Skip to main content
Log in

Targeting Interleukin-1 in Heart Failure and Inflammatory Heart Disease

  • Pharmacologic Therapy (WHW Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Heart failure (HF) is a clinical syndrome characterized by dyspnea, fatigue, and poor exercise capacity due to insufficient cardiac function. HF represents the leading cause of hospitalization among adult patients over 65 years of age. Neurohormonal blockade has improved clinical outcomes; however, HF incidence continues to rise, suggesting an urgent need to develop novel drugs that target a different pathophysiological paradigm. Inflammation plays a central role in many cardiovascular diseases. Interleukin-1 (IL-1), a prototypical proinflammatory cytokine, is upregulated in HF and associated with worse prognosis. Preclinical models suggest a beneficial effect of IL-1 blockade, and pilot clinical trials are currently underway to evaluate the role of IL-1 blockade to reduce inflammation, ameliorate ventricular remodeling, and improve exercise capacity in patients with HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Braunwald E. Heart failure. JACC Heart Fail. 2013;1(1):1–20. This is a review article on epidemiology, pathophysiology, and recent developments in the management of HF.

    Article  PubMed  Google Scholar 

  2. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics-2013 update a report from the American Heart Association. Circulation. 2013;127:E6–245.

    Article  PubMed  Google Scholar 

  3. Borlaug BA. The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2014;11(9):507–15. This is a recent review article which focuses on the current understanding of the pathophysiological mechanisms on HFpEF.

    Article  CAS  PubMed  Google Scholar 

  4. Mann DL. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res. 2002;91(11):988–98.

    Article  CAS  PubMed  Google Scholar 

  5. Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11(5):255–65. This review article emphasizes on inflammatory mechanism on myocardial infarction and possible therapeutic targets related.

    Article  CAS  PubMed  Google Scholar 

  6. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117:3720–32. This review article focuses on molecular mechanisms of IL-1 and on acute and chronic inflammatory diseases treated by reducing IL-1 activity.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Testa M, Yeh M, Lee P, Fanelli R, Loperfido F, Berman JW, et al. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol. 1996;28:964–71.

    Article  CAS  PubMed  Google Scholar 

  8. Mann DL, Young JB. Basic mechanisms in congestive heart failure. Recognizing the role of proinflammatory cytokines. Chest. 1994;105(3):897–904.

    Article  CAS  PubMed  Google Scholar 

  9. Anker SD, von Haehling S. Inflammatory mediators in chronic heart failure: an overview. Heart. 2004;90(4):464–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Yndestad A, Damås JK, Oie E, Ueland T, Gullestad L, Aukrust P. Systemic inflammation in heart failure—the whys and wherefores. Heart Fail Rev. 2006;11(1):83–92.

    Article  CAS  PubMed  Google Scholar 

  11. Blake GJ, Ridker PM. C-reactive protein and other inflammatory risk markers in acute coronary syndromes. J Am Coll Cardiol. 2003;41(4 Suppl S):37S–42.

    Article  CAS  PubMed  Google Scholar 

  12. Sonnino C, Toldo S, Mezzaorma E, Abbate A. Inflammasome: a new villain in heart disease. Inflammasome. 2014;1:30–5.

    Article  Google Scholar 

  13. Van Tassell BW, Toldo S, Mezzaroma E, Abbate A. Targeting interleukin-1 in heart disease. Circulation. 2013;128(17):1910–23.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN, et al. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci U S A. 2011;108(49):19725–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Abbate A, Salloum FN, Van Tassell BW, Vecile E, Toldo S, Seropian I, et al. Alterations in the interleukin-1/interleukin-1 receptor antagonist balance modulate cardiac remodeling following myocardial infarction in the mouse. PLoS One. 2011;6(11):e27923.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Abbate A, Van Tassell BW, Seropian IM, Toldo S, Robati R, Varma A, et al. Interleukin-1beta modulation using a genetically engineered antibody prevents adverse cardiac remodelling following acute myocardial infarction in the mouse. Eur J Heart Fail. 2010;12(4):319–22.

    Article  CAS  PubMed  Google Scholar 

  17. Van Tassell BW, Varma A, Salloum FN, Das A, Seropian IM, Toldo S, et al. Interleukin-1 trap attenuates cardiac remodeling after experimental acute myocardial infarction in mice. J Cardiovasc Pharmacol. 2010;55(2):117–22.

    Article  PubMed  Google Scholar 

  18. Abbate A, Salloum FN, Vecile E, Das A, Hoke NN, Straino S, et al. Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation. 2008;117(20):2670–83.

    Article  CAS  PubMed  Google Scholar 

  19. Toldo S, Mezzaroma E, Van Tassell BW, Farkas D, Marchetti C, Voelkel NF, et al. Interleukin-1β blockade improves cardiac remodelling after myocardial infarction without interrupting the inflammasome in the mouse. Exp Physiol. 2013;98(3):734–45.

    Article  CAS  PubMed  Google Scholar 

  20. Toldo S, Mezzaroma E, Bressi E, Marchetti C, Carbone S, Sonnino C, et al. Interleukin-1β blockade improves left ventricular systolic/diastolic function and restores contractility reserve in severe ischemic cardiomyopathy in the mouse. J Cardiovasc Pharmacol. 2014;64(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  21. Abbate A, Kontos MC, Grizzard JD, Biondi-Zoccai GG, Van Tassell BW, Robati R, et al. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). Am J Cardiol. 2010;105(10):1371–7. The first pilot clinical study on IL-1 blockade in STEMI population.

    Article  CAS  PubMed  Google Scholar 

  22. Abbate A, Van Tassell BW, Biondi-Zoccai G, Kontos MC, Grizzard JD, Spillman DW, et al. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. Am J Cardiol. 2013;111(10):1394–400. Similar to VCU-ART, this pilot study evaluated IL-1 blockade in STEMI population and recruited 30 more patients.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. http://www.clinicaltrials.gov (NCT NCT01950299), Accessed 9 May 2014.

  24. Morton AC, Rothman AM, Greenwood JP, Gunn J, Chase A, Clarke B, et al. The effect of interleukin-1 receptor antagonist therapy on markers of inflammation in non-ST elevation acute coronary syndromes: the MRC-ILA Heart Study. Eur Heart J. 2014;30:ehu272. The first clinical trial (phase II) on effects of IL-1 blockade with anakinra in NSTEMI patients.

    Google Scholar 

  25. Abbate A, Dinarello CA. Anti-inflammatory therapies in acute coronary syndromes: is IL-1 blockade a solution? Eur Heart J. 2014 – in press.

  26. Bracey NA, Beck PL, Muruve DA, Hirota SA, Guo J, Jabagi H, et al. The Nlrp3 inflammasome promotes myocardial dysfunction in structural cardiomyopathy through interleukin-1β. Exp Physiol. 2013;98(2):462–72.

    Article  CAS  PubMed  Google Scholar 

  27. Toldo S, Kannan H, Bussani R, Anzini M, Sonnino C, Sinagra G, et al. Formation of the inflammasome in acute myocarditis. Int J Cardiol. 2014;171(3):e119–21.

    Article  PubMed  Google Scholar 

  28. Lane JR, Neumann DA, Lafond-Walker A, Herskowitz A, Rose NR. Role of IL-1 and tumor necrosis factor in coxsackie virus-induced autoimmune myocarditis. J Immunol. 1993;151(3):1682–90.

    CAS  PubMed  Google Scholar 

  29. Lane JR, Neumann DA, Lafond-Walker A, Herskowitz A, Rose NR. Interleukin 1 or tumor necrosis factor can promote Coxsackie B3-induced myocarditis in resistant B10.A mice. J Exp Med. 1992;175(4):1123–9.

    Article  CAS  PubMed  Google Scholar 

  30. Lim BK, Choe SC, Shin JO, Ho SH, Kim JM, Yu SS, et al. Local expression of interleukin-1 receptor antagonist by plasmid DNA improves mortality and decreases myocardial inflammation in experimental coxsackieviral myocarditis. Circulation. 2002;105(11):1278–81.

    CAS  PubMed  Google Scholar 

  31. Van Tassell BW, Seropian IM, Toldo S, Mezzaroma E, Abbate A. Interleukin-1β induces a reversible cardiomyopathy in the mouse. Inflamm Res. 2013;62(7):637–40.

    Article  PubMed  Google Scholar 

  32. Van Tassell BW, Arena RA, Toldo S, Mezzaroma E, Azam T, Seropian IM, et al. Enhanced interleukin-1 activity contributes to exercise intolerance in patients with systolic heart failure. PLoS One. 2012;7(3):e33438. The first pilot study that evaluated exercise capacity in patients with HFrEF and IL-1 blockade with anakinra.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Zhu J, Zhang J, Zhang L, Du R, Xiang D, Wu M, et al. Interleukin-1 signaling mediates acute doxorubicin-induced cardiotoxicity. Biomed Pharmacother. 2011;65(7):481–5.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu J, Zhang J, Xiang D, Zhang Z, Zhang L, Wu M, et al. Recombinant human interleukin-1 receptor antagonist protects mice against acute doxorubicin-induced cardiotoxicity. Eur J Pharmacol. 2010;643(2–3):247–53.

    Article  CAS  PubMed  Google Scholar 

  35. Mezzaroma E, Toldo S, Cardnell RJ, Van Tassell BW, Mikkelsen RB, Gewirtz DA, et al. Role of interleukin-1 in acute radiation-induced cardiomyopathy. Circulation. 2012;126:A17799.

    Google Scholar 

  36. Mezzorma E, Toldo S, Van Tassell BW, Marchetti C, Mikkelsen RB, Gewirtz DA, et al. Preserved left ventricular contractile reserve after thoracic irradiation in the interleukin-1 receptor knock out mouse. Circulation. 2013;128:A14774.

    Google Scholar 

  37. Toldo S, Mezzaroma E, O’Brien L, Marchetti C, Seropian IM, Voelkel NF, et al. Interleukin-18 mediates interleukin-1-induced cardiac dysfunction. Am J Physiol Heart Circ Physiol. 2014;306(7):H1025–31.

    Article  CAS  PubMed  Google Scholar 

  38. Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE. Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med. 1996;183(3):949–58.

    Article  CAS  PubMed  Google Scholar 

  39. Chung MK, Gulick TS, Rotondo RE, Schreiner GF, Lange LG. Mechanism of cytokine inhibition of beta-adrenergic agonist stimulation of cyclic AMP in rat cardiac myocytes. Impairment of signal transduction. Circ Res. 1990;67:753–63.

    Article  CAS  PubMed  Google Scholar 

  40. Liu SJ, Zhou W, Kennedy RH. Suppression of beta-adrenergic responsiveness of L-type Ca2+ current by IL-1beta in rat ventricular myocytes. Am J Physiol. 1999;276:H141–8.

    CAS  PubMed  Google Scholar 

  41. Schreur KD, Liu S. Involvement of ceramide in inhibitory effect of IL-1 beta on L-type Ca2+ current in adult rat ventricular myocytes. Am J Physiol. 1997;272:H2591–8.

    CAS  PubMed  Google Scholar 

  42. Liu S, Schreur KD. G protein-mediated suppression of L-type Ca2+ current by interleukin-1 beta in cultured rat ventricular myocytes. Am J Physiol. 1995;268:C339–49.

    CAS  PubMed  Google Scholar 

  43. Combes A, Frye CS, Lemster BH, Brooks SS, Watkins SC, Feldman AM, et al. Chronic exposure to interleukin 1beta induces a delayed and reversible alteration in excitation-contraction coupling of cultured cardiomyocytes. Pflugers Arch. 2002;445:246–56.

    Article  CAS  PubMed  Google Scholar 

  44. McTiernan CF, Lemster BH, Frye C, Brooks S, Combes A, Feldman AM. Interleukin-1 beta inhibits phospholamban gene expression in cultured cardiomyocytes. Circ Res. 1997;81:493–503.

    Article  CAS  PubMed  Google Scholar 

  45. Tatsumi T, Matoba S, Kawahara A, Keira N, Shiraishi J, Akashi K, et al. Cytokine-induced nitric oxide production inhibits mitochondrial energy production and impairs contractile function in rat cardiac myocytes. J Am Coll Cardiol. 2000;35:1338–46.

    Article  CAS  PubMed  Google Scholar 

  46. Schulz R, Panas DL, Catena R, Moncada S, Olley PM, Lopaschuk GD. The role of nitric oxide in cardiac depression induced by interleukin-1 beta and tumour necrosis factor-alpha. Br J Pharmacol. 1995;114:27–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Tsujino M, Hirata Y, Imai T, Kanno K, Eguchi S, Ito H, et al. Induction of nitric oxide synthase gene by interleukin-1 beta in cultured rat cardiocytes. Circulation. 1994;90:375–83.

    Article  CAS  PubMed  Google Scholar 

  48. Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL. Cytokines and cytokine receptors in advanced heart failure—an analysis of the cytokine database from the vesnarinone trial (VEST). Circulation. 2001;103:2055–9.

    Article  CAS  PubMed  Google Scholar 

  49. Ikonomidis I, Lekakis JP, Nikolaou M, Paraskevaidis I, Andreadou I, Kaplanoglou T, et al. Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation. 2008;117:2662–9.

    Article  CAS  PubMed  Google Scholar 

  50. Ikonomidis I, Tzortzis S, Lekakis J, Paraskevaidis I, Andreadou I, Nikolaou M, et al. Lowering interleukin-1 activity with anakinra improves myocardial deformation in rheumatoid arthritis. Heart. 2009;95(18):1502–7.

    Article  CAS  PubMed  Google Scholar 

  51. Ikonomidis I, Tzortzis S, Lekakis J, Paraskevaidis I, Dasou P, Parissis J, et al. Association of soluble apoptotic markers with impaired left ventricular deformation in patients with rheumatoid arthritis. Effects of inhibition of interleukin-1 activity by anakinra. Thromb Haemost. 2011;106(5):959–67.

    Article  CAS  PubMed  Google Scholar 

  52. Ikonomidis I, Tzortzis S, Andreadou I, Paraskevaidis I, Katseli C, Katsimbri P, et al. Increased benefit of interleukin-1 inhibition on vascular function, myocardial deformation, and twisting in patients with coronary artery disease and coexisting rheumatoid arthritis. Circ Cardiovasc Imaging. 2014;7(4):619–28.

    Article  PubMed  Google Scholar 

  53. Abbate A, Canada JM, Van Tassell BW, Wise CM, Dinarello CA. Interleukin-1 blockade in rheumatoid arthritis and heart failure: a missed opportunity? Int J Cardiol. 2014;171:E125–6. Case report in a patient with rheumatoid arthritis and heart failure in which improvement of cardiovascular health after treatment with anakinra was significant.

    Article  PubMed  Google Scholar 

  54. Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, et al. Clinician’s Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 2010;122:191–225.

    Article  PubMed  Google Scholar 

  55. Dinarello CA, Ikejima T, Warner SJ, Orencole SF, Lonnemann G, Cannon JG, et al. Interleukin 1 induces interleukin 1. I. Induction of circulating interleukin 1 in rabbits in vivo and in human mononuclear cells in vitro. J Immunol. 1987;139(6):1902–10.

    CAS  PubMed  Google Scholar 

  56. Shah SJ, Marcus GM, Gerber IL, McKeown BH, Vessey JC, Jordan MV, et al. High-sensitivity C-reactive protein and parameters of left ventricular dysfunction. J Card Fail. 2006;12:61–5.

    Article  CAS  PubMed  Google Scholar 

  57. Michowitz Y, Arbel Y, Wexler D, Sheps D, Rogowski O, Shapira I, et al. Predictive value of high sensitivity CRP in patients with diastolic heart failure. Int J Cardiol. 2008;125:347–51.

    Article  PubMed  Google Scholar 

  58. Van Tassell BW, Arena R, Biondi-Zoccai G, McNair Canada J, Oddi C, Abouzaki NA, Jahangiri A, Falcao RA, Kontos MC, Shah KB, Voelkel NF, Dinarello CA, Abbate A. Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART pilot study). Am J Cardiol. 2014;113(2):321–7. First clinical pilot study that evaluated exercise capacity in patients with HFpEF and increased IL-1 activity (measured by CRP levels) treated with anakinra.

  59. Paulus WJ, Tschöpe C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28(20):2539–50.

    Article  PubMed  Google Scholar 

  60. http://www.clinicaltrials.gov (NCT01936844), Accessed 9 May 2014.

  61. http://www.clinicaltrials.gov (NCT01936909), Accessed 9 May 2014.

  62. http://www.clinicaltrials.gov (NCT02173548), Accessed 9 May 2014.

  63. Ridker PM, Thuren T, Zalewski A, Libby P. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J. 2011;162(4):597–605.

    Article  CAS  PubMed  Google Scholar 

  64. Howard C, Noe A, Skerjanec A, Holzhauer B, Wernsing M, Ligueros-Saylan M, et al. Safety and tolerability of canakinumab, an IL-1β inhibitor, in type 2 diabetes mellitus patients: a pooled analysis of three randomised double-blind studies. Cardiovasc Diabetol. 2014;13:94.

    Article  PubMed Central  PubMed  Google Scholar 

  65. http://www.clinicaltrials.gov (NCT01900600), Accessed 9 May 2014.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Benjamin W. Van Tassell has received research support through grants from the National Institutes of Health (NIH) and the American Heart Association (AHA) and has a patent for novel cryopyrin inhibitors pending.

Juan M. Valle Raleigh declares that he has no conflict of interest.

Antonio Abbate has received research support through grants from the NIH, AHA, Novartis, and Gilead; has received compensation from Janssen (speaker’s training) and SOBI (advisory board) for service as a consultant; has received nonfinancial support from Grifols; and has a patent for an inflammasome inhibitor pending.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin W. Van Tassell.

Additional information

This article is part of the Topical Collection on Pharmacologic Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Tassell, B.W., Raleigh, J.M.V. & Abbate, A. Targeting Interleukin-1 in Heart Failure and Inflammatory Heart Disease. Curr Heart Fail Rep 12, 33–41 (2015). https://doi.org/10.1007/s11897-014-0231-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-014-0231-7

Keywords

Navigation