Skip to main content

Engineering Small Animal Conformal Radiotherapy Systems

  • Chapter
  • First Online:
Engineering in Translational Medicine

Abstract

Small animal conformal radiotherapy platforms are important tools for translational research in the field of radiation oncology. It is crucial that the effects of radiotherapy on small animals are studied under the same conditions under which clinical radiotherapy is delivered. In this chapter, the engineering aspects of small animal radiotherapy systems, including the sources of radiation, beam collimation, and imaging techniques are described. An overview of the principal existing systems is given, and their current and future applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BLI:

Bioluminescence imaging

CBCT:

Cone-beam computed tomography

CT:

Computed tomography

DERT:

Dose-enhanced radiotherapy

IGRT:

Image-guided radiotherapy

kV:

Kilovoltage

LPS:

Lipopolysaccharides

MC:

Monte Carlo

MLC:

Multileaf collimator

MV:

Megavoltage

NPC:

Neural progenitor cells

NTCP:

Normal tissue complication probability

PDT:

Photodynamic therapy

SARRP:

Small animal radiation research platform

TCP:

Tumor control probability

References

  1. Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, Zucker D (2005) XCOM: photon cross section database NBSIR 87-3597. Web version 1.3 (http://physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html)

  2. Adler JR, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL (1997) The cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 69(1–4):124–128

    Article  Google Scholar 

  3. Graves EE, Zhou H, Chatterjee R, Keall PJ, Gambhir SS, Contag CH, Boyer AL (2007) Design and evaluation of a variable aperture collimator for conformal radiotherapy of small animals using a microCT scanner. Med Phys 34(11):4359–4367. doi:10.1118/1.2789498

    Article  Google Scholar 

  4. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am a: Opt Im Sci and Vis 1(6):612–619. doi:10.1364/josaa.1.000612

    Article  Google Scholar 

  5. Yan G, Tian J, Zhu S, Dai Y, Qin C (2008) Fast cone-beam CT image reconstruction using GPU hardware. J X-Ray Sci Tech 16(4):225–234

    Google Scholar 

  6. Jenkins DE, Oei Y, Hornig YS, Yu SF, Dusich J, Purchio T, Contag PR (2003) Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis. Clin Exp Metastasis 20(8):733–744. doi:10.1023/b:clin.0000006815.49932.98

    Article  Google Scholar 

  7. Stojadinovic S, Low DA, Hope AJ, Vicic M, Deasy JO, Cui J, Khullar D, Parikh PJ, Malinowski KT, Izaguirre EW, Mutic S, Grigsby PW (2007) MicroRT: small animal conformal irradiator. Med Phys 34(12):4706–4716. doi:10.1118/1.2799887

    Article  Google Scholar 

  8. Tryggestad E, Armour M, Iordachita I, Verhaegen F, Wong JW (2009) A comprehensive system for dosimetric commissioning and Monte Carlo validation for the small animal radiation research platform. Phys Med Biol 54(17):5341–5357. doi:10.1088/0031-9155/54/17/017

    Article  Google Scholar 

  9. Kawrakow I, Rogers DWO (2003) The EGSnrc code system: Monte Carlo simulation of electron and photon transport. NRCC Report PIRS-701, National Research Council, Ottawa, Canada

    Google Scholar 

  10. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell’Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Cadenas JJG, Gonzalez I, Abril GG, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones FW, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampen T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, de Freitas PM, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O’Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia MG, Ranjard F, Rybin A, Sadilov S, Di Salvo E, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Seil S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaev E, Tehrani ES, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch JP, Wenaus T, Williams DC, Wright D, Yamada T, Yoshida H, Zschiesche D (2003) GEANT4-a simulation toolkit. Nucl Instrum Method Phys Res Sect A: Acceler Spectrom Det Assoc Equip 506(3):250–303. doi:10.1016/s0168-9002(03)01368-8

    Article  Google Scholar 

  11. Pelowitz DB (2008) MCNPX User's Manual, Version 2.6.0. Los Alamos National Laboratory Report No. LA-CP-07-1473, Los Alamos, NM

    Google Scholar 

  12. Bazalova M, Zhou H, Keall PJ, Graves EE (2009) Kilovoltage beam Monte Carlo dose calculations in submillimeter voxels for small animal radiotherapy. Med Phys 36(11):4991–4999. doi:10.1118/1.3238465

    Article  Google Scholar 

  13. Bazalova M, Graves EE (2011) The importance of tissue segmentation for dose calculations for kilovoltage radiation therapy. Med Phys 38(6):3039–3049. doi:10.1118/1.3589138

    Article  Google Scholar 

  14. Motomura AR, Bazalova M, Zhou H, Keall PJ, Graves EE (2010) Investigation of the effects of treatment planning variables in small animal radiotherapy dose distributions. Med Phys 37(2):590–599. doi:10.1118/1.3276738

    Article  Google Scholar 

  15. Ma CM, Coffey CW, DeWerd LA, Liu C, Nath R, Seltzer SM, Seuntjens JP (2001) AAPM protocol for 40–300 kV x-ray beam dosimetry in radiotherapy and radiobiology. Med Phys 28(6):868–893. doi:10.1118/1.1374247

    Article  Google Scholar 

  16. Du LY, Umoh J, Nikolov HN, Pollmann SI, Lee TY, Holdsworth DW (2007) A quality assurance phantom for the performance evaluation of volumetric micro-CT systems. Phys Med Biol 52(23):7087–7108. doi:10.1088/0031-9155/52/23/021

    Article  Google Scholar 

  17. Wong J, Armour E, Kazanzides P, Iordachita U, Tryggestad E, Deng H, Matinfar M, Kennedy C, Liu ZJ, Chan T, Gray O, Verhaegen F, McNutt T, Ford E, DeWeese TL (2008) High-resolution, small animal radiation research platform with X-ray tomographic guidance capabilities. Int J Rad Oncol Biol Phys 71(5):1591–1599. doi:10.1016/j.ijrobp.2008.04.025

    Article  Google Scholar 

  18. Matinfar M, Ford E, Iordachita I, Wong J, Kazanzides P (2009) Image-guided small animal radiation research platform: calibration of treatment beam alignment. Phys Med Biol 54(4):891–905. doi:10.1088/0031-9155/54/4/005

    Article  Google Scholar 

  19. Clarkson R, Lindsay PE, Ansell S, Wilson G, Jelveh S, Hill RP, Jaffray DA (2011) Characterization of image quality and image-guidance performance of a preclinical microirradiator. Med Phys 38(2):845–856. doi:10.1118/1.3533947

    Article  Google Scholar 

  20. Zhou H, Rodriguez M, van den Haak F, Nelson G, Jogani R, Xu J, Zhu X, Xian Y, Tran PT, Felsher DW, Keall PJ, Graves EE (2010) Development of a micro-computed tomography–based image-guided conformal radiotherapy system for small animals. Int J Rad Oncol Biol Phys 77(2):384–391

    Article  Google Scholar 

  21. Pidikiti R, Stojadinovic S, Speiser M, Song KH, Hager F, Saha D, Solberg TD (2011) Dosimetric characterization of an image-guided stereotactic small animal irradiator. Phys Med Biol 56(8):2585–2599. doi:10.1088/0031-9155/56/8/016

    Article  Google Scholar 

  22. Song KH, Pidikiti R, Stojadinovic S, Speiser M, Seliounine S, Saha D, Solberg TD (2010) An x-ray image guidance system for small animal stereotactic irradiation. Phys Med Biol 55(23):7345–7362. doi:10.1088/0031-9155/55/23/011

    Article  Google Scholar 

  23. Kiehl EL, Stojadinovic S, Malinowski KT, Limbrick D, Jost SC, Garbow JR, Rubin JB, Deasy JO, Khullar D, Izaguirre EW, Parikh PJ, Low DA, Hope AJ (2008) Feasibility of small animal cranial irradiation with the microRT system. Med Phys 35(10):4735–4743. doi:10.1118/1.2977762

    Article  Google Scholar 

  24. Redmond KJ, Achanta P, Grossman SA, Armour M, Reyes J, Kleinberg L, Tryggestad E, Quinones-Hinojosa A, Ford EC (2011) A radiotherapy technique to limit dose to neural progenitor cell niches without compromising tumor coverage. J Neur Oncol 104(2):579–587. doi:10.1007/s11060-011-0530-8

    Article  Google Scholar 

  25. Lo VCK, Akens MK, Moore S, Yee AJM, Wilson BC, Whyne CM (2012) Beyond radiation therapy: photodynamic therapy maintains structural integrity of irradiated healthy and metastatically involved vertebrae in a pre-clinical in vivo model. Breast Cancer Res Treat 135(2):391–401. doi:10.1007/s10549-012-2146-x

    Article  Google Scholar 

  26. Zaidi A, Jelveh S, Mahmood J, Hill RP (2012) Effects of lipopolysaccharide on the response of C57BL/6 J mice to whole thorax irradiation. Rad Oncol 105(3):341–349. doi:10.1016/j.radonc.2012.08.003

    Article  Google Scholar 

  27. Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG, Hill RP, Jaffray DA (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173(6):719–728. doi:10.1667/rr1984.1

    Article  Google Scholar 

  28. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49(18):N309–N315. doi:10.1088/0031-9155/49/18/n03

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward E. Graves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Bazalova, M., Graves, E.E. (2014). Engineering Small Animal Conformal Radiotherapy Systems. In: Cai, W. (eds) Engineering in Translational Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4372-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4372-7_31

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4371-0

  • Online ISBN: 978-1-4471-4372-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics