Skip to main content

Genomics of Pediatric Metabolic Syndrome

  • Chapter
  • First Online:
Pediatric Metabolic Syndrome

Abstract

The genetics of the metabolic syndrome (MetS) and its components have been studied extensively in adults; however, in pediatric populations, the genetic contribution to MetS has not been as closely examined. Gene-mapping strategies to study MetS have evolved over time and are dependent on the prevalence of the disease, the underlying hypothesized genetic model, and the anticipated influence of environmental factors. While MetS in general is thought to be multifactorial and to result from the interaction of genetic and environmental factors, monogenic forms (i.e., congenital leptin deficiency, maturity onset diabetes of the young (MODY), and Liddle’s syndrome) in children have been identified which have proved easier to map. Variants in six genes (AGTR1, GHR, PLIN4, ENNP1, PA1–1, and 3-BAR) have been associated with common nonmonogenic forms of MetS in pediatric populations. Genetic investigations of endophenotypes of MetS (i.e., abdominal obesity, familial hypercholesterolemia, and dyslipidemia) in children have also been conducted, primarily as replication efforts of candidate genes such as FTO, ADIPOQ, and INSIG2 which were originally identified in adult populations. With the availability of novel genome technologies such as next-generation sequencing and with better understanding of epigenetic mechanisms that may also play a role, it is becoming increasingly possible to more comprehensively study the full compendium of genetic variation that causes MetS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ford ES, Li C. Defining the metabolic syndrome in children and adolescents: will the real definition please stand up? J Pediatr. 2008;2:160–4.

    Google Scholar 

  2. Huang TT. Finding thresholds of risk for components of the pediatric metabolic syndrome. J Pediatr. 2008;2:158–9.

    Google Scholar 

  3. Monda KL, North KE, Hunt SC, Rao DC, Province MA, Kraja AT. The genetics of obesity and the metabolic syndrome. Endocr Metab Immune Disord Drug Targets. 2010;2:86–108.

    Google Scholar 

  4. Groop L, Forsblom C, Lehtovirta M, Tuomi T, Karanko S, Nissen M, Ehrnstrom BO, Forsen B, Isomaa B, Snickars B, et al. Metabolic consequences of a family history of NIDDM (the Botnia study): evidence for sex-specific parental effects. Diabetes. 1996;11:1585–93.

    Article  Google Scholar 

  5. Carey DG, Nguyen TV, Campbell LV, Chisholm DJ, Kelly P. Genetic influences on central abdominal fat: a twin study. Int J Obes Relat Metab Disord. 1996;8:722–6.

    Google Scholar 

  6. Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect. 2006;4:567–72.

    Article  Google Scholar 

  7. Temple IK, Shield JP. Transient neonatal diabetes, a disorder of imprinting. J Med Genet. 2002;12:872–5.

    Article  Google Scholar 

  8. Temple IK, James RS, Crolla JA, Sitch FL, Jacobs PA, Howell WM, Betts P, Baum JD, Shield JP. An imprinted gene(s) for diabetes? Nat Genet. 1995;2:110–2.

    Article  Google Scholar 

  9. Abramowicz MJ, Andrien M, Dupont E, Dorchy H, Parma J, Duprez L, Ledley FD, Courtens W, Vamos E. Isodisomy of chromosome 6 in a newborn with methylmalonic acidemia and agenesis of pancreatic beta cells causing diabetes mellitus. J Clin Invest. 1994;1:418–21.

    Article  Google Scholar 

  10. Cave H, Polak M, Drunat S, Denamur E, Czernichow P. Refinement of the 6q chromosomal region implicated in transient neonatal diabetes. Diabetes. 2000;1:108–13.

    Article  Google Scholar 

  11. Gardner RJ, Mackay DJ, Mungall AJ, Polychronakos C, Siebert R, Shield JP, Temple IK, Robinson DO. An imprinted locus associated with transient neonatal diabetes mellitus. Hum Mol Genet. 2000;4:589–96.

    Article  Google Scholar 

  12. Arima T, Drewell RA, Oshimura M, Wake N, Surani MA. A novel imprinted gene, HYMAI, is located within an imprinted domain on human chromosome 6 containing ZAC. Genomics. 2000;3:248–55.

    Article  Google Scholar 

  13. Mackay DJ, Temple IK, Shield JP, Robinson DO. Bisulphite sequencing of the transient neonatal diabetes mellitus DMR facilitates a novel diagnostic test but reveals no methylation anomalies in patients of unknown aetiology. Hum Genet. 2005;4:255–61.

    Article  Google Scholar 

  14. Mitchell GA. Genetics, physiology and perinatal influences in childhood obesity: view from the chair. Int J Obes (Lond). 2009;S41–7.

    Google Scholar 

  15. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, Sanna V, Jebb SA, Perna F, Fontana S, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;8:1093–103.

    Google Scholar 

  16. Rahalkar AR, Hegele RA. Monogenic pediatric dyslipidemias: classification, genetics and clinical spectrum. Mol Genet Metab. 2008;3:282–94.

    Article  Google Scholar 

  17. Simonetti GD, Mohaupt MG, Bianchetti MG. Monogenic forms of hypertension. Eur J Pediatr 2011 [Epub ahead of print].

    Google Scholar 

  18. Travers ME, McCarthy MI. Type 2 diabetes and obesity: genomics and the clinic. Hum Genet 2011 [Epub ahead of print].

    Google Scholar 

  19. Rosenbloom AL, Joe JR, Young RS, Winter WE. Emerging epidemic of type 2 diabetes in youth. Diabetes Care. 1999;2:345–54.

    Article  Google Scholar 

  20. Fajans SS, Bell GI, Polonsky KS. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med. 2001;13:971–80.

    Article  Google Scholar 

  21. Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V, Dina C, Hamid YH, Joly E, Vaillant E, Benmezroua Y, Durand E, Bakaher N, et al. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proc Natl Acad Sci U S A. 2005;13:4807–12.

    Article  Google Scholar 

  22. Raeder H, Bjorkhaug L, Johansson S, Mangseth K, Sagen JV, Hunting A, Folling I, Johansen O, Bjorgaas M, Paus PN, et al. A hepatocyte nuclear factor-4 alpha gene (HNF4A) P2 promoter haplotype linked with late-onset diabetes: studies of HNF4A variants in the Norwegian MODY registry. Diabetes. 2006;6:1899–903.

    Article  Google Scholar 

  23. Hattersley AT, Beards F, Ballantyne E, Appleton M, Harvey R, Ellard S. Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet. 1998;3:268–70.

    Article  Google Scholar 

  24. Spyer G, Hattersley AT, Sykes JE, Sturley RH, MacLeod KM. Influence of maternal and fetal glucokinase mutations in gestational diabetes. Am J Obstet Gynecol. 2001;1:240–1.

    Article  Google Scholar 

  25. Xi B, Shen Y, Zhang M, Liu X, Zhao X, Wu L, Cheng H, Hou D, Lindpaintner K, Liu L, et al. The common rs9939609 variant of the fat mass and obesity-associated gene is associated with obesity risk in children and adolescents of Beijing, China. BMC Med Genet. 2010;11:107.

    Article  PubMed  Google Scholar 

  26. Muller TD, Hinney A, Scherag A, Nguyen TT, Schreiner F, Schafer H, Hebebrand J, Roth CL, Reinehr T. ‘Fat mass and obesity associated’ gene (FTO): no significant association of variant rs9939609 with weight loss in a lifestyle intervention and lipid metabolism markers in German obese children and adolescents. BMC Med Genet. 2008;9:85.

    Article  PubMed  Google Scholar 

  27. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;5826:889–94.

    Article  Google Scholar 

  28. Nowacka-Woszuk J, Cieslak J, Skowronska B, Majewska KA, Stankiewicz W, Fichna P, Switonski M. Missense mutations and polymorphisms of the MC4R gene in Polish obese children and adolescents in relation to the relative body mass index. J Appl Genet. 2011 [Epub ahead of print].

    Google Scholar 

  29. Rutters F, Nieuwenhuizen AG, Bouwman F, Mariman E, Westerterp-Plantenga MS. Associations between a single nucleotide polymorphism of the FTO gene (rs9939609) and obesity-related characteristics over time during puberty in a Dutch children cohort. J Clin Endocrinol Metab. 2011;6:E939–42.

    Article  Google Scholar 

  30. Demiralp DO, Berberoglu M, Akar N. Melanocortin-4 receptor polymorphisms in Turkish pediatric obese patients. Clin Appl Thromb Hemost. 2011;1:70–4.

    Article  Google Scholar 

  31. Wang LN, Yu Q, Xiong Y, Liu LF, Zhang Z, Zhang XN, Cheng H, Wang B. Lipoprotein lipase gene polymorphisms and risks of childhood obesity in Chinese preschool children. Eur J Pediatr. 2011 [Epub ahead of print].

    Google Scholar 

  32. Fredriksson R, Hagglund M, Olszewski PK, Stephansson O, Jacobsson JA, Olszewska AM, Levine AS, Lindblom J, Schioth HB. The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology. 2008;5:2062–71.

    Article  Google Scholar 

  33. Olszewski PK, Fredriksson R, Olszewska AM, Stephansson O, Alsio J, Radomska KJ, Levine AS, Schioth HB. Hypothalamic FTO is associated with the regulation of energy intake not feeding reward. BMC Neurosci. 2009;10:129.

    Article  PubMed  Google Scholar 

  34. Levy E, Minnich A, Cacan SL, Thibault L, Giroux LM, Davignon J, Lambert M. Association of an exon 3 mutation (Trp66–>Gly) of the LDL receptor with variable expression of familial hypercholesterolemia in a French Canadian family. Biochem Mol Med. 1997;1:59–69.

    Article  Google Scholar 

  35. Xie L, Gong QH, Xie ZG, Liang ZM, Hu ZM, Xia K, Xia JH, Yang YF. Two novel mutations of the LDL receptor gene associated with familial hypercholesterolemia in a Chinese family. Chin Med J (Engl). 2007;19:1694–9.

    Google Scholar 

  36. Francova H, Trbusek M, Zapletalova P, Kuhrova V. New promoter mutations in the low-0density lipoprotein receptor gene which induce familial hypercholesterolaemia phenotype: molecular and functional analysis. J Inherit Metab Dis. 2004;4:523–8.

    Article  Google Scholar 

  37. van der Graaf A, Avis HJ, Kusters DM, Vissers MN, Hutten BA, Defesche JC, Huijgen R, Fouchier SW, Wijburg FA, Kastelein JJ, et al. Molecular basis of autosomal dominant hypercholesterolemia: assessment in a large cohort of hypercholesterolemic children. Circulation. 2011;11:1167–73.

    Article  Google Scholar 

  38. Brito DD, Fernandes AP, Gomes KB, Coelho FF, Cruz NG, Sabino AP, Cardoso JE, Figueiredo-Filho PP, Diamante R, Norton CR, et al. Apolipoprotein A5–1131T>C polymorphism, but not APOE genotypes, increases susceptibility for dyslipidemia in children and adolescents. Mol Biol Rep. 2010 [Epub ahead of print].

    Google Scholar 

  39. Guardiola M, Ribalta J, Gomez-Coronado D, Lasuncion MA, de Oya M, Garces C. The apolipoprotein A5 (APOA5) gene predisposes Caucasian children to elevated triglycerides and vitamin E (Four Provinces Study). Atherosclerosis. 2010;2:543–7.

    Article  Google Scholar 

  40. Endo K, Yanagi H, Araki J, Hirano C, Yamakawa-Kobayashi K, Tomura S. Association found between the promoter region polymorphism in the apolipoprotein A-V gene and the serum triglyceride level in Japanese schoolchildren. Hum Genet. 2002;6:570–2.

    Article  Google Scholar 

  41. Dedoussis GV, Theodoraki EV, Manios Y, Yiannakouris N, Panagiotakos D, Papoutsakis C, Skenderi K, Zampelas A. The Pro12Ala polymorphism in PPARgamma2 gene affects lipid parameters in Greek primary school children: a case of gene-to-gender interaction. Am J Med Sci. 2007;1:10–5.

    Article  Google Scholar 

  42. Karvonen MK, Koulu M, Pesonen U, Uusitupa MI, Tammi A, Viikari J, Simell O, Ronnemaa T. Leucine 7 to proline 7 polymorphism in the preproneuropeptide Y is associated with birth weight and serum triglyceride concentration in preschool aged children. J Clin Endocrinol Metab. 2000;4:1455–60.

    Article  Google Scholar 

  43. Flores-Dorantes T, Arellano-Campos O, Posadas-Sanchez R, Villarreal-Molina T, Medina-Urrutia A, Romero-Hidalgo S, Yescas-Gomez P, Perez-Mendez O, Jorge-Galarza E, Tusie-Luna T, et al. Association of R230C ABCA1 gene variant with low HDL-C levels and abnormal HDL subclass distribution in Mexican school-aged children. Clin Chim Acta. 2010;17–18:1214–7.

    Article  Google Scholar 

  44. Lee JC, Weissglas-Volkov D, Kyttala M, Dastani Z, Cantor RM, Sobel EM, Plaisier CL, Engert JC, van Greevenbroek MM, Kane JP, et al. WW-domain-containing oxidoreductase is associated with low plasma HDL-C levels. Am J Hum Genet. 2008;2:180–92.

    Article  Google Scholar 

  45. Mingrone G, Henriksen FL, Greco AV, Krogh LN, Capristo E, Gastaldelli A, Castagneto M, Ferrannini E, Gasbarrini G, Beck-Nielsen H. Triglyceride-induced diabetes associated with familial lipoprotein lipase deficiency. Diabetes. 1999;6:1258–63.

    Article  Google Scholar 

  46. Nghiem NT, Ta TT, Ohmori R, Kuroki M, Nguyen VC, Nguyen TK, Kawakami M, Kondo K. Apolipoprotein E polymorphism in Vietnamese children and its relationship to plasma lipid and lipoprotein levels. Metabolism. 2004;12:1517–21.

    Google Scholar 

  47. Hegele RA, Connelly PW, Hanley AJ, Sun F, Harris SB, Zinman B. Common genomic variants associated with variation in plasma lipoproteins in young aboriginal Canadians. Arterioscler Thromb Vasc Biol. 1997;6:1060–6.

    Article  Google Scholar 

  48. Parlier G, Thomas G, Bereziat G, Fontaine JL, Girardet JP. Relation of apolipoprotein E polymorphism to lipid metabolism in obese children. Pediatr Res. 1997;5:682–5.

    Article  Google Scholar 

  49. Belostotsky R, Ben-Shalom E, Rinat C, Becker-Cohen R, Feinstein S, Zeligson S, Segel R, Elpeleg O, Nassar S, Frishberg Y. Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome. Am J Hum Genet. 2011;2:193–200.

    Article  Google Scholar 

  50. Gao PJ, Zhang KX, Zhu DL, He X, Han ZY, Zhan YM, Yang LW. Diagnosis of Liddle syndrome by genetic analysis of beta and gamma subunits of epithelial sodium channel–a report of five affected family members. J Hypertens. 2001;5:885–9.

    Article  Google Scholar 

  51. Hansson JH, Schild L, Lu Y, Wilson TA, Gautschi I, Shimkets R, Nelson-Williams C, Rossier BC, Lifton RP. A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity. Proc Natl Acad Sci U S A. 1995;25:11495–9.

    Article  Google Scholar 

  52. Goulet CC, Volk KA, Adams CM, Prince LS, Stokes JB, Snyder PM. Inhibition of the epithelial Na+  channel by interaction of Nedd4 with a PY motif deleted in Liddle’s syndrome. J Biol Chem. 1998;45:30012–7.

    Article  Google Scholar 

  53. Vachharajani A, Saunders S. Allelic variation in the serotonin transporter (5HTT) gene contributes to idiopathic pulmonary hypertension in children. Biochem Biophys Res Commun. 2005;2:376–9.

    Article  Google Scholar 

  54. Rosenzweig EB, Morse JH, Knowles JA, Chada KK, Khan AM, Roberts KE, McElroy JJ, Juskiw NK, Mallory NC, Rich S, et al. Clinical implications of determining BMPR2 mutation status in a large cohort of children and adults with pulmonary arterial hypertension. J Heart Lung Transplant. 2008;6:668–74.

    Article  Google Scholar 

  55. Fujiwara M, Yagi H, Matsuoka R, Akimoto K, Furutani M, Imamura S, Uehara R, Nakayama T, Takao A, Nakazawa M, et al. Implications of mutations of activin receptor-like kinase 1 gene (ALK1) in addition to bone morphogenetic protein receptor II gene (BMPR2) in children with pulmonary arterial hypertension. Circ J. 2008;1:127–33.

    Article  Google Scholar 

  56. Okada T, Sato NF, Kuromori Y, Miyashita M, Iwata F, Hara M, Harada K, Hattori H. Thr-encoding allele homozygosity at codon 54 of FABP 2 gene may be associated with impaired delta 6 desaturase activity and reduced plasma arachidonic acid in obese children. J Atheroscler Thromb. 2006;4:192–6.

    Article  Google Scholar 

  57. Takahashi I, Yamada Y, Kadowaki H, Horikoshi M, Kadowaki T, Narita T, Tsuchida S, Noguchi A, Koizumi A, Takahashi T. Phenotypical variety of insulin resistance in a family with a novel mutation of the insulin receptor gene. Endocr J. 2010;6:509–16.

    Article  Google Scholar 

  58. Huang Z, Li Y, Tang T, Xu W, Liao Z, Yao B, Hu G, Weng J. Hyperinsulinaemic hypoglycaemia associated with a heterozygous missense mutation of R1174W in the insulin receptor (IR) gene. Clin Endocrinol (Oxf). 2009;5:659–65.

    Article  Google Scholar 

  59. Khalyfa A, Bhushan B, Hegazi M, Kim J, Kheirandish-Gozal L, Bhattacharjee R, Capdevila OS, Gozal D. Fatty-acid binding protein 4 gene variants and childhood obesity: potential implications for insulin sensitivity and CRP levels. Lipids Health Dis. 2010;9:18.

    PubMed  Google Scholar 

  60. Zavattari P, Loche A, Civolani P, Pilia S, Moi L, Casini MR, Minerba L, Loche S. An INSIG2 polymorphism affects glucose homeostasis in Sardinian obese children and adolescents. Ann Hum Genet. 2010;5:381–6.

    Article  Google Scholar 

  61. Verduci E, Scaglioni S, Agostoni C, Radaelli G, Biondi M, Manso AS, Riva E, Giovannini M. The relationship of insulin resistance with SNP 276G>T at adiponectin gene and plasma long-chain polyunsaturated fatty acids in obese children. Pediatr Res. 2009;3:346–9.

    Article  Google Scholar 

  62. Petrone A, Zavarella S, Caiazzo A, Leto G, Spoletini M, Potenziani S, Osborn J, Vania A, Buzzetti R. The promoter region of the adiponectin gene is a determinant in modulating insulin sensitivity in childhood obesity. Obesity (Silver Spring). 2006;9:1498–504.

    Article  Google Scholar 

  63. Alavi-Shahri J, Behravan J, Hassany M, Tatari F, Kasaian J, Ganjali R, Tavallaie S, Sabouri S, Sahebkar A, Oladi M, et al. Association between angiotensin II type 1 receptor gene polymorphism and metabolic syndrome in a young female Iranian population. Arch Med Res. 2010;5:343–9.

    Article  Google Scholar 

  64. Sorensen K, Aksglaede L, Munch-Andersen T, Aachmann-Andersen NJ, Leffers H, Helge JW, Hilsted L, Juul A. Impact of the growth hormone receptor exon 3 deletion gene polymorphism on glucose metabolism, lipids, and insulin-like growth factor-I levels during puberty. J Clin Endocrinol Metab. 2009;8:2966–9.

    Article  Google Scholar 

  65. Deram S, Nicolau CY, Perez-Martinez P, Guazzelli I, Halpern A, Wajchenberg BL, Ordovas JM, Villares SM. Effects of perilipin (PLIN) gene variation on metabolic syndrome risk and weight loss in obese children and adolescents. J Clin Endocrinol Metab. 2008;12:4933–40.

    Article  Google Scholar 

  66. Santoro N, Cirillo G, Lepore MG, Palma A, Amato A, Savarese P, Marzuillo P, Grandone A, Perrone L, Del Giudice EM. Effect of the rs997509 polymorphism on the association between ectonucleotide pyrophosphatase phosphodiesterase 1 and metabolic syndrome and impaired glucose tolerance in childhood obesity. J Clin Endocrinol Metab. 2009;1:300–5.

    Google Scholar 

  67. Kinik ST, Ozbek N, Yuce M, Yazici AC, Verdi H, Atac FB. PAI-1 gene 4G/5G polymorphism, cytokine levels and their relations with metabolic parameters in obese children. Thromb Haemost. 2008;2:352–6.

    Google Scholar 

  68. Erhardt E, Czako M, Csernus K, Molnar D, Kosztolanyi G. The frequency of Trp64Arg polymorphism of the beta3-adrenergic receptor gene in healthy and obese Hungarian children and its association with cardiovascular risk factors. Eur J Clin Nutr. 2005;8:955–9.

    Article  Google Scholar 

  69. WRITING GROUP MEMBERS, Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation. 2010;7:e46–215.

    Google Scholar 

  70. Nocon M, Hiemann T, Muller-Riemenschneider F, Thalau F, Roll S, Willich SN. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur J Cardiovasc Prev Rehabil. 2008;3:239–46.

    Article  Google Scholar 

  71. Kokkinos P, Myers J. Exercise and physical activity: clinical outcomes and applications. Circulation. 2010;16:1637–48.

    Article  Google Scholar 

  72. Kokkinos P, Myers J, Faselis C, Panagiotakos DB, Doumas M, Pittaras A, Manolis A, Kokkinos JP, Karasik P, Greenberg M, et al. Exercise capacity and mortality in older men: a 20-year follow-up study. Circulation. 2010;8:790–7.

    Article  Google Scholar 

  73. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;11:793–801.

    Article  Google Scholar 

  74. Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, Perusse L, Leon AS, Rao DC. Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. J Appl Physiol. 1999;3:1003–8.

    Google Scholar 

  75. Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;6 Suppl, S446–51, discussion S452–3.

    Google Scholar 

  76. Mori M, Higuchi K, Sakurai A, Tabara Y, Miki T, Nose H. Genetic basis of inter-individual variability in the effects of exercise on the alleviation of lifestyle-related diseases. J Physiol. 2009;Pt 23, 5577–84.

    Google Scholar 

  77. Leon AS, Togashi K, Rankinen T, Despres JP, Rao DC, Skinner JS, Wilmore JH, Bouchard C. Association of apolipoprotein E polymorphism with blood lipids and maximal oxygen uptake in the sedentary state and after exercise training in the HERITAGE family study. Metabolism. 2004;1:108–16.

    Article  Google Scholar 

  78. Timmons JA, Knudsen S, Rankinen T, Koch LG, Sarzynski MA, Jensen T, Keller P, Scheele C, Vollaard NB, Nielsen S, et al. Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J Appl Physiol. 2010 [Epub ahead of print].

    Google Scholar 

  79. Vollaard NB, Constantin-Teodosiu D, Fredriksson K, Rooyackers O, Jansson E, Greenhaff PL, Timmons JA, Sundberg CJ. Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance. J Appl Physiol. 2009;5:1479–86.

    Article  Google Scholar 

  80. An P, Perusse L, Rankinen T, Borecki IB, Gagnon J, Leon AS, Skinner JS, Wilmore JH, Bouchard C, Rao DC. Familial aggregation of exercise heart rate and blood pressure in response to 20 weeks of endurance training: the HERITAGE family study. Int J Sports Med. 2003;1:57–62.

    Article  CAS  Google Scholar 

  81. Rice T, An P, Gagnon J, Leon AS, Skinner JS, Wilmore JH, Bouchard C, Rao DC. Heritability of HR and BP response to exercise training in the HERITAGE Family Study. Med Sci Sports Exerc. 2002;6:972–9.

    Google Scholar 

  82. Hopkins N, Stratton G, Maia J, Tinken TM, Graves LE, Cable TN, Green DJ. Heritability of arterial function, fitness, and physical activity in youth: a study of monozygotic and dizygotic twins. J Pediatr. 2010;6:943–8.

    Google Scholar 

  83. Gaskill SE, Rice T, Bouchard C, Gagnon J, Rao DC, Skinner JS, Wilmore JH, Leon AS. Familial resemblance in ventilatory threshold: the HERITAGE Family Study. Med Sci Sports Exerc. 2001;11:1832–40.

    Google Scholar 

  84. Bouchard C, Daw EW, Rice T, Perusse L, Gagnon J, Province MA, Leon AS, Rao DC, Skinner JS, Wilmore JH. Familial resemblance for VO2max in the sedentary state: the HERITAGE family study. Med Sci Sports Exerc. 1998;2:252–8.

    Google Scholar 

  85. Fagard R, Bielen E, Amery A. Heritability of aerobic power and anaerobic energy generation during exercise. J Appl Physiol. 1991;1:357–62.

    Google Scholar 

  86. Maes HH, Beunen GP, Vlietinck RF, Neale MC, Thomis M, Vanden Eynde B, Lysens R, Simons J, Derom C, Derom R. Inheritance of physical fitness in 10-yr-old twins and their parents. Med Sci Sports Exerc. 1996;12:1479–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evadnie Rampersaud Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Rampersaud, E., Ciliberti, M.A. (2012). Genomics of Pediatric Metabolic Syndrome. In: Lipshultz, S., Messiah, S., Miller, T. (eds) Pediatric Metabolic Syndrome. Springer, London. https://doi.org/10.1007/978-1-4471-2366-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2366-8_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2365-1

  • Online ISBN: 978-1-4471-2366-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics