Skip to main content
  • 1476 Accesses

Abstract

The next step in Brouwer’s topological research was the study of continuous maps on manifolds. The program opened with a bang: in a brief note Brouwer proved the invariance of dimension under homeorphisms. This publication led to an unpleasant altercation with Lebesgue, who claimed to have already found a proof. In fact he had deduced the invariance from the paving principle, but failed to prove the paving principle. In the end Brouwer’s priority and superior insight was fully vindicated. In subsequent papers Brouwer enriched the arsenal of basic notions of topology with simplicial approximation and the mapping degree. The contacts with Baire, Hadamard, Blumenthal, and Hilbert, are described. Brouwer’s name became lastingly attached to his fixed point theorem. Brouwer also proved the invariance of domain theorem, which he subsequently used to salvage Klein’s continuity method for proving uniformisation. This brought him into a conflict with Paul Koebe, who was the uncrowned king of uniformisation and complex function theory. This first topological period closed with a significant feat: Brouwer defined, following Poincaré’s first approach, the general notion of dimension, and proved its ‘correctness’, i.e. showed that ℝn is n-dimensional.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This chapter makes essential use of Freudenthal’s comments in Volume II of the Collected Works and of the paper The Problem of the Invariance of Dimension in the Growth of Modern Topology I, II of Dale Johnson.

  2. 2.

    Ein Beitrag zur Mannigfaltigkeitslehre.

  3. 3.

    The history of this particular theorem is published by Emmy Noether and Jean Cavaillès, Noether and Cavaillès (1937).

  4. 4.

    There is a fairly simple geometric representation of the above mapping, Johnson (1979), p. 171 and Young and Young (1906), pp. 165, 291.

  5. 5.

    Among others Hilbert and Moore, cf. Young and Young (1906).

  6. 6.

    Brouwer (1909b), p. 297.

  7. 7.

    Het wezen der meetkunde. The translation of ‘wezen’ by ‘nature’ is somewhat flat. Wezen expresses something more, like ‘essence’.

  8. 8.

    Brouwer (1909a), CW I, p. 116.

  9. 9.

    Brouwer (1909a), CW I. p. 117.

  10. 10.

    Not to be confused with Methodenreinheit (purity of methods) of older generations. Brouwer was quite prepared to use whatever means were available.

  11. 11.

    The first term was introduced by Poincaré (1885), the second one by Brouwer, Brouwer (1919f, 1919g).

  12. 12.

    Freudenthal (1975), cf. CW II, p. 422 ff.

  13. 13.

    CW II, p. 421, see also Brouwer to Scheltema 3 December 1909.

  14. 14.

    Concerning the ‘Analysis Situs’-paper, cf. p. 144.

  15. 15.

    Freudenthal in CW II, p. 425.

  16. 16.

    Hadamard (1910).

  17. 17.

    Freudenthal (1979).

  18. 18.

    Cf. p. 213.

  19. 19.

    Freudenthal (CW II, p. 435 ff.) has given a thorough historic and mathematical analysis of the invariance of dimension episode. The reader is referred to Freudenthal’s comments for more technical details.

  20. 20.

    Sur la non-applicabilité de deux domaines appartenant respectivement à des espaces à n et n+p dimensions (Extrait d’une lettre à M. O. Blumenthal), Lebesgue (1911a).

  21. 21.

    Pflaster Satz.

  22. 22.

    By Baire.

  23. 23.

    Cf. Johnson (1981), p. 191.

  24. 24.

    CW II, p. 440.

  25. 25.

    Schoenflies (1908).

  26. 26.

    Zoretti (1911).

  27. 27.

    Sur la non-applicabilité de deux continus à n et n+p dimensions.

  28. 28.

    The dimension paper, cf. p. 174.

  29. 29.

    Alexander (1922) and Alexandroff and Hopf (1935), Chap. XI elaborated the ideas involved.

  30. 30.

    Sur l’invariance du nombre de dimensions d’un espace et sur le théorème de M.Jordan relatif aux variété fermées, Lebesgue (1911b).

  31. 31.

    Johnson (1981), pp. 198, 199.

  32. 32.

    Blumenthal to Brouwer, 16.6.1911.

  33. 33.

    Johnson (1981), p. 203.

  34. 34.

    CW II, p. 440.

  35. 35.

    Über den natürlichen Dimensionsbegriff, Brouwer (1913a).

  36. 36.

    Lebesgue (1911b).

  37. 37.

    Brouwer (1913a).

  38. 38.

    Sur l’invariance du nombre de dimensions d’un espace et sur le théorème de M. Jordan relatif aux variété fermées. Lebesgue (1911b).

  39. 39.

    Baire (1907a).

  40. 40.

    Lebesgue (1911a), p. 168.

  41. 41.

    CW II, p. 439.

  42. 42.

    Baire to Brouwer, 5 December 1911.

  43. 43.

    The n-dimensional Jordan theorem, Brouwer (1911e).

  44. 44.

    Cf. Lebesgue (1911a).

  45. 45.

    Cf. Lebesgue (1921).

  46. 46.

    Basics of Set Theory.

  47. 47.

    Hopf (1966).

  48. 48.

    Über Abbildung von Mannigfaltigkeiten, Brouwer (1911c).

  49. 49.

    Poincaré had already defined the notion in Poincaré (1899). Brouwer does not quote Poincaré, so presumably he was not aware of the paper.

  50. 50.

    Note that in the letter to Hilbert of 1 January 1910, Brouwer still uses polynomial approximations.

  51. 51.

    The reader need not worry, nobility has not been created in the Netherlands for more then a century.

  52. 52.

    Dieudonné (1989), p. 161.

  53. 53.

    Simplicial topology.

  54. 54.

    Dieudonné (1989), p. 168.

  55. 55.

    After the ascent of homology theory, a much simpler definition of the degree of a mapping became available: let f be a continuous mapping from M to M′, where M and M′ are compact, connected, oriented (pseudo-) manifolds, then for f :H n (M;Z)→H n (M′;Z), we have f ([cM])=c[M′] where c is the mapping degree.

  56. 56.

    Beweis der Invarianz des n-dimensionalen Gebiets. Brouwer (1911d).

  57. 57.

    Brouwer (1911b).

  58. 58.

    CW II, p. 443.

  59. 59.

    Baire (1907a, 1907b).

  60. 60.

    Zur Invarianz des n-dimensionalen Gebiets, Brouwer (1912c).

  61. 61.

    See the letter to Baire of 5.11.1911, Johnson (1981), p. 218.

  62. 62.

    Brouwer (1912j).

  63. 63.

    Brouwer (1910a).

  64. 64.

    Sur l’invariance de la courbe fermée, Beweis der Invarianz der geschlossenen Kurve, Brouwer (1912e, 1912i).

  65. 65.

    Brouwer (1912h).

  66. 66.

    Über den natürlichen Dimensionsbegriff. Brouwer (1913a).

  67. 67.

    Alexander (1922).

  68. 68.

    Cf. p. 190, Wiessing (1960), p. 143 ff.

  69. 69.

    Brouwer (1928e).

  70. 70.

    That is, Brouwer showed that ℝ n has dimension n.

  71. 71.

    For a precise and general definition of uniformisation the reader is referred to the literature, for example Nevanlinna (1953), Beardon (1984).

  72. 72.

    Klein (1927).

  73. 73.

    Weyl to Mulder, 29 July 1910.

  74. 74.

    Cf. Kühnau (1981).

  75. 75.

    Blumenthal to Brouwer, 26 August 1911.

  76. 76.

    The Invariance of domain-paper was sent to the Mathematische Annalen on 14 June 1911, published November 1911.

  77. 77.

    JDMV 1912.

  78. 78.

    Cf. Behnke and Sommer (1955).

  79. 79.

    …, Koebe aber nur eine gewisse Ahnung, dass sich etwas mit seinem Verzerrungssatz in der Kontinuitäts Methode lasse, mitbrachte.

  80. 80.

    He quoted the author: ‘The simplest and most natural of all these proofs [of the uniformisation theorem] is the first one given by Koebe.’ Modesty was not one of Koebe’s defects.

  81. 81.

    Brouwer (1912d).

  82. 82.

    Of which only a few have survived.

  83. 83.

    Brouwer (1912f).

  84. 84.

    I.e. the notes for the Göttinger Gesellschaft submitted by Klein and Hilbert on 13 January 1912.

  85. 85.

    Undated letter, mentioned above.

  86. 86.

    Cf. Alexandrov (1972), Zorin (1972).

  87. 87.

    Cf. Freudenthal’s commentary; CW II, p. 581 ff.

  88. 88.

    One of the objections of Koebe to Brouwer’s note.

  89. 89.

    Fricke and Klein (1897, 1912)

  90. 90.

    Lebenspendend.

  91. 91.

    14 January 1912, see CW II, p. 585.

  92. 92.

    Brouwer to Hilbert, 9 March 1912.

  93. 93.

    There goes the great function theorist.

  94. 94.

    The greatest function theorist of Luckenwalde.

  95. 95.

    Freudenthal (1984).

  96. 96.

    All of Europe talks about it: Koebe is mailing reprints.

  97. 97.

    Van de Waerden to Van Dalen, 25 February 1992.

  98. 98.

    Freudenthal in CW II, p. 575.

  99. 99.

    See CW II, p. 571. The sticker summed up Brouwer’s grievances mentioned above.

  100. 100.

    Koebe to Hilbert, 29 February 1912.

  101. 101.

    Koebe (1914).

  102. 102.

    On the absence of singularities of the module manifold, Brouwer (1912f).

  103. 103.

    rühmlichst bekannt.

  104. 104.

    Brouwer (1919i).

  105. 105.

    von einer mir unbekannten Hand.

  106. 106.

    Klein (1923).

  107. 107.

    Wesen der Kontinuitätsmethode, ‘after lectures held at the meetings of the German Mathematical Society in September 1913 in Vienna and September 1935 in Stuttgart’, Koebe (1936).

  108. 108.

    On the continuity proof of the fundamental theorem, Klein (1923).

  109. 109.

    Wiessing (1960), p. 143 ff.

  110. 110.

    High school, see p. 4.

References

  • Alexander, J.W.: A proof and extension of the Jordan–Brouwer separation theorem. Trans. Am. Math. Soc. 23, 333–349 (1922)

    Article  MATH  Google Scholar 

  • Alexandroff, P., Hopf, H.: Topologie I. Springer, Berlin (1935)

    Google Scholar 

  • Alexandrov, P.S.: Poincaré and topology. Russ. Math. Surv. 27, 157–166 (1972)

    Article  Google Scholar 

  • Baire, R.: Sur la non-applicabilité de deux continus à n et n+p dimensions. C. R. Math. Acad. Sci. Paris 144, 318–321 (1907a)

    MATH  Google Scholar 

  • Baire, R.: Sur la non-applicabilité de deux continus à n et n+p dimensions. Bull. Sci. Math. 31, 94–99 (1907b)

    Google Scholar 

  • Beardon, A.F.: A Primer on Riemann Surfaces. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  • Behnke, H., Sommer, F.: Theorie der analytische Funktionen. Springer, Berlin (1955)

    Book  Google Scholar 

  • Brouwer, L.E.J.: Het wezen der meetkunde. Clausen, Amsterdam (1909a). Inaugural address privaat docent, 12.10.1909. Also in Brouwer (1919b)

    MATH  Google Scholar 

  • Brouwer, L.E.J.: Die Theorie der endlichen continuierlichen Gruppen unabhängig von den Axiomen von Lie. In: Castelnuovo, G. (ed.) Atti IV Congr. Intern. Mat. Roma, vol. 2, pp. 296–303. Acad. Naz. Lincei, Roma (1909b)

    Google Scholar 

  • Brouwer, L.E.J.: Beweis des Jordanschen Kurvensatzes. Math. Ann. 69, 169–175 (1910a). Corr. in Brouwer (1910i, 1919o)

    Article  MathSciNet  MATH  Google Scholar 

  • Brouwer, L.E.J.: Beweis der Invarianz der Dimensionenzahl. Math. Ann. 70, 161–165 (1911b)

    Article  MathSciNet  MATH  Google Scholar 

  • Brouwer, L.E.J.: Über Abbildung von Mannigfaltigkeiten. Math. Ann. 71, 97–115 (1911c). Corr. in Brouwer (1911h, 1921c)

    Article  MathSciNet  Google Scholar 

  • Brouwer, L.E.J.: Beweis der Invarianz des n-dimensionalen Gebiets. Math. Ann. 71, 305–313 (1911d)

    Article  MathSciNet  Google Scholar 

  • Brouwer, L.E.J.: Beweis des Jordanschen Satzes für den n-dimensionalen Raum. Math. Ann. 71, 314–319 (1911e)

    Article  MathSciNet  Google Scholar 

  • Brouwer, L.E.J.: Zur Invarianz des n-dimensionalen Gebiets. Math. Ann. 72, 55–56 (1912c)

    Article  MathSciNet  MATH  Google Scholar 

  • Brouwer, L.E.J.: Über die topologischen Schwierigkeiten des Kontinuitätsbeweises der Existenztheoreme eindeutig umkehrbarer polymorpher Funktionen auf Riemannschen Flächen (Auszug aus einem Brief an R. Fricke). Nachr. Akad. Wiss. Gött. Math.-Phys. Kl., 2B 999, 603–606 (1912d)

    Google Scholar 

  • Brouwer, L.E.J.: Sur l’invariance de la courbe fermée. C. R. Math. Acad. Sci. Paris 154, 862–863 (1912e)

    MATH  Google Scholar 

  • Brouwer, L.E.J.: Über die Singularitätenfreiheit der Modulmannigfaltigkeit. Nachr. Akad. Wiss. Gött. Math.-Phys. Kl., 2B 999, 803–806 (1912f)

    Google Scholar 

  • Brouwer, L.E.J.: Über den Kontinuitätsbeweis für das Fundamentaltheorem der automorphen Funktionen im Grenzkreisfall. Jahresber. Dtsch. Math.-Ver. 21, 154–157 (1912g)

    Google Scholar 

  • Brouwer, L.E.J.: Continuous one-one transformations of surfaces in themselves, V. K. Ned. Akad. Wet. Proc. Sect. Sci. 15, 352–360 (1912h)

    Google Scholar 

  • Brouwer, L.E.J.: Beweis der Invarianz der geschlossenen Kurve. Math. Ann. 72, 422–425 (1912i)

    Article  MathSciNet  MATH  Google Scholar 

  • Brouwer, L.E.J.: On looping coefficients. K. Ned. Akad. Proc. 15, 113–122 (1912j)

    Google Scholar 

  • Brouwer, L.E.J.: Über den natürlichen Dimensionsbegriff. J. Reine Angew. Math. 142, 146–152 (1913a). Corr. in Brouwer (1924h)

    MATH  Google Scholar 

  • Brouwer, L.E.J.: Énumération des groupes finis de transformations topologiques du tore. C. R. Math. Acad. Sci. Paris 168, 845–848 (1919f)

    MATH  Google Scholar 

  • Brouwer, L.E.J.: Énumération des groupes finis de transformations topologiques du tore. C. R. Math. Acad. Sci. Paris 168, 1168 (1919g)

    Google Scholar 

  • Brouwer, L.E.J.: Über eineindeutige stetige Transformationen von Flächen in sich, VI. K. Ned. Akad. Wet. Proc. Sect. Sci. 21, 707–710 (1919i)

    Google Scholar 

  • Brouwer, L.E.J.: Zur Geschichtsschreibung der Dimensionstheorie. K. Ned. Akad. Wet. Versl. Gewone Vergad. Afd. Natuurkd. 37, 626 (1928e)

    Google Scholar 

  • Dieudonné, J.: A History of Algebraic and Differential Topology, 1900–1960. Birkhäuser, Basel (1989)

    MATH  Google Scholar 

  • Freudenthal, H.: The cradle of modern topology, according to Brouwer’s inedita. Hist. Math. 2, 495–502 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Freudenthal, H.: Een manuscript van Brouwer. In: Tweehonderd Jaar Onvermoeide Arbeid. Tentoonstellingscatalogus, vol. 2, pp. 43–55. Mathematisch Centrum, Amsterdam (1979)

    Google Scholar 

  • Freudenthal, H.: A bit of gossip: Koebe. Math. Intell. 6, 77 (1984)

    Article  Google Scholar 

  • Fricke, R., Klein, F.: Vorlesungen über die Theorie der automorphen Functionen I. Teubner, Leipzig (1897)

    Google Scholar 

  • Fricke, R., Klein, F.: Vorlesungen über die Theorie der automorphen Functionen II. Teubner, Leipzig (1912)

    Google Scholar 

  • Hadamard, J.: Sur quelques applications de l’indice de Kronecker. In: Tannéry, J. (ed.) Introduction à la théorie des fonctions, 2nd edn., vol. 2, pp. 437–477 (1910)

    Google Scholar 

  • Hopf, H.: Ein Abschnitt aus der Entwicklung der Topologie. Jahresber. Dtsch. Math.-Ver. 68, 182–192 (1966)

    MathSciNet  MATH  Google Scholar 

  • Johnson, D.M.: The problem of the invariance of dimension in the growth of modern topology, part I. Arch. Hist. Exact Sci. 20, 97–188 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, D.M.: The problem of the invariance of dimension in the growth of modern topology, part II. Arch. Hist. Exact Sci. 25, 85–267 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Klein, F.: Zum Kontinuitätsbeweise des Fundamentaltheorems. In: Bessel-Hagen, E., Fricke, R., Vermeil, H. (eds.) Gesammelte Mathematische Abhandlungen III, vol. 3, pp. 731–741. Springer, Berlin (1923)

    Chapter  Google Scholar 

  • Klein, F.: Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert II. Springer, Berlin (1927)

    Google Scholar 

  • Koebe, P.: Zur theorie der konforme Abbildung und Uniformisierung (Voranzeige). Sitzungsber. Sächs. Akad. Wiss. Leipz., Math.-Nat. Wiss. Kl. 66, 67–75 (1914)

    Google Scholar 

  • Koebe, P.: Wesen der Kontinuitätsmethode. Dtsch. Math. 1, 859–879 (1936)

    Google Scholar 

  • Kühnau, R.: Paul Koebe und die Funktionentheorie. In: Schumann, H., Beckert, H. (eds.) 100 Jahre Mathematisches Seminar der Karl-Marx-Universität Leipzig, pp. 183–194. VEB Deutscher Verlag der Wissenschaften, Leipzig (1981)

    Google Scholar 

  • Lebesgue, H.: Sur la non-applicabilité de deux domaines appartenant respectivement des espaces à n et n+p dimensions (Extrait d’une lettre à M.O. Blumenthal). Math. Ann. 70, 166–168 (1911a)

    Article  MathSciNet  Google Scholar 

  • Lebesgue, H.: Sur l’invariance du nombre de dimensions d’un espace et sur le théorème de M. Jordan relatif aux variété fermées. C. R. Math. Acad. Sci. Paris 152, 841–843 (1911b)

    MATH  Google Scholar 

  • Lebesgue, H.: Sur les correspondances entre les points de deux espaces. Fundam. Math. 2, 256–285 (1921)

    MATH  Google Scholar 

  • Nevanlinna, R.: Uniformisierung. Springer, Berlin, (1953)

    Book  MATH  Google Scholar 

  • Noether, E., Cavaillès, J.: Briefwechsel Cantor–Dedekind. Hermann, Paris (1937)

    MATH  Google Scholar 

  • Poincaré, H.: Les méthodes nouvelles de la mécanique céleste. III. Gauthier-Villars, Paris (1899)

    Google Scholar 

  • Schoenflies, A.: Die Entwicklung der Lehre von den Punktmannigfaltigkeiten. II. Teubner, Leipzig (1908)

    MATH  Google Scholar 

  • Wiessing, H.: Bewegend Portret. Moussault, Amsterdam (1960)

    Google Scholar 

  • Young, G.C., Young, W.H.: The Theory of Sets of Points. Cambridge University Press, Cambridge (1906)

    MATH  Google Scholar 

  • Zoretti, L.: Review of A. Schoenflies’ “Entwicklung der Lehre von den Punktmannigfaltigkeiten. II”. Bull. Soc. Math. Fr. 35, 283–288 (1911)

    Google Scholar 

  • Zorin, V.K.: On Poincaré’s letter to Brouwer. Russ. Math. Surv. 27, 166–168 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

van Dalen, D. (2013). The New Topology. In: L.E.J. Brouwer – Topologist, Intuitionist, Philosopher. Springer, London. https://doi.org/10.1007/978-1-4471-4616-2_5

Download citation

Publish with us

Policies and ethics