanne T. Influence of sympathetic stimulation on the mechanical properties of the aorta in humans. Acta Physiol Scand. 1997;159(2):139–45.

    Article  CAS  PubMed  Google Scholar 

  23. Lydakis C, Momen A, Blaha C, Herr M, Leuenberger UA, Sinoway LI. Changes of elastic properties of central arteries during acute static exercise and lower body negative pressure. Eur J Appl Physiol. 2008;102(6):633–41.

    Article  PubMed  Google Scholar 

  24. Palatini P, Julius S. The role of cardiac autonomic function in hypertension and cardiovascular disease. Curr Hypertens Rep. 2009;11(3):199–205.

    Article  PubMed  Google Scholar 

  25. Tentolouris N, Argyrakopoulou G, Katsilambros N. Perturbed autonomic nervous system function in metabolic syndrome. Neuromolecular Med. 2008;10(3):169–78.

    Article  CAS  PubMed  Google Scholar 

  26. Goodfellow J, Bellamy MF, Gorman ST, Brownlee M, Ramsey MW, Lewis MJ, et al. Endothelial function is impaired in fit young adults of low birth weight. Cardiovasc Res. 1998;40(3):600–6.

    Article  CAS  PubMed  Google Scholar 

  27. Leeson CP, Kattenhorn M, Morley R, Lucas A, Deanfield JE. Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult life. Circulation. 2001;103(9):1264–8.

    Article  CAS  PubMed  Google Scholar 

  28. Phipps K, Barker DJ, Hales CN, Fall CH, Osmond C, Clark PM. Fetal growth and impaired glucose tolerance in men and women. Diabetologia. 1993;36(3):225–8.

    Article  CAS  PubMed  Google Scholar 

  29. IJzerman R, Stehouwer CD, de Geus EJ, van Weissenbruch MM, Delemarre-van de Waal HA, Boomsma DI. Low birth weight is associated with increased sympathetic activity: dependence on genetic factors. Circulation. 2003;108(5):566–71.

    Article  PubMed  Google Scholar 

  30. Jansson T, Lambert GW. Effect of intrauterine growth restriction on blood pressure, glucose tolerance and sympathetic nervous system activity in the rat at 3-4 months of age. J Hypertens. 1999;17(9):1239–48.

    Article  CAS  PubMed  Google Scholar 

  31. Ruijtenbeek K, le Noble FA, Janssen GM, Kessels CG, Fazzi GE, Blanco CE, et al. Chronic hypoxia stimulates periarterial sympathetic nerve development in chicken embryo. Circulation. 2000;102(23):2892–7.

    Article  CAS  PubMed  Google Scholar 

  32. Westerbacka J, Vehkavaara S, Bergholm R, Wilkinson I, Cockcroft J, Yki-Jarvinen H. Marked resistance of the ability of insulin to decrease arterial stiffness characterizes human obesity. Diabetes. 1999;48(4):821–7.

    Article  CAS  PubMed  Google Scholar 

  33. Wilkinson IB, Qasem A, McEniery CM, Webb DJ, Avolio AP, Cockcroft JR. Nitric oxide regulates local arterial distensibility in vivo. Circulation. 2002;105(2):213–7.

    Article  CAS  PubMed  Google Scholar 

  34. Phillips DI, Barker DJ. Association between low birthweight and high resting pulse in adult life: is the sympathetic nervous system involved in programming the insulin resistance syndrome? Diabet Med. 1997;14(8):673–7.

    Article  CAS  PubMed  Google Scholar 

  35. Salvi P, Revera M, Joly L, Reusz G, Iaia M, Benkhedda S, et al. Role of birth weight and postnatal growth on pulse wave velocity in teenagers. J Adolesc Health. 2012;51(4):373–9.

    Article  PubMed  Google Scholar 

  36. Richalet JP, Larmignat P, Rathat C, Keromes A, Baud P, Lhoste F. Decreased cardiac response to isoproterenol infusion in acute and chronic hypoxia. J Appl Physiol (1985). 1988;65(5)):1957–61.

    CAS  Google Scholar 

  37. Koller EA, Drechsel S, Hess T, Macherel P, Boutellier U. Effects of atropine and propranolol on the respiratory, circulatory, and ECG responses to high altitude in man. Eur J Appl Physiol Occup Physiol. 1988;57(2):163–72.

    Article  CAS  PubMed  Google Scholar 

  38. Marshall JM. Peripheral chemoreceptors and cardiovascular regulation. Physiol Rev. 1994;74(3):543–94.

    CAS  PubMed  Google Scholar 

  39. Salvi P, Revera M, Faini A, Giuliano A, Gregorini F, Agostoni P, et al. Changes in subendocardial viability ratio with acute high-altitude exposure and protective role of acetazolamide. Hypertension. 2013;61(4):793–9.

    Article  CAS  PubMed  Google Scholar 

  40. Bilo G, Caldara G, Styczkiewicz K, Revera M, Lombardi C, Giglio A, et al. Effects of selective and nonselective beta-blockade on 24-h ambulatory blood pressure under hypobaric hypoxia at altitude. J Hypertens. 2011;29(2):380–7.

    Article  CAS  PubMed  Google Scholar 

  41. Lanfranchi PA, Colombo R, Cremona G, Baderna P, Spagnolatti L, Mazzuero G, et al. Autonomic cardiovascular regulation in subjects with acute mountain sickness. Am J Physiol Heart Circ Physiol. 2005;289(6):H2364–72.

    Article  CAS  PubMed  Google Scholar 

  42. Parati G, Revera M, Giuliano A, Faini A, Bilo G, Gregorini F, et al. Effects of acetazolamide on central blood pressure, peripheral blood pressure, and arterial distensibility at acute high altitude exposure. Eur Heart J. 2013;34(10):759–66.

    Article  CAS  PubMed  Google Scholar 

  43. Bartsch P, Maggiorini M, Schobersberger W, Shaw S, Rascher W, Girard J, et al. Enhanced exercise-induced rise of aldosterone and vasopressin preceding mountain sickness. J Appl Physiol (1985). 1991;71(1):136–43.

    CAS  Google Scholar 

  44. Mancia G, Mark A. Arterial baroreflexes in humans. In: Shepherd J, Abboud F, editors. Handbook of physiology, section 2. The cardiovascular system IV, vol. 3, Part 2. Bethesda: American Physiologic Society; 1983. p. 755–93.

    Google Scholar 

  45. Boutouyrie P. New techniques for assessing arterial stiffness. Diabetes Metab. 2008;34 Suppl 1:S21–6.

    Article  PubMed  Google Scholar 

  46. Mattace-Raso FU, van den Meiracker AH, Bos WJ, van der Cammen TJ, Westerhof BE, Elias-Smale S, et al. Arterial stiffness, cardiovagal baroreflex sensitivity and postural blood pressure changes in older adults: the Rotterdam Study. J Hypertens. 2007;25(7):1421–6.

    Article  CAS  PubMed  Google Scholar 

  47. Parati G, Lantelme P. Mechanical and neural components of the cardiac baroreflex: new insights into complex physiology. J Hypertens. 2005;23(4):717–20.

    Article  CAS  PubMed  Google Scholar 

  48. Okada Y, Galbreath MM, Shibata S, Jarvis SS, VanGundy TB, Meier RL, et al. Relationship between sympathetic baroreflex sensitivity and arterial stiffness in elderly men and women. Hypertension. 2012;59(1):98–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schillaci G, Bilo G, Pucci G, Laurent S, Macquin-Mavier I, Boutouyrie P, et al. Relationship between short-term blood pressure variability and large-artery stiffness in human hypertension: findings from 2 large databases. Hypertension. 2012;60(2):369–77.

    Article  CAS  PubMed  Google Scholar 

  50. Narkiewicz K, Winnicki M, Schroeder K, Phillips BG, Kato M, Cwalina E, et al. Relationship between muscle sympathetic nerve activity and diurnal blood pressure profile. Hypertension. 2002;39(1):168–72.

    Article  PubMed  Google Scholar 

  51. Parati G, Saul JP, Di Rienzo M, Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension. 1995;25(6):1276–86.

    Article  CAS  PubMed  Google Scholar 

  52. Parati G, Ulian L, Santucciu C, Tortorici E, Villani A, Di Rienzo M, et al. Clinical value of blood pressure variability. Blood Press Suppl. 1997;2:91–6.

    CAS  PubMed  Google Scholar 

  53. Parati G, Di Rienzo M, Omboni S, Ulian L, Mancia G. Blood pressure variability over 24 hours: its different components and its relationship to the arterial baroreflex. J Sleep Res. 1995;4(S1):21–9.

    Article  PubMed  Google Scholar 

  54. Monahan KD, Dinenno FA, Seals DR, Clevenger CM, Desouza CA, Tanaka H. Age-associated changes in cardiovagal baroreflex sensitivity are related to central arterial compliance. Am J Physiol Heart Circ Physiol. 2001;281(1):H284–9.

    CAS  PubMed  Google Scholar 

  55. Mancia G, Ferrari A, Gregorini L, Parati G, Pomidossi G, Bertinieri G, et al. Blood pressure and heart rate variabilities in normotensive and hypertensive human beings. Circ Res. 1983;53(1):96–104.

    Article  CAS  PubMed  Google Scholar 

  56. Mancia G, Parati G, Castiglioni P, Tordi R, Tortorici E, Glavina F, et al. Daily life blood pressure changes are steeper in hypertensive than in normotensive subjects. Hypertension. 2003;42(3):277–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Parati MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Parati, G., Salvi, P. (2014). Arterial Stiffness and the Sympathetic Nervous System. In: Safar, M., O'Rourke, M., Frohlich, E. (eds) Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-5198-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5198-2_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5197-5

  • Online ISBN: 978-1-4471-5198-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics