Skip to main content

Human Pancreatic Progenitors: Implications for Clinical Transplantation in Diabetes

  • Chapter
  • First Online:
Human Fetal Tissue Transplantation

Abstract

Shortage in the number of available pancreas and isolated islets has forced researchers to study and develop different cell types that can be potentially used for cell replacement therapy in diabetes. The major question is the choice of such a cell type. Ideally, an islet progenitor cell should meet two criteria: (1) ability to proliferate while retaining its stem-cell properties under defined conditions, in vitro, and (2) to be able to efficiently differentiate into insulin-producing cells that can release physiologically significant amount of insulin in response to glucose. Although cell types such as embryonic stem cells satisfy the former criteria, none of the studies carried out until now have been able to meet the latter criteria. We proposed earlier that precursor/progenitor cells generated from human insulin-producing islet of Langerhans would be ideal candidates for clinical use in diabetes. One of the major reasons to propose this hypothesis is that epigenetic marks that characterize insulin promoter region in these islet cells are heritable and are retained in proliferating progenitor cells obtained from islets. There is now a significant amount of data to believe that human pancreatic islet-derived cells are better progenitors for differentiation into insulin-producing cells. In this chapter, we discuss the major cell types that have been proposed and assessed for potential use in cell replacement therapy for diabetes. Understanding the potential and safety of such cell types will help in considering their suitability for clinical use in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham EJ, Leech CA, Lin JC, Zulewski H, Habener JF. Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology. 2002;143(8):3152–61.

    Article  PubMed  CAS  Google Scholar 

  2. Ahlgren U, Jonsson J, Edlund H. The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development. 1996;122(5):1409–16.

    PubMed  CAS  Google Scholar 

  3. Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H. beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev. 1998;12(12):1763–8.

    Article  PubMed  CAS  Google Scholar 

  4. Al-Masri M, Krishnamurthy M, Li J, Fellows GF, Dong HH, Goodyer CG, Wang R. Effect of forkhead box O1 (FOXO1) on beta cell development in the human fetal pancreas. Diabetologia. 2010;53(4):699–711.

    Article  PubMed  CAS  Google Scholar 

  5. Andralojc KM, Mercalli A, Nowak KW, Albarello L, Calcagno R, Luzi L, Bonifacio E, Doglioni C, Piemonti L. Ghrelin-producing epsilon cells in the developing and adult human pancreas. Diabetologia. 2009;52(3):486–93.

    Article  PubMed  CAS  Google Scholar 

  6. Atkinson S, Armstrong L. Epigenetics in embryonic stem cells: regulation of pluripotency and differentiation. Cell Tissue Res. 2008;331(1):23–9.

    Article  PubMed  Google Scholar 

  7. Atouf F, Park CH, Pechhold K, Ta M, Choi Y, Lumelsky NL. No evidence for mouse pancreatic beta-cell epithelial-mesenchymal transition in vitro. Diabetes. 2007;56(3):699–702.

    Article  PubMed  CAS  Google Scholar 

  8. Aviv V, Meivar-Levy I, Rachmut IH, Rubinek T, Mor E, Ferber S. Exendin-4 promotes liver cell proliferation and enhances the PDX-1-induced liver to pancreas transdifferentiation process. J Biol Chem. 2009;284(48):33509–20.

    Article  PubMed  CAS  Google Scholar 

  9. Baeyens L, Bonne S, Bos T, Rooman I, Peleman C, Lahoutte T, German M, Heimberg H, Bouwens L. Notch signaling as gatekeeper of rat acinar-to-beta-cell conversion in vitro. Gastroenterology. 2009;136(5):1750–1760.e13.

    Article  PubMed  CAS  Google Scholar 

  10. Bhaumik SR, Smith E, Shilatifard A. Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol. 2007;14(11):1008–16.

    Article  PubMed  CAS  Google Scholar 

  11. Bonner-Weir S, Weir GC. New sources of pancreatic beta-cells. Nat Biotechnol. 2005;23(7):857–61.

    Article  PubMed  CAS  Google Scholar 

  12. Bouwens L, Lu WG, De Krijger R. Proliferation and differentiation in the human fetal endocrine pancreas. Diabetologia. 1997;40(4):398–404.

    Article  PubMed  CAS  Google Scholar 

  13. Brands K, Colvin E, Williams LJ, Wang R, Lock RB, Tuch BE. Reduced immunogenicity of first-trimester human fetal pancreas. Diabetes. 2008;57(3):627–34.

    Article  PubMed  CAS  Google Scholar 

  14. Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM, Powers AC. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem. 2005;53(9):1087–97.

    Article  PubMed  CAS  Google Scholar 

  15. Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA. 2006;103(7):2334–9.

    Article  PubMed  CAS  Google Scholar 

  16. Campbell IL, Bizilj K, Colman PG, Tuch BE, Harrison LC. Interferon-gamma induces the expression of HLA-A, B, C but not HLA-DR on human pancreatic beta-cells. J Clin Endocrinol Metab. 1986;62(6):1101–9.

    Article  PubMed  CAS  Google Scholar 

  17. Chao KC, Chao KF, Fu YS, Liu SH. Islet-like clusters derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One. 2008;3(1):e1451.

    Article  PubMed  CAS  Google Scholar 

  18. Chase LG, Ulloa-Montoya F, Kidder BL, Verfaillie CM. Islet-derived fibroblast-like cells are not derived via epithelial-mesenchymal transition from Pdx-1 or insulin-positive cells. Diabetes. 2007;56(1):3–7.

    Article  PubMed  CAS  Google Scholar 

  19. Davani B, Ikonomou L, Raaka BM, Geras-Raaka E, Morton RA, Marcus-Samuels B, Gershengorn MC. Human islet-derived precursor cells are mesenchymal stromal cells that differentiate and mature to hormone-expressing cells in vivo. Stem Cells. 2007;25(12):3215–22.

    Article  PubMed  CAS  Google Scholar 

  20. Dekel B, Burakova T, Arditti FD, Reich-Zeliger S, Milstein O, Aviel-Ronen S, Rechavi G, Friedman N, Kaminski N, Passwell JH, et al. Human and porcine early kidney precursors as a new source for transplantation. Nat Med. 2003;9(1):53–60.

    Article  PubMed  CAS  Google Scholar 

  21. Dekel B, Burakova T, Ben-Hur H, Marcus H, Oren R, Laufer J, Reisner Y. Engraftment of human kidney tissue in rat radiation chimera: II. Human fetal kidneys display reduced immunogenicity to adoptively transferred human peripheral blood mononuclear cells and exhibit rapid growth and development. Transplantation. 1997;64(11):1550–8.

    Article  PubMed  CAS  Google Scholar 

  22. Dekel B, Reisner Y. Engraftment of human early kidney precursors. Transpl Immunol. 2004;12(3–4):241–7.

    Article  PubMed  CAS  Google Scholar 

  23. Ding Y, Bushell A, Wood KJ. Mesenchymal stem-cell immunosuppressive capabilities: therapeutic implications in islet transplantation. Transplantation. 2010;89(3):270–3.

    Article  PubMed  CAS  Google Scholar 

  24. Draper JS, Fox V. Human embryonic stem cells: multilineage differentiation and mechanisms of self-­renewal. Arch Med Res. 2003;34(6):558–64.

    Article  PubMed  CAS  Google Scholar 

  25. Drucker DJ. Glucagon and the glucagon-like peptides. Pancreas. 1990;5(4):484–8.

    Article  PubMed  CAS  Google Scholar 

  26. Duckworth WC, Bennett RG, Hamel FG. Insulin degradation: progress and potential. Endocr Rev. 1998;19(5):608–24.

    Article  PubMed  CAS  Google Scholar 

  27. Dumonteil E, Philippe J. Insulin gene: organisation, expression and regulation. Diabetes Metab. 1996;22(3):164–73.

    PubMed  CAS  Google Scholar 

  28. Edlund H. Transcribing pancreas. Diabetes. 1998;47(12):1817–23.

    Article  PubMed  CAS  Google Scholar 

  29. Edlund H. Developmental biology of the pancreas. Diabetes. 2001;50 Suppl 1:S5–9.

    Article  PubMed  CAS  Google Scholar 

  30. Erdag G, Morgan JR. Survival of fetal skin grafts is prolonged on the human peripheral blood lymphocyte reconstituted-severe combined immunodeficient mouse/skin allograft model. Transplantation. 2002;73(4):519–28.

    Article  PubMed  CAS  Google Scholar 

  31. Evans-Molina C, Garmey JC, Ketchum R, Brayman KL, Deng S, Mirmira RG. Glucose regulation of insulin gene transcription and pre-mRNA processing in human islets. Diabetes. 2007;56(3):827–35.

    Article  PubMed  CAS  Google Scholar 

  32. Eventov-Friedman S, Tchorsh D, Katchman H, Shezen E, Aronovich A, Hecht G, Dekel B, Rechavi G, Blazar BR, Feine I, et al. Embryonic pig pancreatic tissue transplantation for the treatment of diabetes. PLoS Med. 2006;3(7):e215.

    Article  PubMed  CAS  Google Scholar 

  33. Ewen ME. Where the cell cycle and histones meet. Genes Dev. 2000;14(18):2265–70.

    Article  PubMed  CAS  Google Scholar 

  34. Fehmann HC, Goke R, Goke B. Glucagon-like peptide-1(7–37)/(7–36)amide is a new incretin. Mol Cell Endocrinol. 1992;85(1–2):C39–44.

    Article  PubMed  CAS  Google Scholar 

  35. Gannon M, Ables ET, Crawford L, Lowe D, Offield MF, Magnuson MA, Wright CV. pdx-1 function is specifically required in embryonic beta cells to generate appropriate numbers of endocrine cell types and maintain glucose homeostasis. Dev Biol. 2008;314(2):406–17.

    Article  PubMed  CAS  Google Scholar 

  36. Gaulton KJ, Nammo T, Pasquali L, Simon JM, Giresi PG, Fogarty MP, Panhuis TM, Mieczkowski P, Secchi A, Bosco D, et al. A map of open chromatin in human pancreatic islets. Nat Genet. 2010;42(3):255–9.

    Article  PubMed  CAS  Google Scholar 

  37. Gershengorn MC, Geras-Raaka E, Hardikar AA, Raaka BM. Are better islet cell precursors generated by epithelial-to-mesenchymal transition? Cell Cycle. 2005;4(3):380–2.

    Article  PubMed  CAS  Google Scholar 

  38. Gershengorn MC, Hardikar AA, Wei C, Geras-Raaka E, Marcus-Samuels B, Raaka BM. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science. 2004;306(5705):2261–4.

    Article  PubMed  CAS  Google Scholar 

  39. Gillespie DA, Vousden KH. The secret life of histones. Cell. 2003;114(6):655–6.

    Article  PubMed  CAS  Google Scholar 

  40. Gittes GK, Rutter WJ. Onset of cell-specific gene expression in the developing mouse ­pancreas. Proc Natl Acad Sci USA. 1992;89(3):1128–32.

    Article  PubMed  CAS  Google Scholar 

  41. Gonzalez-Romero R, Mendez J, Ausio J, Eirin-Lopez JM. Quickly evolving histones, nucleosome stability and chromatin folding: all about histone H2A.Bbd. Gene. 2008;413(1–2):1–7.

    Article  PubMed  CAS  Google Scholar 

  42. Gu G, Brown JR, Melton DA. Direct lineage tracing reveals the ontogeny of pancreatic cell fates during mouse embryogenesis. Mech Dev. 2003;120(1):35–43.

    Article  PubMed  CAS  Google Scholar 

  43. Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development. 2002;129(10):2447–57.

    PubMed  CAS  Google Scholar 

  44. Hara M, Dizon RF, Glick BS, Lee CS, Kaestner KH, Piston DW, Bindokas VP. Imaging pancreatic beta-cells in the intact pancreas. Am J Physiol Endocrinol Metab. 2006;290(5):E1041–7.

    Article  PubMed  CAS  Google Scholar 

  45. Hara M, Wang X, Kawamura T, Bindokas VP, Dizon RF, Alcoser SY, Magnuson MA, Bell GI. Transgenic mice with green fluorescent protein-labeled pancreatic beta -cells. Am J Physiol Endocrinol Metab. 2003;284(1):E177–83.

    PubMed  CAS  Google Scholar 

  46. Hardikar AA, Wang XY, Williams LJ, Kwok J, Wong R, Yao M, Tuch BE. Functional maturation of fetal porcine beta-cells by glucagon-like peptide 1 and cholecystokinin. Endocrinology. 2002;143(9):3505–14.

    Article  PubMed  CAS  Google Scholar 

  47. Harlan DM, Rother KI. Islet transplantation as a treatment for diabetes. N Engl J Med. 2004;350(20):2104; author reply 2104.

    Article  PubMed  CAS  Google Scholar 

  48. Hebrok M, Kim SK, St Jacques B, McMahon AP, Melton DA. Regulation of pancreas development by hedgehog signaling. Development. 2000;127(22):4905–13.

    PubMed  CAS  Google Scholar 

  49. Herrera PL. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development. 2000;127(11):2317–22.

    PubMed  CAS  Google Scholar 

  50. Herrera PL, Huarte J, Sanvito F, Meda P, Orci L, Vassalli JD. Embryogenesis of the murine endocrine pancreas; early expression of pancreatic polypeptide gene. Development. 1991;113(4):1257–65.

    PubMed  CAS  Google Scholar 

  51. Isenberg I. Histones. Annu Rev Biochem. 1979;48:159–91.

    Article  PubMed  CAS  Google Scholar 

  52. Iype T, Francis J, Garmey JC, Schisler JC, Nesher R, Weir GC, Becker TC, Newgard CB, Griffen SC, Mirmira RG. Mechanism of insulin gene regulation by the pancreatic transcription factor Pdx-1: application of pre-mRNA analysis and chromatin immunoprecipitation to assess formation of functional transcriptional complexes. J Biol Chem. 2005;280(17):16798–807.

    Article  PubMed  CAS  Google Scholar 

  53. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    Article  PubMed  CAS  Google Scholar 

  54. Jin T. Mechanisms underlying proglucagon gene expression. J Endocrinol. 2008;198(1):17–28.

    Article  PubMed  CAS  Google Scholar 

  55. Joglekar MV, Joglekar VM, Hardikar AA. Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns. 2009;9(2):109–13.

    Article  PubMed  CAS  Google Scholar 

  56. Joglekar MV, Joglekar VM, Joglekar SV, Hardikar AA. Human fetal pancreatic insulin-producing cells proliferate in vitro. J Endocrinol. 2009;201(1):27–36.

    Article  PubMed  CAS  Google Scholar 

  57. Joglekar MV, Parekh VS, Hardikar AA. New pancreas from old: microregulators of pancreas regeneration. Trends Endocrinol Metab. 2007;18(10):393–400.

    Article  PubMed  CAS  Google Scholar 

  58. Joglekar MV, Parekh VS, Mehta S, Bhonde RR, Hardikar AA. MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional ­regulation of neurogenin3. Dev Biol. 2007;311(2):603–12.

    Article  PubMed  CAS  Google Scholar 

  59. Joglekar MV, Patil D, Joglekar VM, Rao GV, Reddy DN, Sasikala M, Shouche Y, Hardikar AA. The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells. Islets. 2009;1(2):137–47.

    Article  PubMed  Google Scholar 

  60. Jonsson J, Carlsson L, Edlund T, Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 1994;371(6498):606–9.

    Article  PubMed  CAS  Google Scholar 

  61. Karnieli O, Izhar-Prato Y, Bulvik S, Efrat S. Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells. 2007;25(11):2837–44.

    Article  PubMed  CAS  Google Scholar 

  62. Kim A, Miller K, Jo J, Kilimnik G, Wojcik P, Hara M. Islet architecture: a comparative study. Islets. 2009;1(2):129–36.

    Article  PubMed  Google Scholar 

  63. Kim HJ, Schleiffarth JR, Jessurun J, Sumanas S, Petryk A, Lin S, Ekker SC. Wnt5 signaling in vertebrate pancreas development. BMC Biol. 2005;3:23.

    Article  PubMed  CAS  Google Scholar 

  64. Kim SK, Hebrok M. Intercellular signals regulating pancreas development and function. Genes Dev. 2001;15(2):111–27.

    Article  PubMed  CAS  Google Scholar 

  65. Kode JA, Mukherjee S, Joglekar MV, Hardikar AA. Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy. 2009;11(4):377–91.

    Article  PubMed  CAS  Google Scholar 

  66. Ku HT, Zhang N, Kubo A, O’Connor R, Mao M, Keller G, Bromberg JS. Committing embryonic stem cells to early endocrine pancreas in vitro. Stem Cells. 2004;22(7):1205–17.

    Article  PubMed  Google Scholar 

  67. Lechner A, Nolan AL, Blacken RA, Habener JF. Redifferentiation of insulin-secreting cells after in vitro expansion of adult human pancreatic islet tissue. Biochem Biophys Res Commun. 2005;327(2):581–8.

    Article  PubMed  CAS  Google Scholar 

  68. Lee CS, Sund NJ, Vatamaniuk MZ, Matschinsky FM, Stoffers DA, Kaestner KH. Foxa2 controls Pdx1 gene expression in pancreatic beta-cells in vivo. Diabetes. 2002;51(8):2546–51.

    Article  PubMed  CAS  Google Scholar 

  69. Lee EK, Gorospe M. Minireview: posttranscriptional regulation of the insulin and insulin-like growth factor systems. Endocrinology. 2010;151(4):1403–8.

    Article  PubMed  CAS  Google Scholar 

  70. Lennartsson A, Ekwall K. Histone modification patterns and epigenetic codes. Biochim Biophys Acta. 2009;1790(9):863–8.

    Article  PubMed  CAS  Google Scholar 

  71. Li J, Quirt J, Do HQ, Lyte K, Fellows F, Goodyer CG, Wang R. Expression of c-Kit receptor tyrosine kinase and effect on beta-cell development in the human fetal pancreas. Am J Physiol Endocrinol Metab. 2007;293(2):E475–83.

    Article  PubMed  CAS  Google Scholar 

  72. Li WC, Horb ME, Tosh D, Slack JM. In vitro transdifferentiation of hepatoma cells into functional pancreatic cells. Mech Dev. 2005;122(6):835–47.

    Article  PubMed  CAS  Google Scholar 

  73. Limbert C, Seufert J. In vitro (re)programming of human bone marrow stromal cells toward insulin-producing phenotypes. Pediatr Diabetes. 2009;10(6):413–9.

    Article  PubMed  Google Scholar 

  74. Lukinius A, Ericsson JL, Grimelius L, Korsgren O. Ultrastructural studies of the ontogeny of fetal human and porcine endocrine pancreas, with special ­reference to colocalization of the four major islet hormones. Dev Biol. 1992;153(2):376–85.

    Article  PubMed  CAS  Google Scholar 

  75. Lyttle BM, Li J, Krishnamurthy M, Fellows F, Wheeler MB, Goodyer CG, Wang R. Transcription factor expression in the developing human fetal endocrine pancreas. Diabetologia. 2008;51(7):1169–80.

    Article  PubMed  CAS  Google Scholar 

  76. Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel RL, Melton DA. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA. 2009;106(37):15768–73.

    Article  PubMed  CAS  Google Scholar 

  77. Meivar-Levy I, Ferber S. Regenerative medicine: using liver to generate pancreas for treating diabetes. Isr Med Assoc J. 2006;8(6):430–4.

    PubMed  Google Scholar 

  78. Melloul D. Transcription factors in islet development and physiology: role of PDX-1 in beta-cell function. Ann N Y Acad Sci. 2004;1014:28–37.

    Article  PubMed  CAS  Google Scholar 

  79. Micallef SJ, Li X, Janes ME, Jackson SA, Sutherland RM, Lew AM, Harrison LC, Elefanty AG, Stanley EG. Endocrine cells develop within pancreatic bud-like structures derived from mouse ES cells differentiated in response to BMP4 and retinoic acid. Stem Cell Res. 2007;1(1):25–36.

    Article  PubMed  CAS  Google Scholar 

  80. Minami K, Seino S. Pancreatic acinar-to-beta cell transdifferentiation in vitro. Front Biosci. 2008;13:5824–37.

    Article  PubMed  CAS  Google Scholar 

  81. Misiti S, Anastasi E, Sciacchitano S, Verga Falzacappa C, Panacchia L, Bucci B, Khouri D, D’Acquarica I, Brunetti E, Di Mario U, et al. 3,5,3’-Triiodo-L-thyronine enhances the differentiation of a human pancreatic duct cell line (hPANC-1) towards a beta-cell-Like phenotype. J Cell Physiol. 2005;204(1):286–96.

    Article  PubMed  CAS  Google Scholar 

  82. Morton RA, Geras-Raaka E, Wilson LM, Raaka BM, Gershengorn MC. Endocrine precursor cells from mouse islets are not generated by epithelial-to-mesenchymal transition of mature beta cells. Mol Cell Endocrinol. 2007;270(1–2):87–93.

    Article  PubMed  CAS  Google Scholar 

  83. Munshi A, Shafi G, Aliya N, Jyothy A. Histone modifications dictate specific biological readouts. J Genet Genomics. 2009;36(2):75–88.

    Article  PubMed  CAS  Google Scholar 

  84. Mutskov V, Raaka BM, Felsenfeld G, Gershengorn MC. The human insulin gene displays transcriptionally active epigenetic marks in islet-derived mesenchymal precursor cells in the absence of insulin expression. Stem Cells. 2007;25(12):3223–33.

    Article  PubMed  CAS  Google Scholar 

  85. Nagaya M, Katsuta H, Kaneto H, Bonner-Weir S, Weir GC. Adult mouse intrahepatic biliary epithelial cells induced in vitro to become insulin-producing cells. J Endocrinol. 2009;201(1):37–47.

    Article  PubMed  CAS  Google Scholar 

  86. Ober EA, Field HA, Stainier DY. From endoderm formation to liver and pancreas development in zebrafish. Mech Dev. 2003;120(1):5–18.

    Article  PubMed  CAS  Google Scholar 

  87. Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BL, Wright CV. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 1996;122(3):983–95.

    PubMed  CAS  Google Scholar 

  88. Oliver-Krasinski JM, Kasner MT, Yang J, Crutchlow MF, Rustgi AK, Kaestner KH, Stoffers DA. The diabetes gene Pdx1 regulates the transcriptional network of pancreatic endocrine progenitor cells in mice. J Clin Invest. 2009;119(7):1888–98.

    Article  PubMed  CAS  Google Scholar 

  89. Ouziel-Yahalom L, Zalzman M, Anker-Kitai L, Knoller S, Bar Y, Glandt M, Herold K, Efrat S. Expansion and redifferentiation of adult human pancreatic islet cells. Biochem Biophys Res Commun. 2006;341(2):291–8.

    Article  PubMed  CAS  Google Scholar 

  90. Pearl EJ, Bilogan CK, Mukhi S, Brown DD, Horb ME. Xenopus pancreas development. Dev Dyn. 2009;238(6):1271–86.

    Article  PubMed  CAS  Google Scholar 

  91. Peters AH, Schubeler D. Methylation of histones: playing memory with DNA. Curr Opin Cell Biol. 2005;17(2):230–8.

    Article  PubMed  CAS  Google Scholar 

  92. Phillips BW, Hentze H, Rust WL, Chen QP, Chipperfield H, Tan EK, Abraham S, Sadasivam A, Soong PL, Wang ST, et al. Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells Dev. 2007;16(4):561–78.

    Article  PubMed  CAS  Google Scholar 

  93. Piper K, Brickwood S, Turnpenny LW, Cameron IT, Ball SG, Wilson DI, Hanley NA. Beta cell differentiation during early human pancreas development. J Endocrinol. 2004;181(1):11–23.

    Article  PubMed  CAS  Google Scholar 

  94. Polak M, Bouchareb-Banaei L, Scharfmann R, Czernichow P. Early pattern of differentiation in the human pancreas. Diabetes. 2000;49(2):225–32.

    Article  PubMed  CAS  Google Scholar 

  95. Richardson MK, Hanken J, Gooneratne ML, Pieau C, Raynaud A, Selwood L, Wright GM. There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development. Anat Embryol (Berl). 1997;196(2):91–106.

    Article  CAS  Google Scholar 

  96. Russ HA, Bar Y, Ravassard P, Efrat S. In vitro proliferation of cells derived from adult human beta-cells revealed by cell-lineage tracing. Diabetes. 2008;57(6):1575–83.

    Article  PubMed  CAS  Google Scholar 

  97. Russ HA, Ravassard P, Kerr-Conte J, Pattou F, Efrat S. Epithelial-mesenchymal transition in cells expanded in vitro from lineage-traced adult human pancreatic beta cells. PLoS One. 2009;4(7):e6417.

    Article  PubMed  CAS  Google Scholar 

  98. Saha A, Wittmeyer J, Cairns BR. Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol. 2006;7(6):437–47.

    Article  PubMed  CAS  Google Scholar 

  99. Saito K, Iwama N, Takahashi T. Morphometrical analysis on topographical difference in size distribution, number and volume of islets in the human pancreas. Tohoku J Exp Med. 1978;124(2):177–86.

    Article  PubMed  CAS  Google Scholar 

  100. Saleem S, Li J, Yee SP, Fellows GF, Goodyer CG, Wang R. beta1 integrin/FAK/ERK signalling pathway is essential for human fetal islet cell differentiation and survival. J Pathol. 2009;219(2):182–92.

    Article  PubMed  CAS  Google Scholar 

  101. Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells. 2010;28(3):585–96.

    PubMed  CAS  Google Scholar 

  102. Sander M, German MS. The beta cell transcription factors and development of the pancreas. J Mol Med. 1997;75(5):327–40.

    Article  PubMed  CAS  Google Scholar 

  103. Sarkar SA, Kobberup S, Wong R, Lopez AD, Quayum N, Still T, Kutchma A, Jensen JN, Gianani R, Beattie GM, et al. Global gene expression profiling and histochemical analysis of the developing human fetal pancreas. Diabetologia. 2008;51(2):285–97.

    Article  PubMed  CAS  Google Scholar 

  104. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343(4):230–8.

    Article  PubMed  CAS  Google Scholar 

  105. Simpson AM, Tuch BE, Vincent PC. Monolayers of human and porcine fetal pancreas display reduced immunogenicity. Transplant Proc. 1990;22(5):2169–70.

    PubMed  CAS  Google Scholar 

  106. Slack JM. Developmental biology of the pancreas. Development. 1995;121(6):1569–80.

    PubMed  CAS  Google Scholar 

  107. Soria B. In-vitro differentiation of pancreatic beta-cells. Differentiation. 2001;68(4–5):205–19.

    Article  PubMed  CAS  Google Scholar 

  108. Stafford D, Hornbruch A, Mueller PR, Prince VE. A conserved role for retinoid signaling in vertebrate pancreas development. Dev Genes Evol. 2004;214(9):432–41.

    Article  PubMed  CAS  Google Scholar 

  109. Steiner DJ, Kim A, Miller K, Hara M. Pancreatic islet plasticity: interspecies comparison of islet architecture and composition. Islets. 2010;2(3):135–45.

    Article  PubMed  Google Scholar 

  110. Stoffers DA, Ferrer J, Clarke WL, Habener JF. Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet. 1997;17(2):138–9.

    Article  PubMed  CAS  Google Scholar 

  111. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet. 1997;15(1):106–10.

    Article  PubMed  CAS  Google Scholar 

  112. Strobel O, Dor Y, Alsina J, Stirman A, Lauwers G, Trainor A, Castillo CF, Warshaw AL, Thayer SP. In vivo lineage tracing defines the role of acinar-to-ductal transdifferentiation in inflammatory ­ductal metaplasia. Gastroenterology. 2007;133(6):1999–2009.

    Article  PubMed  Google Scholar 

  113. Suckale J, Solimena M. Pancreas islets in metabolic signaling – focus on the beta-cell. Front Biosci. 2008;13:7156–71.

    Article  PubMed  CAS  Google Scholar 

  114. Teitelman G, Alpert S, Polak JM, Martinez A, Hanahan D. Precursor cells of mouse endocrine pancreas coexpress insulin, glucagon and the neuronal proteins tyrosine hydroxylase and neuropeptide Y, but not pancreatic polypeptide. Development. 1993;118(4):1031–9.

    PubMed  CAS  Google Scholar 

  115. Teta M, Rankin MM, Long SY, Stein GM, Kushner JA. Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell. 2007;12(5):817–26.

    Article  PubMed  CAS  Google Scholar 

  116. Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U, Muller B, Zulewski H. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun. 2006;341(4):1135–40.

    Article  PubMed  CAS  Google Scholar 

  117. Tiso N, Moro E, Argenton F. Zebrafish pancreas development. Mol Cell Endocrinol. 2009;312(1–2):24–30.

    Article  PubMed  CAS  Google Scholar 

  118. Tosh D, Slack JM. How cells change their phenotype. Nat Rev Mol Cell Biol. 2002;3(3):187–94.

    Article  PubMed  CAS  Google Scholar 

  119. Tuch BE. Reversal of diabetes by human fetal pancreas. Optimization of requirements in the hyperglycemic nude mouse. Transplantation. 1991;51(3):557–62.

    Article  PubMed  CAS  Google Scholar 

  120. Tuch BE, Beretov J, Mackie JD, Beynon S, Simpson AM, Rolph M. Preventing the rejection of grafted human fetal pancreas. Transplant Proc. 1994;26(2):704.

    PubMed  CAS  Google Scholar 

  121. Tuch BE, Lissing JR, Suranyi MG. Immunomodulation of human fetal cells by the fungal metabolite gliotoxin. Immunol Cell Biol. 1988;66(Pt 4):307–12.

    Article  PubMed  CAS  Google Scholar 

  122. Tuch BE, Sheil AG, Ng AB, Trent RJ, Turtle JR. Recovery of human fetal pancreas after one year of implantation in the diabetic patient. Transplantation. 1988;46(6):865–70.

    Article  PubMed  CAS  Google Scholar 

  123. Tuch BE, Turtle JR. Human fetal pancreatic explants: their histologic development after transplantation into nude mice. Transplant Proc. 1985;17(2):1734–8.

    PubMed  CAS  Google Scholar 

  124. Vermaak D, Ahmad K, Henikoff S. Maintenance of chromatin states: an open-and-shut case. Curr Opin Cell Biol. 2003;15(3):266–74.

    Article  PubMed  CAS  Google Scholar 

  125. Wang J, Orkin SH. A protein roadmap to pluripotency and faithful reprogramming. Cells Tissues Organs. 2008;188(1–2):23–30.

    Article  PubMed  CAS  Google Scholar 

  126. Wang R, Li J, Lyte K, Yashpal NK, Fellows F, Goodyer CG. Role for beta1 integrin and its associated alpha3, alpha5, and alpha6 subunits in development of the human fetal pancreas. Diabetes. 2005;54(7):2080–9.

    Article  PubMed  CAS  Google Scholar 

  127. Weinberg N, Ouziel-Yahalom L, Knoller S, Efrat S, Dor Y. Lineage tracing evidence for in vitro dedifferentiation but rare proliferation of mouse pancreatic beta-cells. Diabetes. 2007;56(5):1299–304.

    Article  PubMed  CAS  Google Scholar 

  128. Wolfe-Coote S, Louw J, Woodroof C, Du Toit DF. The non-human primate endocrine pancreas: development, regeneration potential and metaplasia. Cell Biol Int. 1996;20(2):95–101.

    Article  PubMed  CAS  Google Scholar 

  129. Wolffe AP. Transcription: in tune with the histones. Cell. 1994;77(1):13–6.

    Article  PubMed  CAS  Google Scholar 

  130. Wolffe AP, Pruss D. Targeting chromatin disruption: transcription regulators that acetylate histones. Cell. 1996;84(6):817–9.

    Article  PubMed  CAS  Google Scholar 

  131. Wu F, Jagir M, Powell JS. Long-term correction of hyperglycemia in diabetic mice after implantation of cultured human cells derived from fetal pancreas. Pancreas. 2004;29(1):e23–9.

    Article  PubMed  Google Scholar 

  132. Xie QP, Huang H, Xu B, Dong X, Gao SL, Zhang B, Wu YL. Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon microenvironmental manipulation in vitro. Differentiation. 2009;77(5):483–91.

    Article  PubMed  CAS  Google Scholar 

  133. Yanaihara N. Hormone precursors. Clin Endocrinol Metab. 1980;9(2):223–34.

    Article  PubMed  CAS  Google Scholar 

  134. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008;455(7213):627–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anandwardhan A. Hardikar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Joglekar, M.V., Hardikar, A.A. (2013). Human Pancreatic Progenitors: Implications for Clinical Transplantation in Diabetes. In: Bhattacharya, N., Stubblefield, P. (eds) Human Fetal Tissue Transplantation. Springer, London. https://doi.org/10.1007/978-1-4471-4171-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4171-6_18

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4170-9

  • Online ISBN: 978-1-4471-4171-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics