Skip to main content

Mechanisms of the Acute Attack of Gout and Its Resolution

  • Chapter
  • First Online:
Gout
  • 2245 Accesses

Abstract

Molecular mediators that are responsible for the acute inflammatory reaction in gout and in other inflammatory processes are reviewed in detail. The acute attack is an example of inflammation mediated by the innate immune system and eventually involves a broad array of mediators. All of this serves as a guide for the therapy of the acute attack of gout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Phelps P. Appearance of nondialyzable chemotactic activity following intraarticular injection of monosodium urate crystals. Arthritis Rheum. 1969;12:324.

    Google Scholar 

  2. Hermanns W, Schulz LC. Enzyme histochemical studies of the homogeneity of the mononuclear phagocyte system with special reference to the synovium. Agents Actions. 1982;11:117.

    CAS  Google Scholar 

  3. Barland P, Novikoff AB, Hamerman D. Electron microscopy of the human synovial membrane. J Cell Biol. 1962;14:207.

    Article  PubMed  CAS  Google Scholar 

  4. Ghadially FN. Fine structure of joints. In: Sokoloff L, editor. The joints and synovial fluid. New York: Academic; 1978. p. 110–20.

    Google Scholar 

  5. Graabaek PM. Ultrastructural evidence for two distinct types of synoviocytes in rat synovial membrane. J Ultrastruct Res. 1982;78:321.

    Article  PubMed  CAS  Google Scholar 

  6. Okada Y, Nakanishi I, Kajikawa K. Ultrastructure of the mouse synovial membrane. Arthritis Rheum. 1981;24:835.

    Article  PubMed  CAS  Google Scholar 

  7. Ghadially FN, Roy S. Ultrastructure of synovial joints in health and disease. London: Butterworths; 1969.

    Google Scholar 

  8. Edwards JC. The origin of type A synovial lining cells. Immunobiology. 1982;161:227.

    Article  PubMed  CAS  Google Scholar 

  9. Edwards JC, Sedgewick AD, Willoughby DA. Membrane properties and esterase activity of synovial lining cells: further evidence for a mononuclear phagocyte subpopulation. Ann Rheum Dis. 1982;41:282.

    Article  PubMed  CAS  Google Scholar 

  10. Goulding NJ, Dixey J, Morand EF, et al. Differential distribution of annexins-1, -11, -IV, and -VI in synovium. Ann Rheum Dis. 1995;54:841.

    Article  PubMed  CAS  Google Scholar 

  11. Edwards JCW. Fibroblast biology: development and differentiation of synovial fibroblasts in arthritis. Arthritis Res. 2002;2:344.

    Article  Google Scholar 

  12. Pap T, Muller-Ladner U, Gay RE, Gay S. Fibroblast biology: role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis. Arthritis Res. 2000;2:361.

    Article  PubMed  CAS  Google Scholar 

  13. Wilkinson LS, Pitsillides AA, Worrall JG, Edwards JC. Light microscopic characterization of the fibroblast-like synovial intimal cell (synoviocyte). Arthritis Rheum. 1992;35:1179.

    Article  PubMed  CAS  Google Scholar 

  14. Pitsillides AA, Wilkinson LS, Mehdszadeh S. Uridine diphosphoglucose dehydrogenase activity in normal and rheumatoid synovium: the description of a specialized synovial lining cell. Int J Exp Pathol. 1993;74:27.

    PubMed  CAS  Google Scholar 

  15. Davis LS. A question of transformation. The synovial fibroblast in rheumatoid arthritis. Am J Pathol. 2003;162:1399.

    Article  PubMed  Google Scholar 

  16. Konttinen YT, Ainola M, Valleala H, et al. Analysis of 16 different matrix metalloproteinases (MMP-1 to MMP-20) in the synovial membrane: different profiles in trauma and rheumatoid arthritis. Ann Rheum Dis. 1999;58:691.

    Article  PubMed  CAS  Google Scholar 

  17. Konttinen YT, Li TF, Hukkanen M, et al. Fibroblast biology: signals targeting the synovial fibroblast in arthritis. Arthritis Res. 2000;2:348.

    Article  PubMed  CAS  Google Scholar 

  18. Konttinen YT, Li TF, Xu JW, et al. Expression of laminins and their integrin receptors in different ­conditions of synovial membrane and synovial ­membrane-like interface tissue. Ann Rheum Dis. 1999;58:683.

    Article  PubMed  CAS  Google Scholar 

  19. Pirila L, Aho H, Roivainene A, et al. Identification of alpha6beta1 integrin positive cells in synovial lining layer as type B synoviocytes. J Rheumatol. 2001;28:478.

    PubMed  CAS  Google Scholar 

  20. Tolboom TCA, Pieterman E, van der Laan WH, et al. Invasive properties of fibroblast-like synoviocytes: correlation with growth characteristics and expression of MMP-1, MMP-3, and MMP-10. Ann Rheum Dis. 2002;61:975.

    Article  PubMed  CAS  Google Scholar 

  21. Muller-Ladner U, Gay S. MMPs and rheumatoid synovial fibroblasts: siamese twins in joint destruction? Ann Rheum Dis. 2002;61:957.

    Article  PubMed  CAS  Google Scholar 

  22. Hou WS, Li W, Keyszer G, et al. Comparison of cathepsin K and S expression within the rheumatoid and osteoarthritic synovium. Arthritis Rheum. 2002; 46:663.

    Article  PubMed  CAS  Google Scholar 

  23. Hou WS, Li Z, Gordon RE, et al. Cathepsin k is a critical protease in synovial fibroblast-mediated collagen degradation. Am J Pathol. 2001;159:2167.

    Article  PubMed  CAS  Google Scholar 

  24. Wilkinson LS, Edwards JC, Poston RN, Haskard DO. Expression of vascular cell adhesion molecule-1 in normal and inflamed synovium. Lab Invest. 1993;68:82.

    PubMed  CAS  Google Scholar 

  25. Mentzer SJ, Rothlein R, Springer TA, Faller DV. Intercellular adhesion molecule-1 (ICAM-1) is involved in the cytolytic T lymphocyte interaction with human synovial cells. J Cell Physiol. 1988;137:173.

    Article  PubMed  CAS  Google Scholar 

  26. Jonathan CW, Edwards JC. Fibroblast biology. Development and differentiation of synovial fibroblasts in arthritis. Arthritis Res. 2000;2:344.

    Article  Google Scholar 

  27. Revell PA, AI-Saffar N, Fish S, Osei D. Extracellular matrix of the synovial intimal cell layer. Ann Rheum Dis. 1995;54:404.

    Article  PubMed  CAS  Google Scholar 

  28. Waggett AD, Kielty CM, Shuttleworth CA. Microfibrillar elements in the synovial joint: presence of type VI collagen and fibrillin-containing microfibrils. Ann Rheum Dis. 1993;52:449.

    Article  PubMed  CAS  Google Scholar 

  29. Worrall JG, Bayliss MT, Edwards JCW. Zonal distribution of sulphated proteoglycans in normal and rheumatoid synovium. Ann Rheum Dis. 1994;53:35.

    Article  PubMed  CAS  Google Scholar 

  30. Edwards JCW. Fibroblast-like synovial lining cells. In: Henderson B, Edwards JCW, Pettifer ER, editors. Mechanisms and models in rheumatoid arthritis. New York: Academic; 1995. p. 153–62.

    Chapter  Google Scholar 

  31. Medof ME, Walter EL, Rutgers JL, et al. Identification of the complement decay accelerating factor on epithelium and glandular cells and in body fluids. J Exp Med. 1987;165:848.

    Article  PubMed  CAS  Google Scholar 

  32. Rice GE, Munro JM, Corless C, Bevilacqua MP. Vascular and non-vascular expression of INCAM-110; a target for mononuclear leucocyte adhesion in normal and inflamed human tissues. Am J Pathol. 1991;138:385.

    PubMed  CAS  Google Scholar 

  33. Edwards JCW, Leigh RD, Cambridge G. Expression of molecules involved in B lymphocyte survival and differentiation by synovial fibroblasts. Clin Exp Immunol. 1997;108:407.

    Article  PubMed  CAS  Google Scholar 

  34. Jay GO. Characterization of a bovine synovial fluid lubricating factor. I. Chemical, surface activity and lubricating properties. Connect Tissue Res. 1992; 28:71.

    Article  PubMed  CAS  Google Scholar 

  35. Dobbie JW. Surfactant protein A and lamellar bodies: a homologous secretory function of peritoneum, synovium, and lung. Perit Dial Int. 1996;16:574.

    PubMed  CAS  Google Scholar 

  36. EI-Gabalawy H, King R, Bernstein C, et al. Expression of N-acetyl-0-galactosamine associated epitope in synovium: a potential marker of glycoprotein production. J Rheumatol. 1997;24:1355.

    Google Scholar 

  37. Proudman SM, Cleland LG, Fusco M, Mayrhofer G. Accessible xenografts of human synovium in the subcutaneous tissues of the ears of SCID mice. Immunol Cell Biol. 1989;59:1203.

    Google Scholar 

  38. Hamerman D, Barland P. Structure and function of the synovial membrane. Bull Rheum Dis. 1966;16:396.

    PubMed  CAS  Google Scholar 

  39. Wilkinson LS, Edwards JC. Microvascular distribution in normal human synovium. J Anat. 1989;167:129.

    PubMed  CAS  Google Scholar 

  40. Schumacher Jr HR. Ultrastructure of the synovial membrane. Ann Clin Lab Sci. 1975;5:489.

    PubMed  Google Scholar 

  41. Levick JR. Microvascular architecture and exchange in synovial joints. Microcirculation. 1975;2:217.

    Article  Google Scholar 

  42. Matsubara T, Ziff M. Basement membrane thickening of postcapillary venules and capillaries in rheumatoid synovium: immunoelectron microscopic and electron microscopic morphometric analysis. Arthritis Rheum. 1987;30:18.

    Article  PubMed  CAS  Google Scholar 

  43. Agudelo C, Schumacher HR. The synovitis of acute gouty arthritis: a light and electron microscopic study. Hum Pathol. 1973;4:265.

    Article  PubMed  CAS  Google Scholar 

  44. Neal C, Read N, Goodwin D, Edwards JC. Fenestration of tenosynovial capillaries. Br J Rheumatol. 1989;28:31.

    Article  PubMed  CAS  Google Scholar 

  45. Wilkinson LS, Edwards JC. Demonstration of lymphatics in human synovial tissue. Rheumatol Int. 1991;11:151.

    Article  PubMed  CAS  Google Scholar 

  46. Osborn L, Hession C, Tizard R, et al. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell. 1989;59:1203.

    Article  PubMed  CAS  Google Scholar 

  47. Rice GE, Munro JM, Bevilacqua MP. Inducible cell adhesion molecule 110 (INCAM-110) is an endothelial receptor for lymphocytes. A CD 11/CD 18-independent adhesion mechanism. J Exp Med. 1990;171:1369.

    Article  PubMed  CAS  Google Scholar 

  48. Pober JS, Lapierre LA, Stolpen AH, et al. Activation of cultured human endothelial cells by recombinant lymphotoxin: comparison with tumor necrosis factor and interleukin 1 species. J Immunol. 1987;138:3319.

    PubMed  CAS  Google Scholar 

  49. Osborn L. Leukocyte adhesion to endothelium in inflammation. Cell. 1990;62:3.

    Article  PubMed  CAS  Google Scholar 

  50. Stoolman LM. Adhesion molecules controlling lymphocyte migration. Cell. 1989;56:907.

    Article  PubMed  CAS  Google Scholar 

  51. McEver RP. Seclectins: novel receptors that mediate leukocyte adhesion during inflammation. Thromb Haemost. 1991;65:223.

    PubMed  CAS  Google Scholar 

  52. Hynes RO. Lntegrins: a family of cell surface receptors. Cell. 1987;48:549.

    Article  PubMed  CAS  Google Scholar 

  53. Werb Z, Tremble PM, Behrendtsen O, et al. Signal transduction through the fibrinectin receptor induces collagenase and stromelysin gene expression. J Cell Biol. 1989;109:877.

    Article  PubMed  CAS  Google Scholar 

  54. Ginsberg MH, Loftus JC, Ryckwaert J-J, et al. Immunochemical and amino-terminal sequence comparison of two cytoadhesions indicates they contain similar or identical beta subunits and distinct alpha subunits. J Biol Chem. 1987;262:5437.

    PubMed  CAS  Google Scholar 

  55. Holzmann B, Weissman IL. Peyer’s patch-specific lymphocyte homing receptors consist of a VLA-4-Iike a chain associated with either of two J3 chains, one of which is novel. EMBO J. 1989;8:1735.

    PubMed  CAS  Google Scholar 

  56. Kajiji S, Tamura RN, Quaranta V. A novel integrin (aEJ3 4) from human epithelial cells suggests a fourth family of integrin adhesion receptors. EMBO J. 1989;8:673.

    PubMed  CAS  Google Scholar 

  57. Hemler ME, Crouse C, Sonnenberg A. Association of the VLA alpha 6 subunit with a novel protein. A possible alternative to the common VLA beta 1 subunit of certain cell lines. J Biol Chem. 1989;264:6529.

    PubMed  CAS  Google Scholar 

  58. Cheresh DA, Smith JW, Cooper HM, Quaranta V. A novel vitronectin receptor integrin (avJ3x) is responsible for distinct properties of carcinoma cells. Cell. 1989;57:59.

    Article  PubMed  CAS  Google Scholar 

  59. Vogel BE, Ryan G, Giancotti FG, Ruoslahti E. A novel fibrinectin receptor with an unexpected subunit composition (alphaVB1). J Biol Chem. 1990;265:5934.

    PubMed  CAS  Google Scholar 

  60. Ramaswamy H, Hemler ME. Cloning, primary structure and properties of a novel human integrin beta subunit. EMBO J. 1990;9:1561.

    PubMed  CAS  Google Scholar 

  61. Carter WG, Ryan MC, Gahr PJ. Epiligrin, a new cell adhesion ligand for integrin alpha3beta1 in epithelial basement membranes. Cell. 1991;65:599.

    Article  PubMed  CAS  Google Scholar 

  62. Isberg RR, Leong JM. Multiple B1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell. 1990;65:861.

    Article  Google Scholar 

  63. Demaziere A, Athanasou NA. Adhesion receptors of intimal and subintimal cells of the normal synovial membrane. J Pathol. 1992;168:209.

    Article  PubMed  CAS  Google Scholar 

  64. Fairburn K, Kunaver M, Wilkinson LS, et al. Intercellular adhesion molecules in normal synovium. Br J Rheumatol. 1993;32:302.

    Article  PubMed  CAS  Google Scholar 

  65. Szekanecz Z, Haines GK, Lin TR, et al. Differential distribution of intercellular adhesion molecules (ICAM-1, ICAM-2, and ICAM-3) and MS-1 antigen in normal and diseased synovia. Their possible pathogenetic and clinical significance in rheumatoid arthritis. Arthritis Rheum. 1994;37:221.

    Article  PubMed  CAS  Google Scholar 

  66. Wilkinson LS, Edwards JC, Posston LN, Haskard DO. Expression of vascular cell adhesion molecule-1 in normal and inflamed synovium. Lab Invest. 1993;68:82.

    PubMed  CAS  Google Scholar 

  67. Kaneko M, Inoue H, Nakazawa R, et al. Pirfenidone induces intercellular adhesion molecule-1 (ICAM-1) down-regulation on cultured synovial fibroblasts. Clin Exp Immunol. 1998;113:72.

    Article  PubMed  CAS  Google Scholar 

  68. Pernow P. Substance P. Pharmacol Rev. 1983;35:85.

    PubMed  CAS  Google Scholar 

  69. Inman RD, Chin B, Marshall KW. Substance P and arthritis. Analysis of plasma and synovial fluid levels. Arthritis Rheum. 1986;29:S9.

    Google Scholar 

  70. Webster ME, Maling HM, Zweig MH, et al. Urate crystal induced inflammation in the rat: evidence for the combined actions of kinins, histamine and components of complement. Immunol Commun. 1972;1:185.

    PubMed  CAS  Google Scholar 

  71. Freudweiler M. Experimentalle untersuchungen uber dase wesen der gichtknoten. Dtsch Arch Klin Med. 1899;63:266.

    Google Scholar 

  72. Freudweiler M. Experimentalle untersuchungen uber die enstchung der gichtknoten. Dtsch Arch Klin Med. 1909;69:155. English translation: Experimental investigations into the origin of gouty tophi. Arthritis Rheum. 1965;1:270.

    Google Scholar 

  73. His WH. Schicksal und wirkungend des sauren harnsauren natrons in bauch und gelenkohle des kaninchens. Dtsch Arch Klin Med. 1900;67:81.

    Google Scholar 

  74. McCarty Jr OJ, Hollander JL. Identification of urate crystals in gouty synovial fluid. Ann Intern Med. 1961;54:452.

    PubMed  CAS  Google Scholar 

  75. Maclachlan MJ, Rodnan GP. Effects of food, fast and alcohol on serum uric acid and acute attacks of gout. Am J Med. 1967;42:38.

    Article  PubMed  CAS  Google Scholar 

  76. Richet G, Mignon F, Ardaillon R. Goutte secondaire der nephropathies chroniques. Presse Med. 1965;73:633.

    PubMed  CAS  Google Scholar 

  77. Ropes MW, Bauer W. Synovial fluid changes in joint disease. Cambridge: Harvard University Press; 1953. p. 150.

    Google Scholar 

  78. Seegmiller JE. Serum uric acid. In: Cohen AS, editor. Laboratory procedures in the rheumatic diseases. 2nd ed. Boston: Little Brown & Company; 1974. p. 216.

    Google Scholar 

  79. Dorner RW, Weiss TE, Baldassare AR, et al. Plasma and synovial fluid as solvents for monosodium urate. Ann Rheum Dis. 1981;40:70.

    Article  PubMed  CAS  Google Scholar 

  80. Horvath SM, Hollander JL. Intra-articular temperature as a measure of joint reaction. J Clin Invest. 1949;28:469.

    Article  PubMed  CAS  Google Scholar 

  81. Hollander JL, Stoner EK, Brown Jr EM, et al. Joint temperature measurements in the evaluation of antiarthritic agents. J Clin Invest. 1951;30:701.

    Article  PubMed  CAS  Google Scholar 

  82. Hollander JL, Horvath SM. The influence of physical therapy procedures on intra-articular temperature of normal and arthritic subjects. Am J Med Sci. 1949;218:543.

    Article  PubMed  CAS  Google Scholar 

  83. Loeb JN. The influence of temperature on the solubility of monosodium urate. Arthritis Rheum. 1972;15:189.

    Article  PubMed  CAS  Google Scholar 

  84. Simkin PA, Campbell PM, Larson EB. Gout in Heberden’s nodes. Arthritis Rheum. 1983;26:94.

    Article  PubMed  CAS  Google Scholar 

  85. Parhami N, Greenstein N, Juozevicius JL. Erosive osteoarthritis and gout. Gout in 36 joints. J Rheumatol. 1986;11:469.

    Google Scholar 

  86. Fam AG, Stein J, Rubenstein J. Gouty arthritis in nodal osteoarthritis. J Rheumatol. 1996;23:684.

    PubMed  CAS  Google Scholar 

  87. McGill NW, Dieppe PA. The role of serum and synovial fluid components in the promotion of urate crystal formation. J Rheumatol. 1991;18:1042.

    PubMed  CAS  Google Scholar 

  88. Tak H-K, Cooper SM, Wilcox WR. Studies on the nucleation of monosodium urate at 37°C. Arthritis Rheum. 1980;23:574.

    Article  PubMed  CAS  Google Scholar 

  89. Sokoloff L. The pathology of gout. Metabolism. 1957;6:230.

    PubMed  CAS  Google Scholar 

  90. Katz WA, Schubert M. The solubility of monosodium urate in connective tissue components. J Clin Invest. 1970;49:1783.

    Article  PubMed  CAS  Google Scholar 

  91. Burt HM, Dutt YC. Growth of monosodium urate monohydrate crystals: effect of cartilage and synovial fluid components on in vitro growth. Ann Rheum Dis. 1986;45:858.

    Article  PubMed  CAS  Google Scholar 

  92. Brugsch T, Citron J. Ueber die absorption der harnsaure durch knorpel. Z Exp Pathol Ther. 1908;5:401.

    Article  Google Scholar 

  93. Perricone E, Brandt KD. Enhancement of urate solubility by connective tissue: 1. Effect of proteoglycan aggregates and buffer cation. Arthritis Rheum. 1978;21:453.

    Article  PubMed  CAS  Google Scholar 

  94. Alvsaker JO. Genetic studies in primary gout: investigations on the plasma levels of the urate­binding alpha-globulin in individuals from two gout kindred. J Clin Invest. 1968;47:1254.

    Article  PubMed  CAS  Google Scholar 

  95. Aakesson I, Alvsaker JO. The urate-binding alpha 1–2 globulin. Isolation and characterization of the protein from human plasma. Eur J Clin Invest. 1971;1:281.

    Article  PubMed  CAS  Google Scholar 

  96. Klinenberg JR, Kippen I. The binding of urate to plasma proteins determined by equilibrium dialysis. J Lab Clin Med. 1970;75:503.

    PubMed  CAS  Google Scholar 

  97. Hasselbacher P, Schumacher HR. Immunoglobulin in tophi and on the surface of monosodium urate crystals. Arthritis Rheum. 1978;21:353.

    Article  PubMed  CAS  Google Scholar 

  98. Cherian PV, Schumacher HR. Immunochemical and ultrastructural characterization of serum proteins associated with monosodium urate crystals in synovial fluid cells from patients with gout. Ultrastruct Pathol. 1986;10:209.

    Article  PubMed  CAS  Google Scholar 

  99. Kam M, Peri-Treves D, Caspi D, Addadi L. Antibodies against crystals. FASEB J. 1992;6:2608.

    PubMed  CAS  Google Scholar 

  100. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140:821–32.

    Article  PubMed  CAS  Google Scholar 

  101. Masters SL, et al. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu Rev Immunol. 2009;27:621–68.

    Article  PubMed  CAS  Google Scholar 

  102. Kastner DL, et al. Autoinflammatory disease reloaded: a clinical perspective. Cell. 2010;140:784–90.

    Article  PubMed  CAS  Google Scholar 

  103. Martinon F, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440: 237–41.

    Article  PubMed  CAS  Google Scholar 

  104. Chen C-J, et al. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest. 2006;116:2262–71.

    Article  PubMed  CAS  Google Scholar 

  105. Akahoshi T, Murakami Y, Kitasato H. Recent advances in crystal-induced acute inflammation. Curr Opin Rheumatol. 2007;19:146.

    Article  PubMed  CAS  Google Scholar 

  106. Gersch MS, Johnson RJ. Uric acid and the immune response. Nephrol Dial Transplant. 2006;21:3046.

    Article  PubMed  CAS  Google Scholar 

  107. Petrilli V, Martinon F. The inflammasome, autoin­flammatory diseases, and gout. Joint Bone Spine. 2007;74:571.

    Article  PubMed  CAS  Google Scholar 

  108. Martinon F, Petrilli V, Mayor A, et al. Gout-associated uric acid crystals activate NALP3 inflammasome. Nature. 2006;440:237.

    Article  PubMed  CAS  Google Scholar 

  109. Dostert C, Petrilli V, Van Bruggen R, et al. Innate immune activation through NALP3 inflammasome sensing of asbestos and silica. Science. 2008;320:674.

    Article  PubMed  CAS  Google Scholar 

  110. Kaisho T, Akira S. Toll-like receptors as adjuvant receptors. Biochim Biophys Acta. 2002;1589:1.

    Article  PubMed  CAS  Google Scholar 

  111. Kyburz D, Rethage J, Seibl R, et al. Bacterial peptidoglycans but not CpG oligodeoxynucleotides activate synovial fibroblasts by toll-like receptor signaling. Arthritis Rheum. 2003;48:642.

    Article  PubMed  CAS  Google Scholar 

  112. Medvedev AE, Kopydlowski KM, Vogel SN. Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and toll-like receptor 2 and 4 gene expression. J Immunol. 2000;164:5564.

    PubMed  CAS  Google Scholar 

  113. Gasse P, Riteau N, Charron S, et al. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am J Respir Crit Care Med. 2009;179:903.

    Article  PubMed  CAS  Google Scholar 

  114. Winzer M, Tausche AK, Aringer M. Crystal-induced activation of the inflammasome: gout and pseudogout. Z Rheumatol. 2009;68(9):733–9.

    Article  PubMed  CAS  Google Scholar 

  115. Janeway Jr CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197.

    Article  PubMed  CAS  Google Scholar 

  116. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783.

    Article  PubMed  CAS  Google Scholar 

  117. Cassel SL, Eisenbarth SC, Iyer SS, et al. The NALP3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci USA. 2008;105:9035.

    Article  PubMed  CAS  Google Scholar 

  118. Medzhitov R, Janeway Jr CA. An ancient system of host defense. Curr Opin Immunol. 1998;10:12.

    Article  PubMed  CAS  Google Scholar 

  119. Stutz A, Golenbock DT, Latz E. Inflammasomes: too big to miss. J Clin Invest. 2009;119:3502.

    Article  PubMed  CAS  Google Scholar 

  120. Meylan E, Tschopp J, Karin M. Intracellular pattern-recognition receptors in the host response. Nature. 2006;442:39.

    Article  PubMed  CAS  Google Scholar 

  121. Kawai T, Akira S. TLR signaling. Semin Immunol. 2007;19:24.

    Article  PubMed  CAS  Google Scholar 

  122. Werts C, Girardin SE, Philpott OJ. TIR, CARD and PYRIN: three domains for an antimicrobial triad. Cell Death Differ. 2006;13:798.

    Article  PubMed  CAS  Google Scholar 

  123. Fritz JH, Ferraro RL, Philpott OJ, Girardin SE. Nod-like proteins in immunity, inflammation and disease. Nat Immunol. 2006;7:1250.

    Article  PubMed  CAS  Google Scholar 

  124. Mariathasan S, Monack OM. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol. 2007;7:31.

    Article  PubMed  CAS  Google Scholar 

  125. Martinon F, Tschopp J. NLR join TLRs as innate sensors of pathogens. Trends Immunol. 2005;20:447.

    Article  CAS  Google Scholar 

  126. Ting JP-Y, Lovering RC, Alnemri ES, et al. The NLR gene family: a standard nomenclature. Immunity. 2008;28:285.

    Article  PubMed  CAS  Google Scholar 

  127. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing proll-beta. Mol Cell. 2002;10:417.

    Article  PubMed  CAS  Google Scholar 

  128. Martinon F, Mayor A, Tschopp J. The inflammasome: guardians of the body. Annu Rev Immunol. 2009;27:229.

    Article  PubMed  CAS  Google Scholar 

  129. Church LD, Cook GP, McDermott MF. Primer: inflammasomes and interleukin 1 in inflammatory disorders. Nat Clin Pract Rheumatol. 2008;4:34.

    Article  PubMed  CAS  Google Scholar 

  130. Petrilli V, Papin S, Dostert C, et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 2007;14:1583.

    Article  PubMed  CAS  Google Scholar 

  131. Stehlik C, Lee H, Dorfleutner A, et al. Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J Immunol. 2003;171:6154.

    PubMed  CAS  Google Scholar 

  132. Yamamoto M, Yaginama K, Tsutsui H, et al. ASC is essential for LPS-induced activation of procaspase-1 independently of TLR-associated signal adaptor molecules. Genes Cells. 2004;9:1055.

    Article  PubMed  CAS  Google Scholar 

  133. Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell. 2004;117:561.

    Article  PubMed  CAS  Google Scholar 

  134. Masumoto J, Taniguchi S, Ayukawa K, et al. ASC, a novel 22 kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J Biol Chem. 1999;274:33835.

    Article  PubMed  CAS  Google Scholar 

  135. Taniguchi S, Sagara J. Regulatory molecules involved in inflammasome formation with special reference to a key mediator protein, ASC. Semin Immunopathol. 2007;29:231.

    Article  PubMed  CAS  Google Scholar 

  136. Eder C. Mechanisms of interleukin-1beta release. Immunobiology. 2009;214(7):543–53.

    Article  PubMed  CAS  Google Scholar 

  137. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996;87:2095.

    PubMed  CAS  Google Scholar 

  138. Laughlin MJ, Kirkpatrick G, Sabiston N, et al. Hematopoietic recovery following high-dose combined alkylating-agent chemotherapy and autologous bone marrow support in patients in phase 1 clinical trials of colony stimulating factors: G-CSF, GM-CSF, IL-1, IL-2 and M-CSF. Ann Hematol. 1993;67:267.

    Article  PubMed  CAS  Google Scholar 

  139. Kitamura T, Takaku A. A preclinical and phase 1 clinical trial of IL-1. Exp Med. 1989;7:170.

    Google Scholar 

  140. Nemunaitis J, Applebaum FR, Lilliby K, et al. Phase 1 study of recombinant interleukin-1 in patients undergoing autologous bone marrow transplantation for acute myelogenous leukemia. Blood. 1994;83:3473.

    PubMed  CAS  Google Scholar 

  141. Tewari A, Buhles Jr WC, Starnes Jr HF. Preliminary report: effects of interleukin-1 on platelet counts. Lancet. 1990;336:712.

    Article  PubMed  CAS  Google Scholar 

  142. Crown J, Jakubowski A, Kemeny N, et al. A phase 1 trial of recombinant interleukin-1 alone and in combination with myelosuppressive doses of 5-fluorouracil in patients with gastrointestinal cancer. Blood. 1991;78:1420.

    PubMed  CAS  Google Scholar 

  143. Starnes HF. Biological effects of interleukin-1. Semin Hematol. 1991;28:43.

    Google Scholar 

  144. Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519.

    Article  PubMed  CAS  Google Scholar 

  145. Lee JK, Kim SH, Lewis EC, et al. Differences in signaling pathways by IL-1 and IL-18. Proc Natl Acad Sci USA. 2004;101:8815.

    Article  PubMed  CAS  Google Scholar 

  146. Dinarello CA. Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process. Am J Clin Nutr. 2006;83 Suppl 1:4475.

    Google Scholar 

  147. Dinarello CA. Therapeutic strategies to reduce IL-1 activity in treating local and systemic inflammation. Curr Opin Pharmacol. 2004;4:378.

    Article  PubMed  CAS  Google Scholar 

  148. Dinarello CA. Blocking IL-1 in systemic inflammation. J Exp Med. 2005;201:1355.

    Article  PubMed  CAS  Google Scholar 

  149. Apte RN, Voronov E. Interleukin-1 – a major pleiotropic cytokine in tumor-host interactions. Semin Cancer Biol. 2002;12:277.

    Article  PubMed  CAS  Google Scholar 

  150. Martin MU, Wesche H. Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochim Biophys Acta. 2002;1592:265.

    Article  PubMed  CAS  Google Scholar 

  151. Montovani A, Locati M, Polenanitti N, et al. Extracellular and intracellular decoys in the timing of inflammatory cytokines and Toll-like receptors: the new entry TIRS/SIGIRR. J Leukoc Biol. 2004;75:738.

    Article  CAS  Google Scholar 

  152. O’Neill LA. Signal transduction pathways activated by the IL-1 receptor/toll-like receptor superfamily. Top Microbial Immunol. 2002;270:47.

    Article  Google Scholar 

  153. Nakamura K, Okamura H, Wada M, et al. Endotoxin-induced serum factor that stimulates gamma interferon production. Infect Immun. 1989;57:590.

    PubMed  CAS  Google Scholar 

  154. Lebei-Binay S, Berger F, Zinzindohoue PH, et al. Interleukin-18: biological properties and clinical implications. Eur Cytokine Netw. 2000;11:15.

    Google Scholar 

  155. Puren AJ, Razeghi P, Fantuzzi G, Dinarello CA. Interleukin-18 enhances lipopolysaccharide­induced interferon-gamma production in human whole blood cultures. J Infect Dis. 1998;178:1830.

    Article  PubMed  CAS  Google Scholar 

  156. Puren AJ, Fantuzzi G, Gu Y, et al. lnterleukin-18 (IFN gamma-inducing factor) induces IL-8 and IL-1beta via TNF-alpha productions from non-CD14+ human blood mononuclear cells. J Clin Invest. 1999;101:711.

    Article  Google Scholar 

  157. Kohka H, Yoshino T, Iwagaki H, et al. Interleukin-18/interferon-gamma-inducing factor, a novel cytokine, upregulates ICAM-1 (CD54) expression in KG-1 cells. J Leukoc Biol. 1998;64:519.

    PubMed  CAS  Google Scholar 

  158. Gatti S, Beck J, Fantuzzi G, et al. Effect of interleukin-18 on mouse core body temperature. Am J Physiol Regul Integr Comp Physiol. 2002;282:R702.

    PubMed  CAS  Google Scholar 

  159. Li S, Goorha S, Ballou LR, Blatteis CM. Intracerebroventricular interleukin-6, macrophage inflammatory protein-1 beta and IL-18: pyrogenic and PGE(2)-mediated? Brain Res. 2003;992:76.

    Article  PubMed  CAS  Google Scholar 

  160. Reznekov LL, Kim SH, Westcott JY, et al. IL-18 binding protein increases spontaneous and IL-1 induced prostaglandin production via inhibition of IFN-gamma. Proc Natl Acad Sci USA. 2000;97:2174.

    Article  Google Scholar 

  161. Arndt PG, Fantuzzi G, Abraham E. Expression of interleukin-18 in the lung after endotoxemia or hemorrhage-induced acute lung injury. Am J Respir Cell Mol Biol. 2000;22:708.

    PubMed  CAS  Google Scholar 

  162. Yoshimato T, Tsutsui H, Tominaga K, et al. IL-18, although antiallergic when administered with IL-12, stimulates IL-4 and histamine release by basophils. Proc Natl Acad Sci USA. 1999;96:13962.

    Article  Google Scholar 

  163. Daemen MA, van’t Veer C, Wolfs TG, Buurman WA. Ischemia/reperfusion-induced IFN­gamma up-regulation: involvement of IL-12 and IL-18. J Immunol. 1999;162:5506.

    PubMed  CAS  Google Scholar 

  164. Yamada G, Shijubo N, Shigehara K, et al. Increased levels of circulating interleukin-18 in patients with advanced tuberculosis. Am J Respir Crit Care Med. 2000;161:1786.

    PubMed  CAS  Google Scholar 

  165. Lauw FN, Simpson AF, Prins JM, et al. Elevated plasma concentrations of interferon (IFN)­ gamma and the interferon-gamma inducing cytokines interleukin (IL)-18, IL-12, and IL-15 in severe melioidosis. J Infect Dis. 1999;180:1878.

    Article  PubMed  CAS  Google Scholar 

  166. Vasakayalapati R, Wizel B, Weis SE, et al. Production of interleukin-18 in human tuberculosis. J Infect Dis. 2000;180:234.

    Article  Google Scholar 

  167. Netea MG, Fantuzzi G, Kullberg BJ, et al. Neutralization of IL-18 reduces neutrophil tissue accumulation and protects mice against lethal Excherichia coli and Salmonella typhimurium endotoxemia. J Immunol. 2000;164:2644.

    PubMed  CAS  Google Scholar 

  168. Tsutsui H, Matsui K, Okamura H, Nakanishi K. Pathophysiological roles of interleukin-18 in inflammatory liver diseases. Immunol Rev. 2000;174:192.

    Article  PubMed  CAS  Google Scholar 

  169. Puren AJ, Fantuzzi G, Dinarello CA. Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1 beta are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc Natl Acad Sci USA. 1999;96:2256.

    Article  PubMed  CAS  Google Scholar 

  170. Duncan JA, Gao X, Huang MT, et al. Neisseria ­gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J Immunol. 2009;182:6460.

    Article  PubMed  CAS  Google Scholar 

  171. Allen IC, Scull MA, Moore CB, et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity. 2009;30:556.

    Article  PubMed  CAS  Google Scholar 

  172. Kanneganti TD, Lamkanfi M, Kim YG, et al. Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity. 2007;26:433.

    Article  PubMed  CAS  Google Scholar 

  173. Hornung V, Bauernfeind F, Halle A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9:847, 2008;9:83.

    Article  PubMed  CAS  Google Scholar 

  174. Sharp EA, Ruane D, Claass B, et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci USA. 2009;106:870.

    Article  PubMed  CAS  Google Scholar 

  175. Franchi L, Kanneganti TD, Dubyak GR, Nunez GJ. Differential requirement of P2X7 receptor and intracellular bacteria. J Biol Chem. 2007;282:188.

    Article  CAS  Google Scholar 

  176. Fernandez-Ainemri T. The pyroptosome: a supramolecular assembly of ASC dimmers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14:1590.

    Article  CAS  Google Scholar 

  177. Forman HJ, Torres M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med. 2002;166:S4.

    Article  PubMed  Google Scholar 

  178. Sekiyama A, Ueda H, Kashiwamura S, et al. A stress-induced, superoxide-mediated caspase-1 activation pathway causes IL-18 upregulation. Immunity. 2005;22:669.

    Article  PubMed  CAS  Google Scholar 

  179. Cruz CM, Rinna A, Forman HJ, et al. ATP activates a reactive organ species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem. 2007;282:2871.

    Article  PubMed  CAS  Google Scholar 

  180. Walev I, Reske K, Palmer M, et al. Potassium-inhibited processing of IL-1 beta in human monocytes. EMBO J. 1995;14:1607.

    PubMed  CAS  Google Scholar 

  181. Perregaux D, Gabel C. Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem. 1994;269:15195.

    PubMed  CAS  Google Scholar 

  182. Colomar A, Marty V, Medina C, et al. Maturation and release of interleukin-1 beta by lipopolysaccharide-primed mouse Schwann cells require the stimulation of P2X7 receptors. J Biol Chem. 2003;278:30732.

    Article  PubMed  CAS  Google Scholar 

  183. Cain K, Langlais C, Sun XM, et al. Physiological concentrations of K+ inhibit cytochrome c­dependent formation of the apoptosome. J Biol Chem. 2001;276:41985.

    Article  PubMed  CAS  Google Scholar 

  184. Faustin B, Lartigue L, Bruey JM, et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell. 2007;25:713.

    Article  PubMed  CAS  Google Scholar 

  185. Marina-Garcia N, Franchi L, Kim YG, et al. Pannexin-1-mediated intracellular delivery of muranyl dipeptide induces caspase-1 activation via cryopyrin/NLRP3 independently of Nod2. J Immunol. 2008;180:4050.

    PubMed  CAS  Google Scholar 

  186. Meissner F, Malawi K, Zychlinsky A. Superoxide dismutase 1 regulates caspase-1 and endotoxin shock. Nat Immunol. 2008;9:866.

    Article  PubMed  CAS  Google Scholar 

  187. Heutze H, Lin XY, Choi MS, Porter AG. Critical role for cathepsin B in mediating caspase-1- dependent interleukin-18 maturation and caspase-1-independent necrosis triggered by the microbial toxin nigericin. Cell Death Differ. 2003;10:956.

    Article  CAS  Google Scholar 

  188. Bauernfeind FC, Horvath G, Stutz A, et al. Cutting edge: NF-kappa B activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183:787.

    Article  PubMed  CAS  Google Scholar 

  189. Filippini A, Taffs RE, Sitkovsky MV. Extracellular ATP in T-lymphocyte activation: possible role in effector functions. Proc Natl Acad Sci USA. 1990;87:8267, 1991;88:6899.

    Article  PubMed  CAS  Google Scholar 

  190. Netea MG, Nold-Petry CA, Nold MF, et al. Differential requirement for the activation of the inflammasome for processing and release of IL-1 beta in monocytes and macrophages. Blood. 2009;113:2324.

    Article  PubMed  CAS  Google Scholar 

  191. Ferrari D, Chiozzi P, Falzoni S, et al. Purinergic modulation of interleukin-1 beta release from microglial cells stimulated with bacterial endotoxin. J Exp Med. 1997;185:579.

    Article  PubMed  CAS  Google Scholar 

  192. Piccini A, Carta S, Tassi S, et al. ATP is released by monocytes stimulated with pathogen­ sensing receptor ligands and induces IL-1 beta and IL-18 secretion in an autocrine way. Proc Natl Acad Sci USA. 2008;105:8067.

    Article  PubMed  CAS  Google Scholar 

  193. Koo IC, Wang C, Raghavan S, et al. ESX-1-dependent cytolysis is in lysosome secretion and inflammasome activation during mycobacterial infection. Cell Microbiol. 2008;10:1866.

    Article  PubMed  CAS  Google Scholar 

  194. Newman ZL, Lappla SH, Moayeri M. CA074 Me protection against anthrax lethal toxin. Infect Immun. 2009;77:4327.

    Article  PubMed  CAS  Google Scholar 

  195. Bazzoni F, Cassatella MA, Rossi F, et al. Phagocytosing neutrophils produce and release high amounts of neutrophil-activating peptide-1/interleukin-8. J Exp Med. 1991;173:771.

    Article  PubMed  CAS  Google Scholar 

  196. Ben-Baruch A, Michiel DF, Oppenheim JJ. Signals and receptors involved in recruitment of inflammatory cells. J Biol Chem. 1995;270:11703.

    Article  PubMed  CAS  Google Scholar 

  197. Foxman EF, Kunkel EJ, Butcher EC. Integrating conflicting chemotactic signals: the role of memory in leukocyte navigation. J Cell Biol. 1999;147:577.

    Article  PubMed  CAS  Google Scholar 

  198. Ahuja SK, Murphy PM. The CXC chemokines growth-regulated oncogene (GRO)a, GR0!3, GROy, neutrophil-activating peptide-78 and epithelial ­cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor. J Biol Chem. 1996; 271:20545.

    Article  PubMed  CAS  Google Scholar 

  199. Allport JR, Lim YC, Shipley JM, et al. Neutrophils from MMP-9- or neutrophil elastase-deficient mice show no defect in transendothelial migration under flow in vitro. J Leukoc Biol. 2002;71:821.

    PubMed  CAS  Google Scholar 

  200. Hsu MH, Wang M, Browning DD, et al. NF-KB activation is required for C5a-induced interleukin-8 gene expression in mononuclear cells. Blood. 1999;93:3241.

    PubMed  CAS  Google Scholar 

  201. Robbins RA, Hamel FG. Chemotactic factor inactivator interaction with Gc-globulin (vitamin D­binding protein). A mechanism of modulating the chemotactic activity of C5a. J Immunol. 1990;144:2371.

    PubMed  CAS  Google Scholar 

  202. Gerber BO, Meng EC, Dotsch V, et al. An activation switch in the ligand binding pocket of the C5a receptor. J Biol Chem. 2001;276:3394.

    Article  PubMed  CAS  Google Scholar 

  203. Braun L, Christophe T, Boulay F. Phosphorylation of key serine residues is required for internalization of the complement 5a (C5a) anaphylatoxin receptor via a 13-arrestin, dynamin, and clathrin-dependent pathway. J Biol Chem. 2003;278:4277.

    Article  PubMed  CAS  Google Scholar 

  204. Mcintyre TM, Zimmerman GA, Prescott SM. Biologically active oxidized phospholipids. J Biol Chem. 1999;274:25189.

    Article  PubMed  CAS  Google Scholar 

  205. Shen Y, Sultana C, Arditi M, et al. Endotoxin-induced migration of monocytes and PECAM-1 phosphorylation are abrogated by PAF receptor antagonists. Am J Physiol. 1998;275:E479.

    PubMed  CAS  Google Scholar 

  206. Prescott SM, Zimmerman GA, Mcintyre TM. Platelet-activating factor. J Biol Chem. 1990;265:17381.

    PubMed  CAS  Google Scholar 

  207. Nieto ML, Velasco S, Sanchez Crespo M. Biosynthesis of platelet­ activating factor in human polymorphonuclear leukocytes. Involvement of the choline-phosphotransferase pathway in response to the phorbol esters. J Biol Chem. 1988;263:2217.

    PubMed  CAS  Google Scholar 

  208. Baker PR, Owen JS, Nixon AB, et al. Regulation of platelet-activating factor synthesis in human neutrophils by MAP kinases. Biochim Biophys Acta. 2002;1592:175.

    PubMed  CAS  Google Scholar 

  209. Marquez LA, Huang JT, Dunford HR. Spectral and kinetic studies on the formation of myeloperoxidase compounds I and II: roles of hydrogen peroxide and superoxide. Biochemistry. 1994;33:1447.

    Article  PubMed  CAS  Google Scholar 

  210. Venable ME, Zimmerman GA, Mcintyre TM, Prescott SM. Platelet-activating factor: a phospholipid autacoid with diverse actions. J Lipid Res. 1993;34:691.

    PubMed  CAS  Google Scholar 

  211. Chilton FH, O’Fiaherty JT, Walsh CE, et al. Platelet-activating factor. Stimulation of the lipoxygenase pathway in polymorphonuclear leukocytes by 1-0-alkyl-2-0-acetyl-sn-glycero-3- phosphocholine. J Biol Chem. 1982;257:5402.

    PubMed  CAS  Google Scholar 

  212. Springer TA. Adhesion receptors of the immune system. Nature. 1990;346:425.

    Article  PubMed  CAS  Google Scholar 

  213. Mitchell S, Thomas G, Harvey K, et al. Lipoxins, aspirin-triggered epi-lipoxins, liposin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J Am Soc Nephrol. 2002;13:2497.

    Article  PubMed  CAS  Google Scholar 

  214. Paul-Clark MJ, van Cao T, Moradi-Bidhendi N, et al. 15-epi-lipoxin A,-mediated induction of nitric oxide explains how aspirin inhibits acute inflammation. J Exp Med. 2004;200:69.

    Article  PubMed  CAS  Google Scholar 

  215. Ferrante JV, Ferrante A. Cutting edge: novel role of lipoxygenases in the inflammatory response: promotion of TNF mRNA decay by 15-hydroperoxyeicosatetraenoic acid in a monocytic cell line. J Immunol. 2005;174:3169.

    PubMed  CAS  Google Scholar 

  216. Ruchand-Sparagano MH, Walker TR, Rossi AG, et al. Soluble E-selectin acts in synergy with platelet-activating factor to activate neutrophill32-integrins. J Biol Chem. 2000;275:15758.

    Article  Google Scholar 

  217. Exton JH. Signaling through phosphatidylcholine breakdown. J Biol Chem. 1990;265:1.

    PubMed  CAS  Google Scholar 

  218. Tjoelker LW, Wilder C, Eberhardt C, et al. Anti-inflammatory properties of a platelet-activating factor acetylhydrolase. Nature. 1995;374:549.

    Article  PubMed  CAS  Google Scholar 

  219. Hattori K, Adachi H, Matsuzawa A, et al. eDNA cloning and expression of intracellular platelet­ activating factor (PAF) acetylhydrolase. II. Its homology with plasma PAF acetylhydrolase. J Biol Chem. 1996;271:33032.

    Article  PubMed  CAS  Google Scholar 

  220. Newcombe DS. Leukotrienes: regulation of biosynthesis, metabolism and bioactivity. J Clin Pharmacol. 1988;28:530.

    PubMed  CAS  Google Scholar 

  221. Murray J, Ward C, O’Fiaherty JT, et al. Role of the leukotrienes in the regulation of human granulocyte behaviour: dissociation between agonist-induced activation and retardation of apoptosis. Br J Pharmacol. 2003;139:388.

    Article  PubMed  CAS  Google Scholar 

  222. Turner M, Schweighoffer E, Colucci F, et al. Tyrosine kinase SYK: essential functions for immunoreceptor signalling. Immunol Today. 2000;21:148.

    Article  PubMed  CAS  Google Scholar 

  223. Canetti C, Hu B, Curtis JL, Peters-Golden M. Syk activation is a leukotriene B4-regulated event involved in macrophage phagocytosis of IgG-coated targets but not apoptotic cells. Blood. 2003;102:1877.

    Article  PubMed  CAS  Google Scholar 

  224. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47.

    PubMed  CAS  Google Scholar 

  225. Haeggstrom JZ. Leukotriene hydrolase/aminopeptidase, the gatekeeper of chemotactic leukotriene B4 biosynthesis. J Biol Chem. 2004;279:50639.

    Article  PubMed  CAS  Google Scholar 

  226. Rybins IV, Feinmark SJ. Alteration of human leukotriene A4 hydrolase activity after site­directed mutagenesis: serine-415 is a regulatory residue. Biochim Biophys Acta. 1999;1438:199.

    Article  Google Scholar 

  227. Mandai AK, Skoch J, Baeskai BJ, et al. The membrane organization of leukotriene synthesis. Proc Natl Acad Sci USA. 2004;101:6587.

    Article  Google Scholar 

  228. Helgadoltir A, Manolexcu A, Thorleifson G, et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet. 2004;36:233.

    Article  CAS  Google Scholar 

  229. Kudo I. Diversity of phospholipase A2 enzymes. Biol Pharm Bull. 2004;27:1157.

    Article  PubMed  CAS  Google Scholar 

  230. Jenkins CM, Mancuso DJ, Yan W, et al. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerollipase and acylglycerol transacylase activities. J Biol Chem. 2004;48968.

    Google Scholar 

  231. Murakami M, Kudo I. Secretory phospholipase A2. Biol Pharm Bull. 2004;27:1158.

    Article  PubMed  CAS  Google Scholar 

  232. Smith ML, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem. 2000;69:145.

    Article  PubMed  CAS  Google Scholar 

  233. Six DA, Dennis EA. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Acta. 2000;1488:1.

    Article  PubMed  CAS  Google Scholar 

  234. Carnevale KA, Cathcart MK. Calcium-independent phospholipase A2 is required for human monocyte chemotaxis to monocyte chemoattractant protein 1. J Immunol. 2001;167:3414.

    PubMed  CAS  Google Scholar 

  235. Jones SM, Luo M, Healy AM, et al. Structural and functional criteria reveal a new nuclear import sequence on the 5-lipoxygenase protein. J Biol Chem. 2002;277:38550.

    Article  PubMed  CAS  Google Scholar 

  236. Hanaka H, Shimizu T, Izumi T. Nuclear-localization-signa-dependent mechanisms determine the localization of 5-lipoxygenase. Biochem J. 2002;361:505.

    Article  PubMed  CAS  Google Scholar 

  237. Flamand N, Surette ME, Picard S, et al. Cyclic AMP-mediated inhibition of 5-lipoxygenase translocation and leukotriene biosynthesis in human neutrophils. Mol Pharmacol. 2002;62:250.

    Article  PubMed  CAS  Google Scholar 

  238. Oppenheim JJ, Zachariae OC, Mukaida N, et al. Properties of the novel proinflammatory supergene “intercrine” cytokine family. Annu Rev Immunol. 1991;9:617.

    Article  PubMed  CAS  Google Scholar 

  239. Luster AD. Chemokines-chemotactic cytokines that mediate inflammation. N Engl J Med. 1998;338:436.

    Article  PubMed  CAS  Google Scholar 

  240. Nanki T, Nagasaka K, Hayashida K, et al. Chemokines regulate IL-6 and IL-8 production by fibroblast-like synoviocytes from patients with rheumatoid arthritis. J Immunol. 2001;167:5381.

    PubMed  CAS  Google Scholar 

  241. Ohashi K, Naruto M, Nakaki T, Sana E. Identification of interleukin-8 converting enzyme as cathepsin L. Biochim Biophys Acta. 2003;1649:30.

    Article  PubMed  CAS  Google Scholar 

  242. Yu Y, Chadee K. The 3′-untranslated region of human interleukin-8 mRNA suppresses IL-8 gene expression. Immunology. 2001;102:498.

    Article  PubMed  CAS  Google Scholar 

  243. de Bruin T, de Rooster H, van Bree Hand, Cox E. lnterleukin-8 mRNA expression in synovial fluid of canine stifle joints. Vet Immunol Immunopathol. 2005;108:387.

    Article  PubMed  CAS  Google Scholar 

  244. Conti P, Reale M, Barbacane RC, et al. Differential production of RANTES and MCP-1 in synovial fluid from the inflamed human knee. Immunol Lett. 2002;80:105.

    Article  PubMed  CAS  Google Scholar 

  245. Vestweber D, Blanks JE. Mechanisms that regulate the function of selectins and their ligands. Physiol Rev. 1999;79:181.

    PubMed  CAS  Google Scholar 

  246. Bernimoulin MP, Zeng XL, Abbal C, et al. Molecular basis of leukocyte rolling on PSGL-1:predominant role of core-20-glycans and of tyrosine sulfate residue 51. J Biol Chem. 2003;278:37.

    Article  PubMed  CAS  Google Scholar 

  247. Hammer DA. Leukocyte adhesion: what’s the catch? Curr Biol. 2005;15:R96.

    Article  PubMed  CAS  Google Scholar 

  248. Rinko LJ, Lawrence MB, Guilford WH. The molecular mechanics of P- and L-selectin lectin domains binding to PSGL-1. Biophys J. 2004;86:544.

    Article  PubMed  CAS  Google Scholar 

  249. Berg EL, McEvoy LM, Berlin C, et al. L-selectin-mediated lymphocyte rolling on MAdCAM-1. Nature. 1993;366:695.

    Article  PubMed  CAS  Google Scholar 

  250. von Andrian UH, Mempel TR. Homing and cellular traffic in lymph nodes. Nat Rev Immunol. 2003;3:867.

    Article  CAS  Google Scholar 

  251. Hafezi-Moghadam A, Thomas KL, Prorock AJ, et al. L-selectin shedding regulates leukocyte recruitment. J Exp Med. 2001;193:863.

    Article  PubMed  CAS  Google Scholar 

  252. Walcheck B, Kahn J, Fisher JM, et al. Neutrophil rolling altered by inhibition of L-selectin shedding in vitro. Nature. 1996;380:720.

    Article  PubMed  CAS  Google Scholar 

  253. Matala E, Alexander SR, Kishimoto TK, Walcheck B. The cytoplasmic domain of L-selectin participates in regulating L-selectin endoproteolysis. J Immunol. 2001;167:1617.

    PubMed  CAS  Google Scholar 

  254. Wagner JG, Roth RA. Neutrophil migration mechanisms, with an emphasis on the pulmonary vasculature. Pharmacol Rev. 2000;52:349.

    PubMed  CAS  Google Scholar 

  255. Smalley DM, Ley K. L-selectin: mechanisms and physiological significance of ectodomain cleavage. J Cell Mol Med. 2005;9:255.

    Article  PubMed  CAS  Google Scholar 

  256. Gonzales PE, Solomon A, Miller AB, et al. Inhibition of tumor necrosis factor-a-converting enzyme by its prodomain. J Biol Chem. 2004;279:31638.

    Article  PubMed  CAS  Google Scholar 

  257. Dal Secco D, Moreira AP, Freitas A, et al. Nitric oxide inhibits neutrophil migration by a mechanism dependent on ICAM-1: role of soluble guanylate cyclase. Nitric Oxide. 2006;15:77–86.

    Article  PubMed  CAS  Google Scholar 

  258. Deng GM, Zheng L, Chan FK, Lenardo M. Amelioration of inflammatory arthritis by targeting the pre-ligand assembly domain of tumor necrosis factor receptors. Nat Med. 2005;11:1066.

    Article  PubMed  CAS  Google Scholar 

  259. Jutila MA, Kurk S, Jackiw L, et al. L-selectin serves as an E-selectin ligand on cultured T lymphoblasts. J Immunol. 2002;169:1768.

    PubMed  CAS  Google Scholar 

  260. Humphries MJ. Integrin structure. Biochem Soc Trans. 2000;28:34.

    Article  Google Scholar 

  261. Harris ES, Mcintyre TM, Prescott SM, Zimmerman GA. The leukocyte integrins. J Biol Chem. 2000;275:23409.

    Article  PubMed  CAS  Google Scholar 

  262. You TJ, Maxwell DS, Kogan TP, et al. A 3D structure model of integrin a4131 complex: I. Construction of a homology model of 131 and ligand binding analysis. Biophys J. 2002;82:447.

    Article  PubMed  CAS  Google Scholar 

  263. Mould AP, Askari JA, Barton S, et al. Integrin activation involves a conformational change in the a1 helix of the subunit A-domain. J Biol Chem. 2002;277:19800.

    Article  PubMed  CAS  Google Scholar 

  264. Schneider D, Engelman DM. Involvement of transmembrane interactions in signal transduction by integrins. J Biol Chem. 2004;279:9840.

    Article  PubMed  CAS  Google Scholar 

  265. Salas A, Shimaoka A, Phan U, et al. Transition from rolling to firm adhesion can be mimicked by extension of integrin α1β2 in an intermediate affinity state. J Biol Chem. 2006;281:10876.

    Article  PubMed  CAS  Google Scholar 

  266. Chen J, Yang W, Kim M, et al. Regulation of outside-in signaling and affinity by the beta2 I domain of integrin alphaLbeta2. Proc Natl Acad Sci USA. 2006;103:13062.

    Article  PubMed  CAS  Google Scholar 

  267. Zimmerman GA, Mcintyre TM, Prescott SM. Adhesion and signaling in vascular cell-cell interactions. J Clin Invest. 1996;98:1699.

    Article  PubMed  CAS  Google Scholar 

  268. Robinson JM, Kobayashi T. A novel intracellular compartment with unusual secretory properties in human neutrophils. J Cell Biol. 1991;113:743.

    Article  PubMed  Google Scholar 

  269. Lupher ML, Harris EAS, Beals CR, et al. Cellular activation of leukocyte function-associated antigen-1 and its affinity are regulated at the I domain allosteric site. J Immunol. 2001;167:1431.

    PubMed  CAS  Google Scholar 

  270. Dib K, Melander F, Axelsson L, et al. Down-regulation of Rae activity during β2 integrin-mediated adhesion of human neutrophils. J Biol Chem. 2003;278:24181.

    Article  PubMed  CAS  Google Scholar 

  271. Werner E, Werb Z. lntegrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. J Cell Biol. 2002;158:357.

    Article  PubMed  CAS  Google Scholar 

  272. Van der Vieren M, Le Trong H, Wood CL, et al. A novelleukointegrin, ad132 binds preferentially to ICAM-3. Immunity. 1995;3:683.

    Article  PubMed  Google Scholar 

  273. Neelamegham S, Taylor AD, Shankaran H, et al. Shear and time-dependent changes in Mac-1, LFA-1, and ICAM-3 binding regulate neutrophil homotypic adhesion. J Immunol. 2000;164:3798.

    PubMed  CAS  Google Scholar 

  274. Serrander JM, Vicente-Manzanares M, Calvo J, et al. A novel serine-rich motif in the intercellular adhesion molecule 3 is critical for its ezrin/radixin/moesin-directed subcellular targeting. J Biol Chem. 2002;277:10400.

    Article  CAS  Google Scholar 

  275. Lehmann JCU, Jablonski-Westrich D, Haubold U, et al. Overlapping and selective roles of endothelial intercellular adhesion molecule-1 (ICAM-1) and ICAM-2 in lymphocyte trafficking. J Immunol. 2003;171:2588.

    PubMed  CAS  Google Scholar 

  276. Lum AFH, Green CE, Lee GR, et al. Dynamic regulation of LFA-1 activation and neutrophil arrest on intercellular adhesion molecule 1 (ICAM-1) in shear flow. J Biol Chem. 2002;277:20660.

    Article  PubMed  CAS  Google Scholar 

  277. Alevriadou BR. CAMs and Rho small GTPases: gatekeepers for leukocyte transendothelial migration. Focus on “VCAM-1-mediated Rae signaling controls endothelial cell-cell contacts and leukocyte transmigration”. Am J Physiol Cell Physiol. 2003;285:C250.

    PubMed  CAS  Google Scholar 

  278. Nick JA, Young SK, Arndt PG, et al. Selective suppression of neutrophil accumulation in ongoing pulmonary inflammation by systemic inhibition of p38 mitogen-activated protein kinase. J Immunol. 2002;169:5260.

    PubMed  Google Scholar 

  279. Watts GM, Beurskens FJM, Martin-Podura I, et al. Manifestations of inflammatory arthritis are critically dependent on LFA-1. J Immunol. 2005;174:3668.

    PubMed  CAS  Google Scholar 

  280. Heuertz RM, Schneider GP, Potempa LA, Webster RO. Native and modified C-reactive protein bind ­different receptors on human neutrophils. Int J Biochem Cell Biol. 2005;37:320.

    Article  PubMed  CAS  Google Scholar 

  281. Khreiss T, Jozsef L, Potempa LA, Filep JG. Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells. Circulation. 2004;109:2016.

    Article  PubMed  CAS  Google Scholar 

  282. Fecteau M-H, Honaare J-C, Plante M, et al. Endothelin-1 (1–31) is an intermediate in the production of endothelin-1 after big endothelin-1 administration in vivo. Hypertension. 2005;46:87.

    Article  PubMed  CAS  Google Scholar 

  283. Nauseef WM. The NADPH-dependent oxidase of phagocytes. Proc Assoc Am Physicians. 1999;111:373.

    PubMed  CAS  Google Scholar 

  284. Tsunawaki S, Kagara S, Yoshikawa K, et al. Involvement of p40phox in activation of phagocytic NADPH oxidase through association of its carboxyl-terminal, but not its amino-terminal, with p67phox. J Exp Med. 1996;184:893.

    Article  PubMed  CAS  Google Scholar 

  285. Fontayne A, Dang PM, Gougerot-Pocidalo MA, EI-Benna J. Phosphorylation of p47phox sites by PKC alpha, beta II, delta, and zeta: effect on binding to p22phox and on NADPH oxidase activation. Biochemistry. 2002;41:7743.

    Article  PubMed  CAS  Google Scholar 

  286. Chen Q, Powell OW, Rune MJ, et al. Akt phosphorylates p47phox and mediates respiratory burst activity in human neutrophils. J Immunol. 2003;170:5302.

    PubMed  CAS  Google Scholar 

  287. Sarfstein R, Gozzalczany Y, Mizrahi A, et al. Dual role of Rae in the assembly of NADPH oxidase, tethering to the membrane and activation of p67phox. J Biol Chem. 2004;279:16007.

    Article  PubMed  CAS  Google Scholar 

  288. Ago T, Kuribayashi F, Hiroaki H, et al. Phospho­rylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation. Proc Natl Acad Sci USA. 2003;100:4474.

    Article  PubMed  CAS  Google Scholar 

  289. Werner E. GTPases and reactive oxygen species: switches for killing and signaling. J Cell Sci. 2004;117:143.

    Article  PubMed  CAS  Google Scholar 

  290. Groemping Y, Lapouge K, Smerdon SJ, Rittinger K. Molecular basis of phosphorylation­induced activation of the NADPH oxidase. Cell. 2003;113:343.

    Article  PubMed  CAS  Google Scholar 

  291. Kettle AJ, Clark BM, Winterboum CC. Superoxide converts indigo carmine to isatin sulfonic acid: implications for the hypothesis that neutrophils produce ozone. J Biol Chem. 2004;279:18521.

    Article  PubMed  CAS  Google Scholar 

  292. Zgliczynski J, Stelmaszynska T. Chlorinating ability of human phagocytosing leukocytes. Eur J Biochem. 1995;56:157.

    Article  Google Scholar 

  293. Henderson JP, Byun J, Heinecke JW. Molecular chlorine generated by the myeloperoxidase­ hydrogen peroxide-chlorine system of phagocytes produces 5-chlorocytosine in bacterial RNA J. Biol Chem. 1999;274:33440.

    Article  CAS  Google Scholar 

  294. Peskin AV, Wlnterboum CC. Histamine chloramine reactivity with thiol compounds, ascorbate and methionine and with intracellular glutathione. Free Radic Biol Med. 2003;35:1252.

    Article  PubMed  CAS  Google Scholar 

  295. Rosen H, Crowley JR, Heinecke JW. Human ­neutrophils use the myleperoxidase-hydrogen ­peroxide-chloride system to chlorinate but not nitrate bacterial proteins during phagocytosis. J Biol Chem. 2002;277:30463.

    Article  PubMed  CAS  Google Scholar 

  296. Klebanoff SJ. Myeloperoxidase: friend or foe. J Leukoc Biol. 2005;77:1.

    Article  CAS  Google Scholar 

  297. Lymar SV, Khairutdinov RF, Hurst JK. Hydroxyl radical formation by 0–0 bond homolysis in peroxynitrous acid. Inorg Chem. 2003;42:5259.

    Article  PubMed  CAS  Google Scholar 

  298. Brennan ML, Wu W, Fu X, et al. A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-generated reactive nitrogen species. J Biol Chem. 2002;277:L17415.

    Article  CAS  Google Scholar 

  299. Bomalaski JS, Baker DG, Brophy LM, Clark MA. Monosodium urate crystals stimulate phospholipase A2 enzyme activities and the synthesis of a phospholipase A2-activating protein. J Immunol. 1990;145:3391.

    PubMed  CAS  Google Scholar 

  300. Furlaneto CJ, Campa A. A novel function of serum amyloid A: a potent stimulus for the release of tumor necrosis factor-alpha, interleukin-1beta, and interleukin-8 by human blood neutrophils. Biochem Biophys Res Commun. 2000;268:405.

    Article  PubMed  CAS  Google Scholar 

  301. Ginsberg MH, Jaques B, Cochrane GG, et al. Urate crystal-dependent cleavage of Hageman factor in human plasma and synovial fluid. J Lab Clin Med. 1980;95:497.

    PubMed  CAS  Google Scholar 

  302. Wiggins RC, Cochrane GG. The autoactivation of rabbit Hageman factor. J Exp Med. 1979;150:1122.

    Article  PubMed  CAS  Google Scholar 

  303. van Der Graaf F, Tans G, Bouma BN, Griffin JH. Isolation and functional properties of the heavy and light chains of human plasma kallikrein. J Biol Chem. 1982;257:14300.

    PubMed  Google Scholar 

  304. Joseph K, Ghebrehiwet B, Peerschke EIB, et al. Identification of the zinc-dependent endothelial cell binding protein for high molecular weight kininogen and factor XII: identify with the receptor that binds to the globular “heads” of C1q (gCiq-R). Proc Natl Acad Sci USA. 1996;93:8552.

    Article  PubMed  CAS  Google Scholar 

  305. Aupperle KR, Yamanishi Y, Bennett BL, et al. Expression and regulation of inducible lkappaB kinase (IKK-i) in human fibroblast-like synoviocytes. Cell Immunol. 2001;214:54.

    Article  PubMed  CAS  Google Scholar 

  306. Morand EF, Hall P, Hutchinson P, Yang YH. Regulation of annexin I in rheumatoid synovial cells by glucocorticoids and interleukin-1. Mediators Inflamm. 2006;2006:1.

    Article  CAS  Google Scholar 

  307. Bechoa S, Daniel LW. Phospholipase D is required in the signaling pathway leading to p38 MAPK activation in neutrophil-like HL-60 cells, stimulated by N-formyl-methionyl-leucyl­phenylalanine. J Biol Chem. 2001;276:31752.

    Article  Google Scholar 

  308. Exton JH. New developments in phospholipase D. J Biol Chem. 1997;272:15579.

    Article  PubMed  CAS  Google Scholar 

  309. Liscovitch M, Czarny M, Fiucci G, Tang X. Phospholipase D: molecular and cell biology of a novel gene family. Biochem J. 2000;345:401.

    Article  PubMed  CAS  Google Scholar 

  310. Sergeant S, Waite KA, Heravi J, McPhail LC. Phosphatidic acid regulates tyrosine ­phosphorylating activity in human neutrophils. J Biol Chem. 2001;276:4737.

    Article  PubMed  CAS  Google Scholar 

  311. Desaulniers P, Fernandes M, Gilbert C, et al. Crystal-induced neutrophil activation. VII. Involvement of Syk in the response to monosodium urate crystals. J Leukoc Biol. 2001;70:659.

    PubMed  CAS  Google Scholar 

  312. Kaldi K, Szeberenyi J, Rada BK, et al. Contribution of phospholipase D and a brefeldin A-sensitive ARF to chemoattractant-induced superoxide production and secretion of human neutrophils. J Leukoc Biol. 2002;71:695.

    PubMed  CAS  Google Scholar 

  313. Oka M, Hitomi T, Okada T, et al. Dual regulation of phospholipase D1 by protein kinase C alpha in vivo. Biochem Biophys Res Commun. 2002;294:1109.

    Article  PubMed  CAS  Google Scholar 

  314. Takesono A, Finkelstein LD, Schwartzberg PL. Beyond calcium: new signaling pathways for Tec family kinases. J Cell Sci. 2002;115:3039.

    PubMed  CAS  Google Scholar 

  315. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407:770.

    Article  PubMed  CAS  Google Scholar 

  316. Serhan CN. Resolution phases of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol. 2007;25:101.

    Article  PubMed  CAS  Google Scholar 

  317. Rose OM, Liu-Bryan R. Innate immunity in triggering and resolution of acute gouty inflammation. Curr Rheumatol Rep. 2006;8:209.

    Article  PubMed  CAS  Google Scholar 

  318. Lodige I, Marg A, Wiesner B, et al. Nuclear export determines the cytokine sensitivity of STAT transcription factors. J Biol Chem. 2005;280:43087.

    Article  PubMed  CAS  Google Scholar 

  319. Gilmore TO, Herscovitch M. Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene. 2006;25:6887.

    Article  PubMed  CAS  Google Scholar 

  320. Isomura I, Morita A. Regulation of NF-KB signaling by decoy oligodeoxynucleotides. Microbiol Immunol. 2006;50:559.

    PubMed  CAS  Google Scholar 

  321. Serhan CN. A search for endogenous mechanisms of anti-inflammation uncovers novel chemical mediators: missing links to resolution. Histochem Cell Biol. 2004;122:305.

    Article  PubMed  CAS  Google Scholar 

  322. Bannenberg GL, Chiang N, Ariel A, et al. Molecular circuits of resolution: formation and actions of resolvins and protectins. J Immunol. 2005;174:4345.

    PubMed  CAS  Google Scholar 

  323. Straus OS, Glass CK. Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med Res Rev. 2001;21:185.

    Article  PubMed  CAS  Google Scholar 

  324. Serhan CN, Maddox JF, Petasis NA, et al. Design of lipoxin stable analogs that block transmigration and adhesion of human neutrophils. Biochemistry. 1995;34:14609.

    Article  PubMed  CAS  Google Scholar 

  325. Serhan CN, Fierro IM, Chiang N, Pouliot M. Cutting edge: nociceptin stimulates neutrophil chemotaxis and recruitment inhibition by aspirin-triggered-15-epi-lipoxin. J Immunol. 2001;166:3650.

    PubMed  CAS  Google Scholar 

  326. Serhan C. Lipoxins and aspirin-triggered 15 epi-lipoxin biosynthesis: an update and role on anti-inflammatory and proresolution. Prostaglandins Other Lipid Mediat. 2002;68–69:433.

    Article  PubMed  Google Scholar 

  327. Ariel A, Serhan CN. Resolvins and protectins in the termination program of acute inflammation. Trends Immunol. 2007;28:176.

    Article  PubMed  CAS  Google Scholar 

  328. Serhan CN. Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am J Pathol. 2010;177(4):1576–91. doi:10.2353/ajpath.2010.100322.

    Article  PubMed  CAS  Google Scholar 

  329. Martin C, Burdon PCE, Bridger G, et al. Chemokine acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity. 2003;19:583.

    Article  PubMed  CAS  Google Scholar 

  330. Gomez PF, Pillinger MH, Attur M, et al. Resolution of inflammation: prostaglandin E2 dissociates nuclear trafficking of individual NF-KB subunits (p65, p50) in stimulated rheumatoid synovial fibroblasts. J Immunol. 2005;175:6924.

    PubMed  CAS  Google Scholar 

  331. Wu X, Zimmerman GA, Prescott SM, Stafforini DM. The p38 MAPK pathway mediates transcriptional activation of plasma platelet-activating factor acetylhydrolase gene in macrophages stimulated with lipopolysaccharide. J Biol Chem. 2004;279: 36158.

    Article  PubMed  CAS  Google Scholar 

  332. Lawrence T, Bebien N, Lin GY, et al. IKKa limits macrophage NF-KB activation and contributes to the resolution of inflammation. Nature. 2005;434:1138.

    Article  PubMed  CAS  Google Scholar 

  333. Fiorucci S, Distrutti E, Mencarelli A, et al. Evidence that 5-lipoxygenase and acetylated cyclooxygenase 2-derived eicosanoids regulate leukocyte-endothelial adherence in response to aspirin. Br J Pharmacol. 2003;139:1351.

    Article  PubMed  CAS  Google Scholar 

  334. Taylor EL, Rossi AG, Shaw CA, et al. GEA3162 decomposes to co-generate nitric oxide and superoxide and induces apoptosis in human neutrophils via a peroxynitrite-dependent mechanism. Br J Pharmacol. 2004;143:179.

    Article  PubMed  CAS  Google Scholar 

  335. Smith KR, Pinkerton KE, Watanabe T, et al. Attenuation of tobacco smoke-induced lung inflammation by treatment with a soluble epoxide hydrolase inhibitor. Proc Natl Acad Sci USA. 2005;102:2186.

    Article  PubMed  CAS  Google Scholar 

  336. Doucas V, Shi Y, Miyamoto S, et al. Cytoplasmic catalytic subunit of protein kinase A mediates cross-repression by NF-kappa Band the glucocorticoid receptor. Proc Natl Acad Sci USA. 2000;97:11893.

    Article  PubMed  CAS  Google Scholar 

  337. Tomita T, Takeuchi E, Tomita N, et al. Suppressed severity of collagen-induced arthritis by in vivo transfection of nuclear factor kappa B decoy oligodeoxy nucleotides as a gene therapy. Arthritis Rheum. 1999;42:2532.

    Article  PubMed  CAS  Google Scholar 

  338. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-kappa B pathway in the treatment of inflammation and cancer. J Clin Invest. 2001;107:135.

    Article  PubMed  CAS  Google Scholar 

  339. Almawi WY, Melemedjian OK. Negative regulation of nuclear factor-KB activation and function by glucocorticoids. J Mol Endocrinol. 2002;28:69.

    Article  PubMed  CAS  Google Scholar 

  340. La NZ, Cidlowski JA. The origin and functions of multiple human glucocorticoid receptor isoforms. Ann N Y Acad Sci. 2004;1024:102.

    Article  CAS  Google Scholar 

  341. Li L, Leung DYM, Hall CF, Goleva E. Divergent expression and function of glucocorticoid receptor 13 in human monocytes and T cells. J Leukoc Biol. 2006;79:818.

    Article  PubMed  CAS  Google Scholar 

  342. Pujols L, Mullol J, Roca-Ferrer J, et al. Expression of glucocorticoid receptor a- and 13-isoforms in human cells and tissues. Am J Physiol Cell Physiol. 2002;283:C1324.

    PubMed  CAS  Google Scholar 

  343. Choi BR, Kwon JH, Gong SJ, et al. Expression of glucocorticoid receptor mRNAs in glucocorticoid-resistant nasalpolyps. Exp Mol Med. 2006;38:466.

    PubMed  CAS  Google Scholar 

  344. Hafezi-Moghadam A, Simoncini T, Yang Z, et al. Acute cardiovascular effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat Med. 2002;8:473.

    Article  PubMed  CAS  Google Scholar 

  345. Ismaili N, Garabedian MJ. Modulation of glucocorticoid receptor function via phosphorylation. Ann N Y Acad Sci. 2004;1024:86.

    Article  PubMed  CAS  Google Scholar 

  346. Ichijo T, Vontetakis A, Cotrim AP, et al. The Smad6-histone deacetylase 3 complex silences the transcriptional activity of the glucocorticoid receptor Potential clinical implications. J Biol Chem. 2005;280:42067.

    Article  PubMed  CAS  Google Scholar 

  347. Hampsey M, Reinberg D. Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation. Cell. 2003;113:429.

    Article  PubMed  CAS  Google Scholar 

  348. Bird G, Zorio DAR, Bentley DL. RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3′-end formation. Mol Cell Biol. 2004;24:8963.

    Article  PubMed  CAS  Google Scholar 

  349. Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem. 2001;70:81.

    Article  PubMed  CAS  Google Scholar 

  350. Gerke V, Moss SE. Annexins: from structure to function. Physiol Rev. 2001;82:331.

    Google Scholar 

  351. Danielsen EM, Van Deurs B, Hansen GH. “Nonclassical” secretion of annexin A2 to the luminal side of the enterocyte brush border membrane. Biochemistry. 2003;42:14670.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Newcombe, D.S. (2013). Mechanisms of the Acute Attack of Gout and Its Resolution. In: Robinson, D. (eds) Gout. Springer, London. https://doi.org/10.1007/978-1-4471-4264-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4264-5_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4263-8

  • Online ISBN: 978-1-4471-4264-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics