Skip to main content

When Is Low Potential Renal Acid Load (PRAL) Beneficial for Bone?

  • Chapter
  • First Online:
Nutritional Influences on Bone Health

Abstract

Potential metabolic influences of dietary acid load on bone health have been discussed controversially. Here, we review the available findings in adults and healthy children regarding certain methodological aspects including (i) appropriate use of urinary biomarkers – potential renal acid load (PRAL) and net acid excretion (NAE), (ii) problems in the interpretation of results on calcium balance and bone turnover markers, and (iii) possible influences of selection bias regarding baseline diets of the population groups of randomized controlled trials. Based on the available evidence, it is concluded that calcium balance measurements and bone turnover markers are no adequate and sensitive tools to evaluate the modest but long-term prevailing influence of nutrition on bone status. Findings in children and adults exclusively conducted on the most reliable outcomes, that is, bone densitometric structure analyses, suggest that a low-PRAL diet may be especially relevant in certain population groups, for example, in children with higher dietary protein intakes, in postmenopausal women with impaired bone status, and probably in adults on a habitually acidifying nutrition. The mechanisms mediating detrimental bone effects of higher dietary acid loads under discussion include changes in endocrine–metabolic milieu, for example, impairment of GH/IGF-1 axis and higher glucocorticoid secretion as well as direct bone–cell-related changes by higher acid load. In conclusion, to identify moderate alterations in bone status exerted through nutritional influences, not only appropriate assessments of dietary proton load but also outcome measurements that are closely related to long-term bone structure are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMD:

Bone mineral density

DEXA:

Dual-energy X-ray absorptiometry

NAE:

Net acid excretion

NEAP:

Net endogenous acid production

OA:

Organic acids

pQCT:

Peripheral quantitative computed tomography (pQCT)

PRAL:

Potential renal acid load

RCT:

Randomized controlled trial

References

  1. Remer T, Manz F. Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein. Am J Clin Nutr. 1994;59(6):1356–61.

    PubMed  CAS  Google Scholar 

  2. Groen BB, Res PT, Pennings B, Hertle E, Senden JM, Saris WH, et al. Intragastric protein administration stimulates overnight muscle protein synthesis in elderly men. Am J Physiol Endocrinol Metab. 2012;302(1):E52–60.

    Article  PubMed  CAS  Google Scholar 

  3. Darling AL, Millward DJ, Torgerson DJ, Hewitt CE, Lanham-New SA. Dietary protein and bone health: a systematic review and meta-analysis. Am J Clin Nutr. 2009;90(6):1674–92.

    Article  PubMed  CAS  Google Scholar 

  4. Kalhoff H, Manz F. Nutrition, acid–base status and growth in early childhood. Eur J Nutr. 2001;40(5):221–30.

    Article  PubMed  CAS  Google Scholar 

  5. Proctor DN, Balagopal P, Nair KS. Age-related sarcopenia in humans is associated with reduced synthetic rates of specific muscle proteins. J Nutr. 1998;128(2 Suppl):351S–5.

    PubMed  CAS  Google Scholar 

  6. Remer T, Krupp D, Shi L. Dietary protein’s and dietary acid load’s influence on bone health. Crit Rev Food Sci Nutr. [in press].

    Google Scholar 

  7. Berkemeyer S, Remer T. Anthropometrics provide a better estimate of urinary organic acid anion excretion than a dietary mineral intake-based estimate in children, adolescents, and young adults. J Nutr. 2006;136(5):1203–8.

    PubMed  CAS  Google Scholar 

  8. Remer T, Manz F, Alexy U, Schoenau E, Wudy SA, Shi L. Long-term high urinary potential renal acid load and low nitrogen excretion predict reduced diaphyseal bone mass and bone size in children. J Clin Endocrinol Metab. 2011;96(9):2861–8.

    Article  PubMed  CAS  Google Scholar 

  9. Frassetto LA, Lanham-New SA, Macdonald HM, Remer T, Sebastian A, Tucker KL, et al. Standardizing terminology for estimating the diet-dependent net acid load to the metabolic system. J Nutr. 2007;137(6):1491–2.

    PubMed  CAS  Google Scholar 

  10. Fenton TR, Eliasziw M, Tough SC, Lyon AW, Brown JP, Hanley DA. Low urine pH and acid excretion do not predict bone fractures or the loss of bone mineral density: a prospective cohort study. BMC Musculoskelet Disord. 2010;11:88.

    Article  PubMed  Google Scholar 

  11. Frassetto L, Morris Jr RC, Sebastian A. Long-term persistence of the urine calcium-lowering effect of potassium bicarbonate in postmenopausal women. J Clin Endocrinol Metab. 2005;90(2):831–4.

    Article  PubMed  CAS  Google Scholar 

  12. Lemann J, Litzow JR, Lennon EJ. Studies of the mechanism by which chronic metabolic acidosis augments urinary calcium excretion in man. J Clin Invest. 1967;46(8):1318–28.

    Article  PubMed  CAS  Google Scholar 

  13. Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris Jr RC. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med. 1994;330(25):1776–81.

    Article  PubMed  CAS  Google Scholar 

  14. Fenton TR, Lyon AW, Eliasziw M, Tough SC, Hanley DA. Meta-analysis of the effect of the acid-ash hypothesis of osteoporosis on calcium balance. J Bone Miner Res. 2009;24(11):1835–40.

    Article  PubMed  CAS  Google Scholar 

  15. Rafferty K, Davies KM, Heaney RP. Potassium intake and the calcium economy. J Am Coll Nutr. 2005;24(2):99–106.

    PubMed  CAS  Google Scholar 

  16. Hunt JR, Johnson LK, Fariba Roughead ZK. Dietary protein and calcium interact to influence calcium retention: a controlled feeding study. Am J Clin Nutr. 2009;89(5):1357–65.

    Article  PubMed  CAS  Google Scholar 

  17. Rauch F, Schonau E, Woitge H, Remer T, Seibel M. Urinary excretion of hydroxy-pyridinium cross-links of collagen reflects skeletal growth velocity in normal children. Exp Clin Endocrinol. 1994;102(2):94–7.

    Article  PubMed  CAS  Google Scholar 

  18. Wallace JD, Cuneo RC, Lundberg PA, Rosen T, Jorgensen JO, Longobardi S, et al. Responses of markers of bone and collagen turnover to exercise, growth hormone (GH) administration, and GH withdrawal in trained adult males. J Clin Endocrinol Metab. 2000;85(1):124–33.

    Article  PubMed  CAS  Google Scholar 

  19. Jehle S, Zanetti A, Muser J, Hulter HN, Krapf R. Partial neutralization of the acidogenic Western diet with potassium citrate increases bone mass in postmenopausal women with osteopenia. J Am Soc Nephrol. 2006;17(11):3213–22.

    Article  PubMed  CAS  Google Scholar 

  20. Macdonald HM, Black AJ, Aucott L, Duthie G, Duthie S, Sandison R, et al. Effect of potassium citrate supplementation or increased fruit and vegetable intake on bone metabolism in healthy postmenopausal women: a randomized controlled trial. Am J Clin Nutr. 2008;88(2):465–74.

    PubMed  CAS  Google Scholar 

  21. Frassetto LA, Hardcastle AC, Sebastian A, Aucott L, Fraser WD, Reid DM, et al. No evidence that the skeletal non-response to potassium alkali supplements in healthy postmenopausal women depends on blood pressure or sodium chloride intake. Eur J Clin Nutr. 2012;66:1315–22.

    Article  PubMed  CAS  Google Scholar 

  22. Tucker KL, Hannan MT, Kiel DP. The acid–base hypothesis: diet and bone in the Framingham Osteoporosis Study. Eur J Nutr. 2001;40(5):231–7.

    Article  PubMed  CAS  Google Scholar 

  23. Macdonald HM, New SA, Golden MH, Campbell MK, Reid DM. Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr. 2004;79(1):155–65.

    PubMed  CAS  Google Scholar 

  24. Kaptoge S, Welch A, McTaggart A, Mulligan A, Dalzell N, Day NE, et al. Effects of dietary nutrients and food groups on bone loss from the proximal femur in men and women in the 7th and 8th decades of age. Osteoporos Int. 2003;14(5):418–28.

    Article  PubMed  CAS  Google Scholar 

  25. Pedone C, Napoli N, Pozzilli P, Lauretani F, Bandinelli S, Ferrucci L, et al. Quality of diet and potential renal acid load as risk factors for reduced bone density in elderly women. Bone. 2010;46(4):1063–7.

    Article  PubMed  CAS  Google Scholar 

  26. Pedone C, Napoli N, Pozzilli P, Lauretani F, Bandinelli S, Ferrucci L, et al. Author reply – quality of diet and potential renal acid load as risk factors for reduced bone density in elderly women. Bone. 2011;48(2):416.

    Article  Google Scholar 

  27. Remer T, Shi L, Alexy U. Potential renal acid load may more strongly affect bone size and mass than volumetric bone mineral density. Bone. 2011;48(2):414–5; author reply 6.

    Article  PubMed  Google Scholar 

  28. Alexy U, Remer T, Manz F, Neu CM, Schoenau E. Long-term protein intake and dietary potential renal acid load are associated with bone modeling and remodeling at the proximal radius in healthy children. Am J Clin Nutr. 2005;82(5):1107–14.

    PubMed  CAS  Google Scholar 

  29. Fenton TR, Tough SC, Lyon AW, Eliasziw M, Hanley DA. Causal assessment of dietary acid load and bone disease: a systematic review & meta-analysis applying Hill’s epidemiologic criteria for causality. Nutr J. 2011;10:41.

    Article  PubMed  CAS  Google Scholar 

  30. Green J, Maor G. Effect of metabolic acidosis on the growth hormone/IGF-I endocrine axis in skeletal growth centers. Kidney Int. 2000;57(6):2258–67.

    Article  PubMed  CAS  Google Scholar 

  31. Ordonez FA, Santos F, Martinez V, Garcia E, Fernandez P, Rodriguez J, et al. Resistance to growth hormone and insulin-like growth factor-I in acidotic rats. Pediatr Nephrol. 2000;14(8–9):720–5.

    Article  PubMed  CAS  Google Scholar 

  32. Brungger M, Hulter HN, Krapf R. Effect of chronic metabolic acidosis on the growth hormone/IGF-1 endocrine axis: new cause of growth hormone insensitivity in humans. Kidney Int. 1997;51(1):216–21.

    Article  PubMed  CAS  Google Scholar 

  33. Wiederkehr MR, Kalogiros J, Krapf R. Correction of metabolic acidosis improves thyroid and growth hormone axes in haemodialysis patients. Nephrol Dial Transplant. 2004;19(5):1190–7.

    Article  PubMed  CAS  Google Scholar 

  34. Sicuro A, Mahlbacher K, Hulter HN, Krapf R. Effect of growth hormone on renal and systemic acid–base homeostasis in humans. Am J Physiol. 1998;274(4 Pt 2):F650–7.

    PubMed  CAS  Google Scholar 

  35. Maurer M, Riesen W, Muser J, Hulter HN, Krapf R. Neutralization of Western diet inhibits bone resorption independently of K intake and reduces cortisol secretion in humans. Am J Physiol Renal Physiol. 2003;284(1):F32–40.

    PubMed  CAS  Google Scholar 

  36. Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, et al. Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest. 2002;110(6):771–81.

    PubMed  CAS  Google Scholar 

  37. Canalis E, Delany AM. Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci. 2002;966:73–81.

    Article  PubMed  CAS  Google Scholar 

  38. Arnett T. Regulation of bone cell function by acid–base balance. Proc Nutr Soc. 2003;62(2):511–20.

    Article  PubMed  CAS  Google Scholar 

  39. Geng W, Hill K, Zerwekh JE, Kohler T, Muller R, Moe OW. Inhibition of osteoclast formation and function by bicarbonate: role of soluble adenylyl cyclase. J Cell Physiol. 2009;220(2):332–40.

    Article  PubMed  CAS  Google Scholar 

  40. Street D, Nielsen JJ, Bangsbo J, Juel C. Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium. J Physiol. 2005;566(Pt 2):481–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Remer PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Remer, T., Krupp, D., Shi, L. (2013). When Is Low Potential Renal Acid Load (PRAL) Beneficial for Bone?. In: Burckhardt, P., Dawson-Hughes, B., Weaver, C. (eds) Nutritional Influences on Bone Health. Springer, London. https://doi.org/10.1007/978-1-4471-2769-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2769-7_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2768-0

  • Online ISBN: 978-1-4471-2769-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics