Skip to main content

Inflammation and Heart Failure

  • Chapter
  • First Online:
Heart Failure

Abstract

Heart failure (HF) is a common clinical syndrome caused by a variety of cardiac diseases. The morbidity and mortality have increased in the last decades. The pathophysiology of HF is exceedingly complex. It has developed from the simplistic model of pump failure to that of a multisystemic disorder that affects not only the cardiovascular system but also the musculoskeletal, neuroendocrine and immune systems. Apart from myocardial hypertrophy, the pathogenetic mechanisms of HF also include deregulation of the neurohormonal system, with disturbance of the balance between sympathetic and parasympathetic tone, and disruption of the rennin-angiotensin-aldosterone system. Activation of neurohormones and pro-inflammatory cytokines has been recognized in HF progression after an initial cardiac injury. It is becoming increasingly apparent that inflammatory mediators play a crucial role in the development of HF. The purpose of this chapter is to give a brief overview of the role of inflammation in heart failure from animal models to clinical disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stewart S, MacIntyre K, Capewell S, McMurray JJ. Heart failure and the aging population: an increasing burden in the 21st century? Heart. 2003;89(1):49–53 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1767504&tool=pmcentrez&rendertype=abstract. Accessed 3 Jan 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart. 2007;93(9):1137–46. doi:10.1136/hrt.2003.025270.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Patten RD, Hall-Porter MR. Small animal models of heart failure: development of novel therapies, past and present. Circ Heart Fail. 2009;2(2):138–44. doi:10.1161/CIRCHEARTFAILURE.108.839761.

    Article  PubMed  Google Scholar 

  4. Pacher P, Nagayama T, Mukhopadhyay P, Bátkai S, Kass DA. Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat Protoc. 2008;3(9):1422–34. doi:10.1038/nprot.2008.138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Monnet E, Chachques JC. Animal models of heart failure: what is new? Ann Thorac Surg. 2005;79(4):1445–53. doi:10.1016/j.athoracsur.2004.04.002.

    Article  PubMed  Google Scholar 

  6. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet (London, England). 2006;367(9507):356–67. doi:10.1016/S0140-6736(06)68074-4.

    Article  Google Scholar 

  7. Nagayama T, Hsu S, Zhang M, et al. Sildenafil stops progressive chamber, cellular, and molecular remodeling and improves calcium handling and function in hearts with pre-existing advanced hypertrophy caused by pressure overload. J Am Coll Cardiol. 2009;53(2):207–15. doi:10.1016/j.jacc.2008.08.069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Litwin SE, Katz SE, Weinberg EO, et al. Serial echocardiographic-Doppler assessment of left ventricular geometry and function in rats with pressure-overload hypertrophy. Chronic angiotensin-converting enzyme inhibition attenuates the transition to heart failure. Circulation 1995;91(10):2642–54. http://www.ncbi.nlm.nih.gov/pubmed/7743628. Accessed 26 Nov 2015.

  9. Ganguly PK, Lee SL, Beamish RE DN. Altered sympathetic system and adrenoceptors during the development of cardiac hypertrophy. SciCurve. http://scicurve.com/paper/2476018. Accessed 3 Jan 2016.

  10. Hiyoshi H, Yayama K, Takano M, Okamoto H. Stimulation of cyclic GMP production via AT2 and B2 receptors in the pressure-overloaded aorta after banding. Hypertension. 2004;43(6):1258–63. doi:10.1161/01.HYP.0000128022.24598.4f.

    Article  CAS  PubMed  Google Scholar 

  11. Kim H-L, Kim Y-J, Kim K-H, et al. Therapeutic effects of udenafil on pressure-overload cardiac hypertrophy. Hypertens Res. 2015;38(9):597–604. doi:10.1038/hr.2015.46.

    Article  CAS  PubMed  Google Scholar 

  12. Ryan TD, Rothstein EC, Aban I, et al. Left ventricular eccentric remodeling and matrix loss are mediated by bradykinin and precede cardiomyocyte elongation in rats with volume overload. J Am Coll Cardiol. 2007;49(7):811–21. doi:10.1016/j.jacc.2006.06.083.

    Article  CAS  PubMed  Google Scholar 

  13. Brower GL, Chancey AL, Thanigaraj S, et al. Cause and effect relationship between myocardial mast cell number and matrix metalloproteinase activity. Am J Physiol Heart Circ Physiol. 2002;283(2):H518–25. doi:10.1152/ajpheart.00218.2000.

    Article  CAS  PubMed  Google Scholar 

  14. Stumpe KO, Sölle H, Klein H, Krück F. Mechanism of sodium and water retention in rats with experimental heart failure. Kidney Int 1973;4(5):309–17. http://www.ncbi.nlm.nih.gov/pubmed/4762578. Accessed 3 Jan 2016.

  15. Garcia R, Diebold S. Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovasc Res 1990;24(5):430–2. http://www.ncbi.nlm.nih.gov/pubmed/2142618. Accessed 3 Jan 2016.

  16. Pu M, Gao Z, Li J, Sinoway L, Davidson WR. Development of a new animal model of chronic mitral regurgitation in rats under transesophageal echocardiographic guidance. J Am Soc Echocardiogr. 2005;18(5):468–74. doi:10.1016/j.echo.2004.10.005.

    Article  PubMed  Google Scholar 

  17. Kim K-H, Kim Y-J, Ohn J-H, et al. Long-term effects of sildenafil in a rat model of chronic mitral regurgitation: benefits of ventricular remodeling and exercise capacity. Circulation. 2012;125(11):1390–401. doi:10.1161/CIRCULATIONAHA.111.065300.

    Article  CAS  PubMed  Google Scholar 

  18. Pfeffer MA, Pfeffer JM, Fishbein MC, et al. Myocardial infarct size and ventricular function in rats. Circ Res 1979;44(4):503–12. http://www.ncbi.nlm.nih.gov/pubmed/428047. Accessed 3 Jan 2016.

  19. Vandervelde S, van Amerongen MJ, Tio RA, et al. Increased inflammatory response and neovascularization in reperfused vs. non-reperfused murine myocardial infarction. Cardiovasc Pathol. 2006;15(2):83–90. doi:10.1016/j.carpath.2005.10.006.

    Article  PubMed  Google Scholar 

  20. Popović ZB, Benejam C, Bian J, et al. Speckle-tracking echocardiography correctly identifies segmental left ventricular dysfunction induced by scarring in a rat model of myocardial infarction. Am J Physiol Heart Circ Physiol. 2007;292(6):H2809–16. doi:10.1152/ajpheart.01176.2006.

    Article  PubMed  Google Scholar 

  21. Kokubo M, Uemura A, Matsubara T, Murohara T. Noninvasive evaluation of the time course of change in cardiac function in spontaneously hypertensive rats by echocardiography. Hypertens Res. 2005;28(7):601–9. doi:10.1291/hypres.28.601.

    Article  PubMed  Google Scholar 

  22. Watson LE, Sheth M, Denyer RF, Dostal DE. Baseline echocardiographic values for adult male rats. J Am Soc Echocardiogr. 2004;17(2):161–7. doi:10.1016/j.echo.2003.10.010.

    Article  PubMed  Google Scholar 

  23. Reffelmann T, Kloner RA. Transthoracic echocardiography in rats. Evalution of commonly used indices of left ventricular dimensions, contractile performance, and hypertrophy in a genetic model of hypertrophic heart failure (SHHF-Mcc-facp-Rats) in comparison with Wistar rats during. Basic Res Cardiol. 2003;98(5):275–84. doi:10.1007/s00395-003-0401-3.

    Article  PubMed  Google Scholar 

  24. Badea CT, Bucholz E, Hedlund LW, et al. Imaging methods for morphological and functional phenotyping of the rodent heart. Toxicol Pathol. 2006;34(1):111–7.

    Article  PubMed  Google Scholar 

  25. Herold V, Parczyk M, Mörchel P, et al. In vivo measurement of local aortic pulse-wave velocity in mice with MR microscopy at 17.6 Tesla. Magn Reson Med. 2009;61(6):1293–9. doi:10.1002/mrm.21957.

    Article  PubMed  Google Scholar 

  26. Guazzi M, Brenner DA, Apstein CS, Saupe KW. Exercise intolerance in rats with hypertensive heart disease is associated with impaired diastolic relaxation. Hypertension 2001;37(2):204–8. http://www.ncbi.nlm.nih.gov/pubmed/11230272. Accessed 3 Jan 2016.

  27. Rolim NPL, Mattos KC, Brum PC, et al. The decreased oxygen uptake during progressive exercise in ischemia-induced heart failure is due to reduced cardiac output rate. Braz J Med Biol Res. 2006;39(2):297–304. doi:10.1590/S0100-879X2006000200018.

    Article  CAS  PubMed  Google Scholar 

  28. Oikonomou E, Tousoulis D, Siasos G, et al. The role of inflammation in heart failure: new therapeutic approaches. Hellenic J Cardiol. 2011;52(1):30–40. http://www.ncbi.nlm.nih.gov/pubmed/21292605. Accessed 8 Nov 2015.

  29. Seta Y, Shan K, Bozkurt B, et al. Basic mechanisms in heart failure: the cytokine hypothesis. J Card Fail 1996;2(3):243–9. http://www.ncbi.nlm.nih.gov/pubmed/8891862. Accessed 8 Nov 2015.

  30. Gurantz D, Cowling RT, Varki N, et al. IL-1beta and TNF-alpha upregulate angiotensin II type 1 (AT1) receptors on cardiac fibroblasts and are associated with increased AT1 density in the post-MI heart. J Mol Cell Cardiol. 2005;38(3):505–15. doi:10.1016/j.yjmcc.2004.12.015.

    Article  CAS  PubMed  Google Scholar 

  31. Yndestad A, Damås JK, Øie E, et al. Role of inflammation in the progression of heart failure. Curr Cardiol Rep 2007;9(3):236–41. http://www.ncbi.nlm.nih.gov/pubmed/17470337. Accessed 8 Nov 2015.

  32. Damås JK, Gullestad L, Aass H, et al. Enhanced gene expression of chemokines and their corresponding receptors in mononuclear blood cells in chronic heart failure–modulatory effect of intravenous immunoglobulin. J Am Coll Cardiol 2001;38(1):187–93. http://www.ncbi.nlm.nih.gov/pubmed/11451272. Accessed 8 Nov 2015.

  33. Yndestad A, Damås JK, Oie E, et al. Systemic inflammation in heart failure–the whys and wherefores. Heart Fail Rev. 2006;11(1):83–92. doi:10.1007/s10741-006-9196-2.

    Article  CAS  PubMed  Google Scholar 

  34. Torre-Amione G, Kapadia S, Benedict C, et al. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol. 1996;27(5):1201–6. doi:10.1016/0735-1097(95)00589-7.

    Article  CAS  PubMed  Google Scholar 

  35. Mann DL. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res 2002;91(11):988–98. http://www.ncbi.nlm.nih.gov/pubmed/12456484. Accessed 8 Nov 2015.

  36. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol. 2000;35(3):569–82. doi:10.1016/S0735-1097(99)00630-0.

    Article  CAS  PubMed  Google Scholar 

  37. Valgimigli M, Ceconi C, Malagutti P, et al. Tumor necrosis factor-alpha receptor 1 is a major predictor of mortality and new-onset heart failure in patients with acute myocardial infarction: the Cytokine-Activation and Long-Term Prognosis in Myocardial Infarction (C-ALPHA) study. Circulation. 2005;111(7):863–70. doi:10.1161/01.CIR.0000155614.35441.69.

    Article  CAS  PubMed  Google Scholar 

  38. Hamid T, Gu Y, Ortines RV, et al. Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation. Circulation. 2009;119(10):1386–97. doi:10.1161/CIRCULATIONAHA.108.802918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Su D, Li Z, Li X, et al. Association between serum interleukin-6 concentration and mortality in patients with coronary artery disease. Mediators Inflamm. 2013;2013:726178. doi:10.1155/2013/726178.

    PubMed  PubMed Central  Google Scholar 

  40. Askevold ET, Gullestad L, Dahl CP, et al. Interleukin-6 signaling, soluble glycoprotein 130, and inflammation in heart failure. Curr Heart Fail Rep. 2014;11(2):146–55. doi:10.1007/s11897-014-0185-9.

    Article  CAS  PubMed  Google Scholar 

  41. Fuchs M, Hilfiker A, Kaminski K, et al. Role of interleukin-6 for LV remodeling and survival after experimental myocardial infarction. FASEB J. 2003;17(14):2118–20. doi:10.1096/fj.03-0331fje.

    CAS  PubMed  Google Scholar 

  42. Bujak M, Frangogiannis NG. The role of IL-1 in the pathogenesis of heart disease. Arch Immunol Ther Exp (Warsz). 2009;57(3):165–76. doi:10.1007/s00005-009-0024-y.

    Article  CAS  Google Scholar 

  43. Abbate A, Salloum FN, Vecile E, et al. Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation. 2008;117(20):2670–83. doi:10.1161/CIRCULATIONAHA.107.740233.

    Article  CAS  PubMed  Google Scholar 

  44. Anker SD, von Haehling S. Inflammatory mediators in chronic heart failure: an overview. Heart. 2004;90(4):464–70 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1768165&tool=pmcentrez&rendertype=abstract. Accessed 8 Nov 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mann DL. Innate immunity and the failing heart: the cytokine hypothesis revisited. PubMed – NCBI. http://proxy.library.upenn.edu:2080/pubmed?otool=upennlib&term=25814686. Accessed 8 Nov 2015.

  46. Hofmann U, Heuer S, Meder K, et al. The proinflammatory cytokines TNF-alpha and IL-1 beta impair economy of contraction in human myocardium. Cytokine. 2007;39(3):157–62. doi:10.1016/j.cyto.2007.07.185.

    Article  CAS  PubMed  Google Scholar 

  47. Van Tassell BW, Raleigh JMV, Abbate A. Targeting interleukin-1 in heart failure and inflammatory heart disease. Curr Heart Fail Rep. 2015;12(1):33–41. doi:10.1007/s11897-014-0231-7.

    Article  CAS  PubMed  Google Scholar 

  48. Satoh M, Shimoda Y, Maesawa C, et al. Activated toll-like receptor 4 in monocytes is associated with heart failure after acute myocardial infarction. Int J Cardiol. 2006;109(2):226–34. doi:10.1016/j.ijcard.2005.06.023.

    Article  PubMed  Google Scholar 

  49. Knuefermann P, Vallejo J, Mann DL. The role of innate immune responses in the heart in health and disease. Trends Cardiovasc Med 2004;14(1):1–7. http://www.ncbi.nlm.nih.gov/pubmed/14720467. Accessed 8 Nov 2015.

  50. Bradham WS, Bozkurt B, Gunasinghe H, et al. Tumor necrosis factor-alpha and myocardial remodeling in progression of heart failure: a current perspective. Cardiovasc Res 2002;53(4):822–30. http://www.ncbi.nlm.nih.gov/pubmed/11922892. Accessed 15 Oct 2015.

  51. Sigurdsson A, Swedberg K. The role of neurohormonal activation in chronic heart failure and postmyocardial infarction. Am Heart J. 1996;132(1 Pt 2 Su):229–34. http://www.ncbi.nlm.nih.gov/pubmed/8677861. Accessed 8 Nov 2015.

  52. Chatterjee K. Neurohormonal activation in congestive heart failure and the role of vasopressin. Am J Cardiol. 2005;95(9A):8B–13B. doi:10.1016/j.amjcard.2005.03.003.

  53. Jackson G, Gibbs CR, Davies MK, Lip GY. ABC of heart failure. Pathophysiology. BMJ 2000;320(7228):167–70. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1128747&tool=pmcentrez&rendertype=abstract. Accessed 8 Nov 2015.

  54. Weber KT, Janicki JS. Angiotensin and the remodelling of the myocardium. Br J Clin Pharmacol. 1989;28 Suppl 2:141S–9S; discussion 149S–150S. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1379855&tool=pmcentrez&rendertype=abstract. Accessed 8 Nov 2015.

  55. Francis GS, Benedict C, Johnstone DE, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation 1990;82(5):1724–9. http://www.ncbi.nlm.nih.gov/pubmed/2146040. Accessed 8 Nov 2015.

  56. Swedberg K, Eneroth P, Kjekshus J, Wilhelmsen L. Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. CONSENSUS Trial Study Group. Circulation 1990;82(5):1730–6. http://www.ncbi.nlm.nih.gov/pubmed/2225374. Accessed 8 Nov 2015.

  57. MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 1999;353(9169):2001–7. http://www.ncbi.nlm.nih.gov/pubmed/10376614. Accessed 7 May 2015.

  58. Packer M, Lee WH, Kessler PD, et al. Role of neurohormonal mechanisms in determining survival in patients with severe chronic heart failure. Circulation 1987;75(5 Pt 2):IV80–92. http://www.ncbi.nlm.nih.gov/pubmed/2882867. Accessed 8 Nov 2015.

  59. Brasier AR, Recinos A, Eledrisi MS. Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol 2002;22(8):1257–66. http://www.ncbi.nlm.nih.gov/pubmed/12171785. Accessed 8 Oct 2015.

  60. Nance DM, Sanders VM. Autonomic innervation and regulation of the immune system (1987-2007). Brain Behav Immun. 2007;21(6):736–45. doi:10.1016/j.bbi.2007.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gheorghiade M, Bonow RO. Chronic heart failure in the United States: a manifestation of coronary artery disease. Circulation 1998;97(3):282–9. http://www.ncbi.nlm.nih.gov/pubmed/9462531. Accessed 8 Nov 2015.

  62. Minicucci MF, Azevedo PS, Polegato BF, et al. Heart failure after myocardial infarction: clinical implications and treatment. Clin Cardiol. 2011;34(7):410–4. doi:10.1002/clc.20922.

    Article  PubMed  Google Scholar 

  63. Pauletto P, Rattazzi M. Inflammation and hypertension: the search for a link. Nephrol Dial Transplant. 2006;21(4):850–3. doi:10.1093/ndt/gfl019.

    Article  PubMed  Google Scholar 

  64. Savoia C, Schiffrin EL. Inflammation in hypertension. Curr Opin Nephrol Hypertens. 2006;15(2):152–8. doi:10.1097/01.mnh.0000203189.57513.76.

    CAS  PubMed  Google Scholar 

  65. McClain CJ, Barve S, Deaciuc I, et al. Cytokines in alcoholic liver disease. Semin Liver Dis. 1999;19(2):205–19. doi:10.1055/s-2007-1007110.

    Article  CAS  PubMed  Google Scholar 

  66. Wang HJ, Zakhari S, Jung MK. Alcohol, inflammation, and gut-liver-brain interactions in tissue damage and disease development. World J Gastroenterol 2010;16(11):1304–13. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2842521&tool=pmcentrez&rendertype=abstract. Accessed 8 Nov 2015.

  67. Schmidt-Ott UM, Ascheim DD. Thyroid hormone and heart failure. Curr Heart Fail Rep 2006;3(3):114–9. http://www.ncbi.nlm.nih.gov/pubmed/16914103. Accessed 8 Nov 2015.

  68. Figueroa-Vega N, Alfonso-Pérez M, Benedicto I, et al. Increased circulating pro-inflammatory cytokines and Th17 lymphocytes in Hashimoto’s thyroiditis. J Clin Endocrinol Metab. 2010;95(2):953–62. doi:10.1210/jc.2009-1719.

    Article  CAS  PubMed  Google Scholar 

  69. Wallby L, Lars W, Steffensen T, et al. Role of inflammation in nonrheumatic, regurgitant heart valve disease. A comparative, descriptive study regarding apolipoproteins and inflammatory cells in nonrheumatic heart valve disease. Cardiovasc Pathol. 2007;16(3):171–8. doi:10.1016/j.carpath.2006.10.004.

    Article  PubMed  Google Scholar 

  70. Wallby L. Signs of inflammation in different types of heart valve disease: The VOCIN study. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11330. Accessed 8 Nov 2015.

  71. Neu N, Rose NR, Beisel KW, et al. Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol 1987;139(11):3630–6. http://www.jimmunol.org/content/139/11/3630.abstract. Accessed 8 Nov 2015.

  72. Jelkmann W. Proinflammatory cytokines lowering erythropoietin production. J Interferon Cytokine Res 1998;18(8):555–59. http://www.ncbi.nlm.nih.gov/pubmed/9726435. Accessed 8 Nov 2015.

  73. Silverberg DS, Wexler D, Iaina A. The role of anemia in the progression of congestive heart failure. Is there a place for erythropoietin and intravenous iron? J Nephrol. 2004;17(6):749–61. http://www.ncbi.nlm.nih.gov/pubmed/15593047. Accessed 8 Nov 2015.

  74. Caramelo C, Just S, Gil P. Anemia in heart failure: pathophysiology, pathogenesis, treatment, and incognitae. Rev Española Cardiol (English Ed). 2007;60(8):848–60. doi:10.1016/S1885-5857(08)60029-8.

    Google Scholar 

  75. Anker SD, Sharma R. The syndrome of cardiac cachexia. Int J Cardiol 2002;85(1):51–66. http://www.ncbi.nlm.nih.gov/pubmed/12163209. Accessed 8 Nov 2015.

  76. von Haehling S, Genth-Zotz S, Anker SD, Volk HD. Cachexia: a therapeutic approach beyond cytokine antagonism. Int J Cardiol 2002;85(1):173–83. http://www.ncbi.nlm.nih.gov/pubmed/12163222. Accessed 8 Nov 2015.

  77. Gursoy M, Salihoglu E, Hatemi AC, et al. Inflammation and congenital heart disease associated pulmonary hypertension. Heart Surg Forum 2015;18(1):E38–41. http://www.ncbi.nlm.nih.gov/pubmed/25881225. Accessed 8 Nov 2015.

  78. Groth A, Vrugt B, Brock M, et al. Inflammatory cytokines in pulmonary hypertension. Respir Res. 2014;15:47. doi:10.1186/1465-9921-15-47.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ukena C, Mahfoud F, Kindermann M, et al. The cardiopulmonary continuum systemic inflammation as “common soil” of heart and lung disease. Int J Cardiol. 2010;145(2):172–6. doi:10.1016/j.ijcard.2010.04.082.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Hee Kim MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London

About this chapter

Cite this chapter

Kim, KH., Kim, D., Eisen, H.J. (2017). Inflammation and Heart Failure. In: Eisen, H. (eds) Heart Failure. Springer, London. https://doi.org/10.1007/978-1-4471-4219-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4219-5_35

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4218-8

  • Online ISBN: 978-1-4471-4219-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics