Skip to main content

Immobilisation of Macromolecules for Obtaining Biocompatible Surfaces

  • Chapter
Immobilised Macromolecules: Application Potentials

Part of the book series: Springer Series in Applied Biology ((SSAPPL.BIOLOGY))

Abstract

The basis of this Chapter is a consideration of approaches utilised to improve the performance of surfaces in situations involving blood contact. The achievement of biocompatible surfaces is a principal feature of research and development relating to biomaterials, where a biomaterial is regarded as a material of synthetic or natural origin, used in contact with tissue, blood or biological fluid. An examination of the literature dealing with thrombosis and artificial surfaces (Forbes and Courtney 1987) reveals that references to the initiation of blood coagulation by foreign surfaces and the differences between the effect of an artificial surface and that of the normal endothelium reach back to 1819, while the application of biomaterials extends over a period of about 100 years (Williams 1987). Improvements in technology and clinical procedures have greatly intensified the long-standing interest in blood interactions with surfaces by increasing the number of biomaterials utilised and the range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Absolom DR, Neumann AW, Zingg W, van Oss CJ (1979) Thermodynamic studies of cellular adhesion. Trans Am Soc Artif Intern Organs 25: 152–156

    Article  PubMed  CAS  Google Scholar 

  • Absolom DR, Zingg W, Policova Z, Neumann AW (1983) Determination of the surface tension of protein coated materials by means of the advancing solidification front technique. Trans Am Soc Artif Intern Organs 29: 146–151

    PubMed  CAS  Google Scholar 

  • Adams AL, Fischer GC, Vroman L (1978) The complexity of blood at simple interfaces. J Colloid Interface Sci 65: 468–478

    Article  CAS  Google Scholar 

  • Adams GA, Feurstein IA (1980) Visual fluorescent and radio-isotopic evaluation of platelet accumulation and embolisation. Trans Am Soc Artif Intern Organs 26: 17–22

    PubMed  CAS  Google Scholar 

  • Andrade JD, Coleman DL, Didisheim P, Hanson SR, Mason R, Merrill E (1981) Blood materials interactions—20 years of frustration. Trans Am Soc Artif Intern Organs 27: 659–662

    PubMed  CAS  Google Scholar 

  • Aoshima R, Kand Y, Takada A, Yamashita A (1982) Sulphonated poly (vinylidene fluoride) as a biomaterial: immobilisation of urokinase and biocompatibility. J Biomed Mater Res 16: 289–299

    Article  PubMed  CAS  Google Scholar 

  • Baier RE (1977) The organisation of blood components near interfaces. Ann N Y Acad Sci 283: 17–36

    Article  CAS  Google Scholar 

  • Baier RE, Loeb GI, Wallace GT (1971) Role of an artificial boundary in modifying blood proteins. Fed Proc 30: 1523–1538

    PubMed  CAS  Google Scholar 

  • Bamford CH, Middleton IP (1983) Studies on functionalising and grafting to poly (ether-urethanes). Europ Pol J 19: 1027–1035

    Article  CAS  Google Scholar 

  • Barbucci R, Casini G, Ferruti P, Tempesti F (1985) Surface-grafted heparinisable materials. Polymer 26: 1349–1352

    Article  CAS  Google Scholar 

  • Baumgartner HR, Muggli R, Tschopp TB, Turitto VT (1976) Platelet adhesion, release and aggregation in flowing blood: effects of surface properties and platelet function. Thromb Haemostasis 35: 124–138

    CAS  Google Scholar 

  • Bick R, Schmalhorst W, Crawford L, Holterman M, Arbegast N (1975) The hemorrhagic diathesis created by cardiopulmonary bypass. Am J Clin Pathol 63: 588

    Google Scholar 

  • Brash JL (1983) Protein adsorption and blood interactions. In: Szycher M (ed) Biocompatible polymers, metals, and composites. Technomic, Lancaster, Pennsylvania, USA, pp 35–52

    Google Scholar 

  • Brash JL, Uniyal S (1976) Adsorption of albumin and fibrinogen to polyethylene in presence of red cells. Trans Am Soc Artif Intern Organs 22: 253–259

    PubMed  CAS  Google Scholar 

  • Brash JL, Uniyal S, Samak Q (1974) Exchange of albumin adsorbed on polymer surfaces. Trans Am Soc Artif Intern Organs 20: 69–76

    Google Scholar 

  • Bruck SD (1980) Properties of biomaterials in the physiological environment. CRC Press, Boca Raton, Florida, USA

    Google Scholar 

  • Chan BMC, Brash JL (1981) Adsorption of fibrinogen on glass: reversibility aspects. J Colloid Interface Sci 82: 217–225

    Article  CAS  Google Scholar 

  • Chang TMS (1977) Protective effects of microencapsulation (coating) on platelet depletion and particulate embolism in the clinical applications of charcoal haemoperfusion. In: Kenedi RM, Courtney JM, Gaylor JDS, Gilchrist T (eds) Artificial organs. Macmillan, London, England, pp 164–177

    Google Scholar 

  • Chenoweth DE (1986) Complement activation produced by biomaterials. Trans Am Soc Artif Intern Organs 23: 226–232

    Google Scholar 

  • Chuang HYK, King WF, Mason RG (1978) Interaction of plasma proteins with artificial surfaces: protein adsorption isotherms. J Lab Clin Med 92: 483–496

    PubMed  CAS  Google Scholar 

  • Chuang HYK, Crowther PE, Mohammad SF, Mason RG (1979) Interactions of thrombin and antithrombin III with artificial surfaces. Thromb Res 14: 273–282

    Article  PubMed  CAS  Google Scholar 

  • Courtney JM, Park GB, Fairweather IA, Lindsay RM (1976) Polymer structure and blood compatibilityapplication of an acrylonitrile copolymer. Biomat, Med Dev Artif Organs 4: 263–275

    CAS  Google Scholar 

  • Courtney JM, Park GB, Prentice CRM, Winchester JF, Forbes CD (1978) Polymer modification and blood compatibility. J Bioeng 2: 241–249

    PubMed  CAS  Google Scholar 

  • Courtney JM, Robertson LM, Jones C, Irvine L, Douglas JT, Travers M, Ryan CJ, Lowe GDO (1989) Blood compatibility of biomaterials in artificial organs. In: Paul JP, Barbenel JC, Courtney JM, Kenedi RM (eds) Progress in bioengineering. Adam Hilger, Bristol, England, pp 21–27

    Google Scholar 

  • Courtney JM, Srivatsava S, Robertson LM, Weng D, Lowe GDO (1991a) Biocompatibility assessment: selection of test procedures. In: Paul JP, Rappelsberger P, Schütz PW (eds) The influence of new technologies on medical practice. Verlag für medizinische Wissenschaften Wilhelm Maudrich, Vienna, Austria, pp 163–170

    Google Scholar 

  • Courtney JM, Irvine L, Jones C, Mosa SM, Sundaram S, McLaughlin KM, Lowe GDO (1991b) Compatibility aspects of biomaterials for artificial organs and assist devices. In: Paul JP, Rappelsberger P, Schütz PW (eds) The influence of new technologies on medical practice. Verlag für medizinische Wissenschaften Wilhelm Maudrich, Vienna, Austria pp 154–162

    Google Scholar 

  • Cumming RD (1980) Important factors affecting initial blood-material interactions. Trans Am Soc Artif Intern Organs 26: 304–308

    PubMed  CAS  Google Scholar 

  • Danishefsky I, Tzeng F (1974) Preparation of heparin-linked agarose and its interaction with plasma. Thromb Res 4: 237–246

    Article  PubMed  CAS  Google Scholar 

  • Dewitz TS, Hung TC, Martin RR, McIntire LV (1977) Mechanical trauma in leukocytes. J Lab Clin Med 90: 728–736

    PubMed  CAS  Google Scholar 

  • Dewitz TS, Martin RR, Solis RT, Heliums JD, McIntire LV (1978) Microaggregate formation in whole blood exposed to shear stress. Microvascular Res 16: 263–271

    Article  CAS  Google Scholar 

  • Didisheim P, Olsen DB, Farrer DJ, Portner PM, Griffith BD, Pennington DG, Joist JH, Schoen FJ, Gristina AG, Anderson JM (1989) Infections and thromboembolism with implantable cardiovascular devices. Trans Am Soc Artif Intern Organs 35: 54–70

    CAS  Google Scholar 

  • Durrani AA, Chapman D (1987) Modification of polymer surfaces for biomedical applications. In: Feast WJ, Munro HS (eds) Polymer surfaces and interfaces. John Wiley & Sons, New York, USA, pp 189–200

    Google Scholar 

  • Durrani AA, Hayward JA, Chapman D (1986) Biomembranes as models for polymer surfaces. II. The synthesis of reactive species for covalent coupling of phosphorylcholine to polymer surfaces. Biomaterials 7: 121–125

    Article  PubMed  CAS  Google Scholar 

  • Dyck MF (1972) Inorganic heparin complexes for the preparation of nonthrombogenic surfaces. J Biomed Mater Res 6: 115–141

    Article  PubMed  CAS  Google Scholar 

  • Ebert CD, Kim SW (1982) Immobilised heparin: spacer arm effects on biological interactions. Thromb Res 26: 43–57

    Article  PubMed  CAS  Google Scholar 

  • Ebert CD, Lee ES, Deneris J, Kim SW (1982a) The anticoagulant activity of derivatised and immobilised heparins. Am Chem Soc Adv Chem Ser 199: 161–176

    Article  CAS  Google Scholar 

  • Ebert CD, Lees ES, Kim SW (1982b) The antiplatelet activity of immobilised prostacylin. J Biomed Mater Res 16: 629–638

    Article  PubMed  CAS  Google Scholar 

  • Eloy R, Belleville J, Paul J, Pusineri C, Baguet J, Rissoan MC, Cathignot P, Ffrench P, Ville D, Tartullier M (1987) Thromboresistance of bulk heparinised catheters in humans. Thromb Res 45: 223–233

    Article  PubMed  CAS  Google Scholar 

  • Engbers GH, Feijen J (1991) Current techniques to improve the blood compatibility of biomaterial surfaces. Int J Artif Organs 14: 199–215

    PubMed  CAS  Google Scholar 

  • Evans G, Mustard JF (1968) Platelet-surface reaction and thrombosis. Surgery 64: 273–280

    PubMed  CAS  Google Scholar 

  • Falb RD (1975) Surface-bonded heparin. In: Kronenthal RL, Oser Z, Martin E (eds) Polymers in medicine and surgery. Plenum Press, New York, USA, pp 77–86

    Chapter  Google Scholar 

  • Falb RD, Grode GA, Leininger RI (1966) Elastomers in the human body. Rubber Chem Technol 39: 1288–1292

    Article  Google Scholar 

  • Falb RD, Takahashi MT, Grode GA, Leininger RI (1967) Studies on the stability and protein adsorption characteristics of heparinised polymer surfaces by radioisotope labelling techniques. J Biomed Mater Res 1: 239–251

    Article  PubMed  CAS  Google Scholar 

  • Falkenhagen D, Esther G, Courtney JM, Klinkmann H (1981) Optimisation of albumin coating for resins. Artif Organs 5 (Suppl): 195–199

    Google Scholar 

  • Feijen J (1977) Thrombogenesis caused by blood-foreign surface interaction. In: Kenedi RM, Courtney JM, Gaylor JDS, Gilchrist T (eds) Artificial organs. Macmillan, London, England, pp 235–247

    Google Scholar 

  • Feuerstein IA, Brophy JM, Brash JL (1975) Platelet transport and adhesion to reconstituted collagen and artificial surfaces. Trans Am Soc Artif Intern Organs 21: 427–434

    PubMed  CAS  Google Scholar 

  • Forbes CD, Courtney JM (1987) Thrombosis and artificial surfaces. In: Bloom AL, Thomas DP (eds) Haemostasis and thrombosis. 2nd edn. Churchill Livingstone. Edinburgh. Scotland, pp 902 – 921

    Google Scholar 

  • Forbes CD, Prentice CRM (1978) Thrombus formation and artificial surfaces. Brit Med Bull 34: 201–207

    PubMed  CAS  Google Scholar 

  • Forbes CD, Courtney JM, Saniabadi AR, Morrice LMA (1989) Thrombus formation in artificial organs. In: Paul JP, Barbenel JC, Courtney JM, Kenedi RM (eds) Progress in bioengineering, Adam Hilger, Bristol, England, pp 13–20

    Google Scholar 

  • Fougnot C, Labarre D, Jozefonwicz J, Jozefowicz M (1984) Modifications to polymer surfaces to improve blood compatibility. In: Hastings GW, Ducheyne P (eds) Macromolecular biomaterials. CRC Press, Boca Raton, Florida, USA, pp 215–238

    Google Scholar 

  • Fourt L, Schwartz AM, Quasius A, Bowman RL (1966) Heparin-bearing surfaces and liquid surfaces in relation to blood coagulation. Trans Am Soc Artif Intern Organs 12: 155–162

    PubMed  CAS  Google Scholar 

  • Frautschi JR, Munro MS, Lloyd DR, Eberhart RC (1983) Alkyl derivatised acetate membranes with enhanced albumin affinity. Trans Am Soc Artif Intern Organs 29: 242–244

    PubMed  CAS  Google Scholar 

  • Gendrau RM, Winters S, Leininger RI, Fink D, Hassler CR, Jakobsen RJ (1981) Fourier transform infrared spectroscopy of protein adsorption from whole blood: ex vivo dog studies. Appl Spectroscopy 35: 353–357

    Article  Google Scholar 

  • Gilchrist T, Courtney JM (1980) The design of biocompatible polymers. In: Ariens EJ (ed) Drug design, vol X. Academic Press, New York, USA, pp 251–275

    Google Scholar 

  • Giordano C (ed) (1980) Sorbents and their clinical applications. Academic Press, New York, USA

    Google Scholar 

  • Gott VL, Whitten JD, Dutton RC (1963) Heparin bonding on colloidal graphite surfaces. Science 142: 1297–1298

    Article  PubMed  CAS  Google Scholar 

  • Grainger DW, Kim SW (1988) Poly (dimethylsiloxane)-poly(ethylene oxide)-heparin block copolymers. 1. Synthesis and characterisation. J Biomed Mater Res 22: 231–249

    Article  PubMed  CAS  Google Scholar 

  • Griffin JH, Cochrane CG (1979) Recent advances in the understanding of contact activation reactions. Semin Thromb Hemostasis 5: 254–273

    CAS  Google Scholar 

  • Grode GA, Anderson SJ, Grotta HM, Falb RD (1969) Nonthrombogenic surfaces via a simple coating process. Trans Am Soc Artif Intern Organs 15: 1–6

    PubMed  CAS  Google Scholar 

  • Grode GA, Falb RD, Crowley JP (1972) Biocompatible materials for use in the vascular system. J Biomed Mater Res Symp 3: 77–84

    Article  CAS  Google Scholar 

  • Grode GA, Pitman J, Crowley JP, Leininger RI, Falb RD (1974) Surface immobilised prostaglandin as a platelet protective agent. Trans Am Soc Artif Intern Organs 20: 38–41

    Google Scholar 

  • Hagler HK, Powell WM, Eberle JW, Sugg WL, Platt MR, Watson JT (1975) Five-day partial bypass using a membrane oxygenator without systemic heparinisation. Trans Am Soc Artif Intern Organs 21: 178–185

    PubMed  CAS  Google Scholar 

  • Hall B, Bird RleR, Chapman D (1989a) Phospholipid polymers & new haemocompatible materials. Angewandte Makromol Chemie 166/167: 169–178

    Article  Google Scholar 

  • Hall B, Bird RleR, Kojima M, Chapman D (1989b) Biomembranes as models for polymer surfaces. V. Thromboelastographic studies of polymeric lipids and polyesters. Biomaterials 10: 219–224

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ, Emmons PR, Mitchell JR (1966) The effect of white cells on platelet aggregation. Thromb Diath Haemorrh 16: 105–121

    PubMed  CAS  Google Scholar 

  • Hasenfratz H, Knaup G (1981) Improvement of the blood compatibility of cellulosic membranes through the immobilisation of heparin and measurement of biological heparin activity. Artif Organs Suppl 5: 507–511

    CAS  Google Scholar 

  • Hayward JA, Chapman D (1984) Biomembrane surfaces as models for polymer design: the potential for haemocompatibility. Biomaterials 5: 135–142

    Article  PubMed  CAS  Google Scholar 

  • Hayward JA, Durrani AA, Shelton CJ, Lee DC, Chapman D (1986a) Biomembranes as models for polymer surfaces. III. Characterisation of a phosphorylcholine surface covalently bound to glass. Biomaterials 7: 126–131

    Article  PubMed  CAS  Google Scholar 

  • Hayward JA, Durrani AA, Lu YC, Clayton CR, Chapman D (1986b) Biomembranes as models for polymer surfaces. IV. ESCA analyses of a phosphorylcholine surface covalently bound to hydroxylated substrate. Biomaterials 7: 252–258

    Article  PubMed  CAS  Google Scholar 

  • Hennink WE, Feijen J, Ebert CD, Kim SW (1983) Covalently bound conjugates of albumin and heparin. Thromb Res 29: 1–13

    Article  PubMed  CAS  Google Scholar 

  • Hersh LS, Weetall HH, Brown IW Jr (1971) Heparinised polyester fibres. J Biomed Mater Res Symp 1: 99–104

    Article  Google Scholar 

  • Herzlinger GA (1983) Activation of complement by polymers in contact with blood. In: Szycher M (ed) Biocompatible polymers, metals, and composites. Technomic, Lancaster, Pennsylvania, USA, pp 89–101

    Google Scholar 

  • Herzlinger GA, Cumming RD (1980) Role of complement activation in cell adhesion to polymer blood contact surfaces. Trans Am Soc Artif Intern Organs 26: 165–170

    PubMed  CAS  Google Scholar 

  • Heyman PW, Cho CS, McRea JC, Olsen DB, Kim SW (1985) Heparinised polyurethanes: in vitro and in vivo studies. J Biomed Mater Res 19: 419–436

    Article  PubMed  CAS  Google Scholar 

  • Hoffman A (1974) Principles governing biomolecule interactions at foreign interfaces. J Biomed Mater Res 8: 77–83

    Article  PubMed  CAS  Google Scholar 

  • Hoffman AS, Schmer G, Harris C, Kraft WG (1972) Covalent bonding of biomolecules to radiationgrafted hydrogels on inert polymer surfaces. Trans Am Soc Artif Intern Organs 18: 10–17

    Article  PubMed  CAS  Google Scholar 

  • Holland FF, Gidden HE, Mason RG, Klein E (1978) Thrombogenicity of heparin-bound DEAE cellulose hemodialysis membranes. Am Soc Artif Int Organs J 1: 24–36

    Google Scholar 

  • Holmsen H, Day HJ, Stormorken J (1969) The blood platelet release reaction. Scand J Haematol Suppl 8: 1–26

    Google Scholar 

  • Idezuki Y, Watanabe H, Hagiwara M, Kanasugi K, Mori Y, Nagaoka S, Hagio M, Yamamoto K, Tanzawa H (1975) Mechanism of antithrombogenicity of a new heparinised hydrophilic polymer: chronic in vivo studies and clinical application. Trans Am Soc Artif Intern Organs 21: 436–448

    PubMed  CAS  Google Scholar 

  • Ihlenfeld JV, Cooper SL (1979) Transient in vivo protein adsorption onto polymeric biomaterials. J Biomed Mater Res 13: 577–591

    Article  PubMed  CAS  Google Scholar 

  • Imai Y, Tajima K, Nosé Y (1971) Biolised materials for cardiovascular prosthesis. Trans Am Soc Artif Intern Organs 17: 6–9

    PubMed  CAS  Google Scholar 

  • Ishihara K, Aragaki R, Ueda T, Watenabe A, Nakabayashi N (1990) Reduced thrombogenicity of polymers having phospholipid polar groups. J Biomed Mater Res 24: 1069–1077

    Article  PubMed  CAS  Google Scholar 

  • Ishihara K, Ziats NP, Tiemey BP, Nakabayashi N, Anderson JM (1991) Protein adsorption from human plasma is reduced on phospholipid polymers. J Biomed Mater Res 25: 1397–1407

    Article  PubMed  CAS  Google Scholar 

  • Jamieson GA (1973) Role of glycoproteins in platelet function. In: Gerlach E, Moser K, Deutsch E, Williams W (eds) Erythrocytes, thrombocytes, leukocytes: recent advances in membrane and metabolic research. Thieme, Stuttgart, Germany, pp 209–232

    Google Scholar 

  • Jenkins CSP, Packham MA, Guccione MA, Mustard JF (1973) Modification of platelet adherence to protein-coated surfaces. J Lab Clin Med 81: 280–290

    PubMed  CAS  Google Scholar 

  • Kambic HE, Nosé Y (1991) Biomaterials for blood pumps. In: Sharma CP, Szycher M (eds) Blood compatible materials and devices. Technomic. Lancaster. Pennsylvania. USA, pp 141–152

    Google Scholar 

  • Kambic H, Barenburg S, Harasaki H, Gibbons D, Nosé Y (1978) Glutaraldehyde -protein complexes as blood compatible coatings. Trans Am Soc Artif Intern Organs 24: 426–437

    PubMed  CAS  Google Scholar 

  • Kambic HE, Murabayashi S, Nosé Y (1983) Biolised surfaces as chronic blood compatible interfaces. In: Szycher M (eds) Biocompatible polymers, metals, and composites. Technomic, Lancaster, Pennsylvania, USA, pp 179–198

    Google Scholar 

  • Kazatchkine MD, Carreno MP (1987) Activation of the complement system at the interface between blood and artificial surfaces. Biomaterials 9: 30–35

    Article  Google Scholar 

  • Kelton JC (1986) Heparin-induced thrombocytopenia. Haemostasis 16: 173–186

    PubMed  CAS  Google Scholar 

  • Kim SW, Lee RG, Oster H, Coleman D, Andrade JD, Lentz DJ, Olsen D (1974) Platelet adhesion to polymer surfaces. Trans Am Soc Artif Intern Organs 20: 449–455

    PubMed  Google Scholar 

  • Kim SW, Ebert CD, Lin JY, McRea JC (1983) Nonthrombogenic polymers: pharmaceutical approaches. Am Soc Artif Int Organs J 6: 76–87

    CAS  Google Scholar 

  • Kiraly RJ, Arconti R, Hillegass D, Harasaki H, Nosé Y (1977) High flex rubber for blood pump diaphragms. Trans Am Soc Artif Intern Organs 23: 127–132

    Article  PubMed  CAS  Google Scholar 

  • Klinkmann H (1984) The role of biomaterials in the application of artificial organs. In Paul JP, Gaylor JDS, Courtney JM, Gilchrist T (eds) Biomaterials in artificial organs. Macmillan, London, England, pp 1–8

    Google Scholar 

  • Klinkmann H (1989) Progress in artificial organs. In: Paul JP, Barbenel JC, Courtney JM, Kenedi RM (eds) Progress in bioengineering, Adam Hilger, Bristol. England pp 7–12

    Google Scholar 

  • Kojima M, Ishihara K, Watenabe A, Nakabayashi N (1991) Interaction between phospholipids and, biocompatible polymers containing a phosphorylcholine moiety. Biomaterials 12: 121–124

    Article  PubMed  CAS  Google Scholar 

  • Kurz H, Lemer RG, Weseley S, Nelson JC (1985) Changes in fibrinolytic activity during the course of a single hemodialysis session. Clin Nephrol 24: 1–4

    PubMed  CAS  Google Scholar 

  • Kusserow B, Larow R, Nichols J (1971) Perfusion-and surface-induced injury in leucocytes. Fed Proc 30: 1516–1520

    PubMed  CAS  Google Scholar 

  • Kusserow BK, Larow RW, Nichols JE (1973) The surface bonded, covalently crosslinked urokinase surface. Trans Am Soc Artif Intern Organs 19: 8–12

    Article  PubMed  CAS  Google Scholar 

  • Lagergren HR, Eriksson JC (1971) Plastics with a monolayer of cross-linked heparin: preparation and evaluation. Trans Am Soc Artif Intern Organs 17: 10–12

    PubMed  CAS  Google Scholar 

  • Larm O, Lins LE, Olsson P (1986) An approach to antithrombosis by surface modification. In: Nosé Y, Kjellstrand C, Ivanovich P (eds) Progress in artificial organs. ISAO Press, Cleveland, pp 313 – 318

    Google Scholar 

  • Larm O, Larsson R, Olsson P (1989) Surface-immobilised heparin. In: Lane DA, Lindahl U (eds) Heparin. Chemical and biological properties, clinical applications. Edward Arnold, London, England, pp 597–608

    Google Scholar 

  • Larsson R, Olsson P, Lindahl U (1980) Inhibition of thrombin on surfaces coated with immobilised heparin and heparin-like polysaccharides: a crucial non-thrombogenic principle. Thromb Res 19: 43–54

    Article  PubMed  CAS  Google Scholar 

  • Leaver JA, Alonso A, Durrani AA, Chapman D (1983) The biosynthetic incorporation of diacetylenic fatty acids into the biomembranes of Acholeplasma laidlawii A cells and polymerisation of the biomembranes by irradiation with ultraviolet light. Biochim Biophys Acta 727: 327–335

    Article  PubMed  CAS  Google Scholar 

  • Lederman DM, Cumming RD, Petschek HE, Levine PH, Krinsky NI (1978) The effect of temperature on the interaction of platelets and leukocytes with materials exposed to flowing blood. Trans Am Soc Artif Intern Organs 24: 557–560

    PubMed  CAS  Google Scholar 

  • Lee WH, Jr, Hairston (1971) Structural effects on blood proteins at the gas-blood interface. Fed Proc 30: 1615–1620

    PubMed  CAS  Google Scholar 

  • Lee RG, Kim SW (1974) The role of carbohydrate in platelet adhesion to foreign surfaces. J Biomed Mater Res 8: 383–388

    Google Scholar 

  • Leininger RI, Crowley JP, Falb RD, Grode GA (1972) Three years’ experience in vivo and in vitro with surfaces and devices treated by the heparin complex method. Trans Am Soc Artif Intern Organs 18: 312–315

    Article  PubMed  CAS  Google Scholar 

  • Leonard CD, Weil E, Scribner BH (1969) Subdural haematomas in patients undergoing haemodialysis Lancet 11: 239–240

    Google Scholar 

  • Lindahl U (1989) Biosynthesis of heparin and related polysaccharides. In: Lane DA, Lindahl U (eds) Heparin. Chemical and biological, clinical applications. Edward Arnold, London, England, pp 159–189

    Google Scholar 

  • Lindahl U, Bäckström G, Höök M, Thunberg L, Fransson L-A, Linker A (1979) Structure of the antithrombin-binding site in heparin. Proc Natl Acad Sci USA 76: 3198–3202

    Article  PubMed  CAS  Google Scholar 

  • Lindsay RM, Rourke JTB, Reid BD, Linton AL, Gilchrist T, Courtney JM, Edwards RO (1977) The role of heparin on platelet retention by acrylonitrile copolymer dialysis membranes. J Lab Clin Med 89: 724–734

    PubMed  CAS  Google Scholar 

  • Lins LE, Olsson P, Hjelte MB, Larsson R, Larm O (1984) Haemodialysis in dogs with a heparin coated hollow fiber dialyser. Proc Europ Dial Transplant Assoc 21: 270–275

    Google Scholar 

  • Lyman DJ, Klein KG, Bash JL, Fritzinger BK (1970) The interaction of platelets with polymer surfaces. Thromb Diath Haemorrh 23: 120–128

    PubMed  CAS  Google Scholar 

  • Lyman DJ, Metcalf LC, Albo D Jr, Richards KF, Lamb J (1974) The effect of chemical structure and surface properties of synthetic polymers on the coagulation of blood. III. In vivo adsorption of proteins on polymer surfaces. Trans Am Soc Artif Intern Organs 20: 474–478

    PubMed  Google Scholar 

  • Lyman DJ, Knutson K, McNeill B, Shibatani K (1975) The effects of chemical structure and surface properties on the coagulation of blood. IV. The relation between polymer morphology and protein adsorption. Trans Am Soc Artif Intern Organs 21: 49–53

    PubMed  CAS  Google Scholar 

  • Marconi W, Bartoli F, Mantovani E, Pittalis F, Settembri L, Cordova C, Musca A, Alessandri C (1979) Development of new antithrombogenic surfaces by employing platelet antiaggregating agents: preparation and characterisation. Trans Am Soc Artif Intern Organs 25: 280–285

    Article  PubMed  CAS  Google Scholar 

  • Martin FE, Shuey HF, Saltonstall CW Jr (1970) Improved membranes for hemodialysis. J Macromol Sci- Chem A4: 635–654

    Article  CAS  Google Scholar 

  • Mason RG (1972) The interaction of blood hemostatic elements with artificial surfaces. Prog Hemostasis Thromb 1: 141–164

    CAS  Google Scholar 

  • Mason RG, Read MS, Brinkhous KM (1971) Effect of fibrinogen concentration on platelet adhesion to glass. Proc Soc Exp Biol Med 137: 680–682

    Article  CAS  Google Scholar 

  • Mason RG, Mohammad SF, Chuang HYK, Richardson PD (1976) The adhesion of platelets to subendothelium, collagen and artificial surfaces. Semin Thromb Hemostasis 3: 98–116

    CAS  Google Scholar 

  • Merrill EW, Salzman EW, Wong PSL, Ashford TP, Brown AH, Austen WG (1970) Polyvinyl alcoholheparin hydrogel “G”. J Appl Physiol 29: 723–730

    PubMed  CAS  Google Scholar 

  • Migonney V, Fougnot C, Josefowicz M (1988) Heparin like tubings III. Kinetics and mechanism of thrombin, antithrombin III and thrombin-antithrombin complex adsorption under controlled- flow conditions. Biomaterials 9: 413–418

    Article  PubMed  CAS  Google Scholar 

  • Miyama H, Harumiya N, Mori Y, Tanzawa H (1977) A new antithrombogenic heparinised polymer. J Biomed Mater Res 11: 251–265

    Article  PubMed  CAS  Google Scholar 

  • Mohammad SF, Olsen DB (1986) Reduced platelet adhesion and activation of coagulation factors on polyurethane treated with albumin-IgG complex. Trans Am Soc Artif Intern Organs 32: 323–326

    CAS  Google Scholar 

  • Mottaghy KB, Oedekoven B, Schaich-Lester P, Pöppel K, Küpper W (1989) Application of surfaces with end point attached heparin to extracorporeal circulation with membrane lungs. Trans Am Soc Artif Intern Organs 35: 146–152

    Article  CAS  Google Scholar 

  • Munro MS, Eberhart RC, Maki NJ, Brink BE, Fry WJ (1983) Thromboresistant alkyl derivatised polyurethanes. Am Soc Artif Intern Organs J 6: 65–75

    CAS  Google Scholar 

  • Murabayashi S, Nosé Y (1986) Biocompatibility: bioengineering aspects. Artif Organs 10: 114–121

    Article  PubMed  CAS  Google Scholar 

  • Mustard JF, Packham MA (1977) Normal and abnormal haemostasis. Brit Med Bull 33: 187–192

    PubMed  CAS  Google Scholar 

  • Mustard JF, Perry DW, Ardlie NG, Packham MA (1972) Preparation of suspensions of washed platelets from humans. Brit J Haematol 22: 193–204

    Article  CAS  Google Scholar 

  • Neddleman SW, Hook JC (1982) Platelets and leukocytes. In: Colman RW, Hirsh J, Marder VJ, Salzman EW (eds) Hemostasis and thrombosis: basic principles and clinical practice. Lippincott, Philadelphia, USA, pp 716–725

    Google Scholar 

  • Neumann AW, Moscarello MA, Zingg W, Hum OS, Chang SK (1979) Platelet adhesion from human blood to bare and protein coated polymer surfaces. J Pol Sci Pol Symp 66: 391–398

    Article  CAS  Google Scholar 

  • Niemetz J (1972) Coagulant activity of leukocytes. Tissue factor activity. J Clin Invest 51: 307–313

    Article  PubMed  CAS  Google Scholar 

  • Nilsson L, Storm KE, Thelin S, Bagge L, Hultman J, Thorelius J, Nilsson U (1990) Heparin-coated equipment reduces complement activation during cardiopulmonary bypass in the pig. Int J Artif Organs 14: 46–48

    Article  CAS  Google Scholar 

  • Nosé Y (1988) Long term compatibility of artificial kidneys. Artif Organs 12:1

    Article  PubMed  Google Scholar 

  • Nose Y, Tajima K, Imai Y, Klain M, Mrava G, Schriber K, Urbanek K, Ogawa H (1971) Artificial heart constructed with biological material. Trans Am Soc Artif Intern Organs 17: 482–487

    PubMed  CAS  Google Scholar 

  • Ogston D (1983) The physiology of hemostasis. Croom Helm, London, England

    Book  Google Scholar 

  • Ohshiro T (1983) Antithrombogenic characteristics of immobilised urokinase on synthetic polymers. In: Szycher M (ed) Biocompatible polymers, metals, and composites. Technomic, Lancaster, Pennsylvania, USA pp275–299

    Google Scholar 

  • Ohshiro T, Kosaki G (1980) Urokinase immobilised on medical polymer materials: fundamental and clinical studies. Artif Organs 4: 58–64

    Article  PubMed  CAS  Google Scholar 

  • Packham MA, Evans G, Glynn MF, Mustard JF (1969) The effect of plasma proteins on the interaction of platelets with glass surfaces. J Lab Clin Med 73: 686–697

    PubMed  CAS  Google Scholar 

  • Paik Sung CS, Bush J, McKie DB, Merrill EW (1976) Copolymers containing aminohexyl residues in side chains. J Appl Pol Sci 20: 2603–2605

    Article  CAS  Google Scholar 

  • Palationos GM, Dewanjee MK, Kapadvanjwala M, Novak S, Sfakianakis GN, Kaiser GA (1990) Cardiopulmonary bypass with a surface heparinised extracorporeal perfusion system. Trans Am Soc Artif Intern Organs 36: M476-M479

    Google Scholar 

  • Park KD, Okano T, Nojiri C, Kim SW (1988) Heparin immobilisation onto segmented polyurethaneurea- effect of hydrophilic spacers. J Biomed Mater Res 22: 977–992

    Article  PubMed  CAS  Google Scholar 

  • Patrono C, Ciabattoni G, Pinca E, Pugliese F, Castrucci G, De Salvo A, Satta MA, Peskar BA (1980) Low dose aspirin and inhibition of thromboxane B2 production in healthy subjects. Thromb Res 17: 317–327

    Article  PubMed  CAS  Google Scholar 

  • Peppas NA, Merrill EW (1977) Development of semicrystalline PVA hydrogels for biomedical applications. J Biomed Mater Res 11: 423–434

    Article  PubMed  CAS  Google Scholar 

  • Phillips DR, Jennings LK, Prasanna HR (1980) Ca2+-mediated association of glycoprotein G (thrombin- sensitive protein, thrombospondin) with human blood. J Biol Chem 255: 11629–11632

    PubMed  CAS  Google Scholar 

  • Ratner BD (1981) Biomedical applications of hydrogels: review and critical appraisal. In: Williams DF (ed) Biocompatibility of clinical implant materials, vol 2. CRC Press, Boca Raton, Florida, USA, pp 145–175

    Google Scholar 

  • Ratner BD (1982) Surface characterisation of materials for blood contact applications. In: Cooper SL, Peppas NA (eds) Biomaterials: interfacial phenomena and applications, ACS Advances in Chemistry Series, vol 199. American Chemical Society, Washington DC, USA, pp 9–23

    Chapter  Google Scholar 

  • Ratner BD (1983) Surface characterisation of biomaterials by electron spectroscopy for chemical analysis. Ann Biomed Eng 11: 313–336

    Article  PubMed  CAS  Google Scholar 

  • Rea WJ, Whiteley D, Eberle JW (1972) Long-term membrane oxygenation without systemic heparinisation. Trans Am Soc Artif Intern Organs 18: 316–320

    Article  PubMed  CAS  Google Scholar 

  • Richardson PD, Mohammad SF, Mason RG (1977) Flow chamber studies of platelet adhesion at controlled, spatially varied shear rates. Proc Europ Soc Artif Organs 4: 175–188

    Google Scholar 

  • Rieger H (1980) Dependency of platelet aggregation (PA) in vitro on different shear rates. Thromb Haemostasis 44: 166

    Google Scholar 

  • Ringoir S, Vanholder R (1986) An introduction to biocompatibility. Artif Organs 10: 20–27

    Article  PubMed  CAS  Google Scholar 

  • Ringoir S, Vanholder R (1990) New trends in dialysis. Contrib Nephrol 82: 102–106

    PubMed  CAS  Google Scholar 

  • Saba HJ, Herion JC, Walker RI, Roberts HIR (1973) The procoagulant activity of granulocytes. Proc Soc Exp Biol Med 142: 614–620

    Article  PubMed  CAS  Google Scholar 

  • Salyer IO, Blardinelli AJ, Ball GL III, Weesner WE, Gott VL, Ramos MD (1971) New blood-compatible polymers for artificial heart applications. J Biomed Mater Res Symp 1: 105–127

    Article  Google Scholar 

  • Salzmann EW, Merrill EW, Binder A, Wolf CRW, Ashford TP, Austen WG (1969) Protein platelet interactions on heparinised surfaces. J Biomed Mater Res 3: 69–81

    Article  Google Scholar 

  • Salzman EW, Lindon J, Brier D, Merrill EW (1977) Surface-induced platelet adhesion, aggregation and release. Ann N Y Acad Sci 283: 114–127

    Article  CAS  Google Scholar 

  • Schmer G (1972) The biological activity of covalently immobilised heparin. Trans Am Soc Artif Intern Organs 18: 321–323

    Article  PubMed  CAS  Google Scholar 

  • Schmer G, Teng LNL, Cole JJ, Vizzo JE, Francisco MM, Scribner BH (1976) Successful use of a totally heparin grafted hemodialysis system in sheep. Trans Am Soc Artif Intern Organs 22: 654–662

    PubMed  CAS  Google Scholar 

  • Schmer G, Teny LNL, Vizzo JE, Graefe U, Milutinovich J, Cole JJ, Scribner BH (1977) Clinical use of a totally heparin grafted hemodialysis system in uremic patients. Trans Am Soc Artif Intern Organs 23: 177–183

    Article  PubMed  CAS  Google Scholar 

  • Schmitt E, Holtz M, Klinkmann H, Esther G, Courtney JM (1983) Heparin binding and release properties of DEAE cellulose membranes. Biomaterials 4: 309–313

    Article  PubMed  CAS  Google Scholar 

  • Sennatore F, Bernard F, Meisner K (1986) Clinical study of urokinase-bound fibrocollagenous tubes. J Biomed Mater Res 20: 189–203

    Article  Google Scholar 

  • Shuman MA, Levine SP (1980) Relationship between secretion of platelet factor 4 and thrombin generation during in vitro blood clotting. J Clin Invest 65: 307–313

    Article  PubMed  CAS  Google Scholar 

  • Stormorken (1971) Platelets, thrombosis and hemolysis. Fed Proc 30: 1551–1555

    PubMed  CAS  Google Scholar 

  • Sugitachi A, Tanaka M, Kawahara T, Takagi K (1980) Antithrombogenicity of UK-immobilised polymer surfaces. Trans Am Soc Artif Intern Organs 26: 274–278

    PubMed  CAS  Google Scholar 

  • Szycher M (1983) Thrombosis, hemostasis, and thrombolysis at prosthetic interfaces. In: Szycher M (ed) Biocompatible polymers, metals, and composites. Technomic, Lancaster, Pennsylvania, USA, pp 1–33

    Google Scholar 

  • Tanzawa H, Mori Y, Harumiya N, Miyama H, Hori M, Ohshima N, Idezuki Y (1973) Preparation and evaluation of a new athrombogenic heparinised hydrophilic polymer for use in cardiovascular system. Trans Am Soc Artif Intern Organs 19: 188–194

    Article  PubMed  CAS  Google Scholar 

  • Thunberg L, Bäckström G, Lindahl U (1982) Further characterisation of the antithrombin-binding sequence in heparin. Carbohydr Res 100: 393–410

    Article  PubMed  CAS  Google Scholar 

  • Tong SD, Rolfs MR, Hsu LC (1990) Evaluation of Duraflo II heparin immobilised cardiopulmonary bypass circuits. Trans Am Soc Artif Intern Organs 36: M654-M656

    Google Scholar 

  • Uniyal S, Brash JL, Degterev IA (1982) Influence of red blood cells and their components on protein adsorption. Am Chem Soc Adv Chem 199: 277–292

    Article  CAS  Google Scholar 

  • Usdin VR, Fourt L (1969) Effect of proteins on elution of heparin from anticoagulant surfaces. J Biomed Mater Res 3: 107–113

    Article  PubMed  CAS  Google Scholar 

  • Vanholder R, Ringoir S (1989) Biocompatibility: an overview. Int J Artif Organs 12: 356–365

    PubMed  CAS  Google Scholar 

  • Videm V, Nilsson L, Venge P, Svennevig JL (1991) Reduced granulocyte activation with a heparincoated device in an in vitro model of cardiopulmonary bypass. Artif Organs 15: 90–95

    Article  PubMed  CAS  Google Scholar 

  • von Segesser LK, Turina M (1989) Cardiopulmonary bypass without systemic heparinisation. Performance of heparin-coated oxygenators in comparison with classic membrane and bubble oxygenators. J Thorac Cardiovasc Surg 98: 386–396

    Google Scholar 

  • Vroman L, Adams AL, Klings M, Fischer GC, Munoz PC, Solensky RP (1972) Reactions of formed elements of blood with plasma proteins at interfaces. Ann N Y Acad Sci 283: 65–76

    Article  Google Scholar 

  • Vroman L, Adams AL, Fischer GC, Munoz PC (1980) Interaction of high molecular weight kininogen, factor XII and fibrinogen in plasma at interfaces. Blood 55: 156–159

    PubMed  CAS  Google Scholar 

  • Vulic I, Okano T, Kim SW, Feijen J (1988) Synthesis and characterisation of polystyrene-poly (ethylene oxide)-heparin block copolymers. J Pol Sci Pol Chem 26: 381–391

    Article  CAS  Google Scholar 

  • Walsh PN (1982) Platelet-coagulant protein interactions. In: Colman RW, Hirsh J, Marder VJ, Salzman EW (eds) Hemostasis and thrombosis: basic principles and clinical practice. Lippincott, Philadelphia, USA, pp 404–420

    Google Scholar 

  • Watanabe S, Shimuzu Y, Teramatsu T, Mirachi T, Hino T (1981) The in vitro and in vivo behaviour of urokinase immobilised onto collagen-synthetic polymer composite material. J Biomed Mater Res 15: 553–563

    Article  PubMed  CAS  Google Scholar 

  • Waugh DF, Baughman DJ (1969) Thrombin adsorption and possible relations to thrombus formation. J Biomed Mater Res 3: 145–164

    Article  PubMed  CAS  Google Scholar 

  • Whicher SJ, Brash JL (1978) Platelet-foreign surface interactions: release of granule constituents from adherent platelets. J Biomed Mater Res 12: 181–201

    Article  PubMed  CAS  Google Scholar 

  • Williams DF (ed) (1981) Fundamental aspects of biocompatibility. CRC Press, Boca Raton, Florida, USA

    Google Scholar 

  • Williams DF (ed) (1987) Definitions in biomaterials. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Wright DG, Kauffman JC, Terpstra GK, Graw RG, Deisseroth AB, Gallin JJ (1978) Mobilisation and exocytosis of specific (secondary) granules by human neutrophils during adherence to nylon wool infiltration leukapheresis (FL). Blood 52: 770–782

    PubMed  CAS  Google Scholar 

  • Yen SPS, Rembaum A (1971) Complexes of heparin with eIastomeric positive polyelectrolytes. J Biomed Mater Res Symp 1: 83–97

    Article  Google Scholar 

  • Young BR, Lambrecht LK, Albrecht RM, Mosher DF, Cooper SL (1983) Platelet-protein interactions at blood-polymer interfaces in the canine test model. Trans Am Soc Artif Intern Organs 29: 442–446

    PubMed  CAS  Google Scholar 

  • Zucker MB, Vroman L (1969) Platelet adhesion by fibrinogen adsorbed onto glass. Proc Soc Exp Biol Med 131: 318–320

    Article  PubMed  CAS  Google Scholar 

  • Zwaal RF, Comfurius P, van Deenen UM (1977) Membrane asymmetry and blood coagulation. Nature 268: 358–360

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London

About this chapter

Cite this chapter

Courtney, J.M., Yu, J., Sundaram, S. (1993). Immobilisation of Macromolecules for Obtaining Biocompatible Surfaces. In: Sleytr, U.B., Messner, P., Pum, D., Sára, M. (eds) Immobilised Macromolecules: Application Potentials. Springer Series in Applied Biology. Springer, London. https://doi.org/10.1007/978-1-4471-3479-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3479-4_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3481-7

  • Online ISBN: 978-1-4471-3479-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics