Skip to main content

Computational Fluid Dynamics for the Assessment of Cerebrospinal Fluid Flow and Its Coupling with Cerebral Blood Flow

  • Chapter
  • First Online:
Biomechanics of the Brain

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

The dynamics of cerebrospinal fluid flow are directly linked to those of the ­cardiovascular system. The heart not only drives blood flow, but is also at the origin of CSF pulsation through the expansion and contraction of cerebral blood vessels. As was detailed in the preceding chapter, CSF dynamics can be altered by diseases and conditions such as hydrocephalus and, in turn, CSF dynamics can be analyzed to aid in the diagnosis of these. Bulk models describing intracranial fluid dynamics and punctual flow measurements using MRI have thus become important tools for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacobson, E.E., Fletcher, D.F., Morgan, M.K., et al.: Fluid dynamics of the cerebral aqueduct. Pediatr. Neurosurg. 24(5), 229–236 (1996)

    Article  Google Scholar 

  2. Ballester, M.A.G., Zisserman, A., Brady, M.: Segmentation and measurement of brain structures in MRI including confidence bounds. Med. Image Anal. 4(3), 189–200 (2000)

    Article  Google Scholar 

  3. Gupta, S., Soellinger, M., Boesiger, P., et al.: Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space. J. Biomech. Eng. 131(2), 021010 (2009). doi:10.1115/1.3005171

    Article  Google Scholar 

  4. Gupta, S., Soellinger, M., Grzybowski, D.M., et al.: Cerebrospinal fluid dynamics in the human cranial subarachnoid space: an overlooked mediator of cerebral disease. I. Computational model. J. R. Soc. Interface 7(49), 1195–1204 (2010). doi:rsif.2010.0033 [pii]10.1098/rsif.2010.0033

    Article  Google Scholar 

  5. Allen, D.J., Low, F.N.: Scanning electron microscopy of the subarachnoid space in the dog. III. Cranial levels. J. Comp. Neurol. 161(4), 515–539 (1975). doi:10.1002/cne.901610404

    Article  Google Scholar 

  6. Cloyd, M.W., Low, F.N.: Scanning electron microscopy of the subarachnoid space in the dog. I. Spinal cord levels. J. Comp. Neurol. 153(4), 325–368 (1974). doi:10.1002/cne.901530402

    Article  Google Scholar 

  7. Killer, H.E., Laeng, H.R., Flammer, J., et al.: Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoid space of the human optic nerve: anatomy and clinical considerations. Br. J. Ophthalmol. 87(6), 777–781 (2003)

    Article  Google Scholar 

  8. Vandenwesthuizen, J., Duplessis, J.P.: Quantification of unidirectional fiber bed permeability. J. Compos. Mater. 28(7), 619–637 (1994)

    Google Scholar 

  9. Chai, Z.H., Shi, B.C., Lu, J.H., et al.: Non-Darcy flow in disordered porous media: a lattice Boltzmann study. Comput. Fluids 39(10), 2069–2077 (2010). doi:10.1016/j.compfluid.2010.07.012

    Article  MathSciNet  Google Scholar 

  10. Kang, Q.J., Zhang, D.X., Chen, S.Y.: Unified lattice Boltzmann method for flow in multiscale porous media. Phys Rev E 66(5), 056307 (2002). doi:10.1103/Physreve.66.056307

    Article  ADS  Google Scholar 

  11. Lesage, D., Angelini, E.D., Bloch, I., et al.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009). doi:10.1016/j.media.2009.07.011

    Article  Google Scholar 

  12. Hjelle, Ø., Dæhlen, M.: Triangulations and Applications. Mathematics and Visualization. Springer, Berlin (2006)

    Google Scholar 

  13. De Boor, C.: A Practical Guide to Splines. Applied Mathematical Sciences, vol 27, Rev. edn. Springer, New York (2001)

    Google Scholar 

  14. Hadaczek, P., Yamashita, Y., Mirek, H., et al.: The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol. Ther. 14(1), 69–78 (2006). doi:S1525-0016(06)00113-4[pii]10.1016/j.ymthe.2006.02.018

    Article  Google Scholar 

  15. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005). doi:10.1146/annurev.fluid.37.061903.175743

    Article  MathSciNet  ADS  Google Scholar 

  16. Spiegel, M., Redel, T., Zhang, Y.J., et al.: Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation. Comput. Meth. Biomech. Biomed. Eng. 14(1), 9–22 (2011). doi:10.1080/10255842.2010.518565

    Article  Google Scholar 

  17. Haslam, M., Zamir, M.: Pulsatile flow in tubes of elliptic gross sections. Ann. Biomed. Eng. 26(5), 780–787 (1998)

    Article  Google Scholar 

  18. Gupta, S., Poulikakos, D., Kurtcuoglu, V.: Analytical solution for pulsatile viscous flow in a straight elliptic annulus and application to the motion of the cerebrospinal fluid. Phys. Fluids 20(9), 093607 (2008). doi:10.1063/1.2988858

    Article  ADS  Google Scholar 

  19. Kurtcuoglu, V., Soellinger, M., Summers, P., et al.: Computational investigation of subject-specific cerebrospinal fluid flow in the third ventricle and aqueduct of Sylvius. J. Biomech. 40(6), 1235–1245 (2007). doi:S0021-9290(06)00215-6[pii]10.1016/j.jbiomech.2006.05.031

    Article  Google Scholar 

  20. Boutsianis, E., Gupta, S., Boomsma, K., et al.: Boundary conditions by Schwarz-Christoffel mapping in anatomically accurate hemodynamics. Ann. Biomed. Eng. 36(12), 2068–2084 (2008). doi:10.1007/s10439-008-9571-3

    Article  Google Scholar 

  21. Soellinger, M., Rutz, A.K., Kozerke, S., et al.: 3D cine displacement-encoded MRI of pulsatile brain motion. Magn. Reson. Med. 61(1), 153–162 (2009). doi:10.1002/mrm.21802

    Article  Google Scholar 

  22. Shannon, C.E.: Communication in the presence of noise. Proc. Inst. Radio Eng. 37(1), 10–21 (1949)

    MathSciNet  Google Scholar 

  23. Luke, H.D.: The origins of the sampling theorem. IEEE Commun. Mag. 37(4), 106–108 (1999)

    Article  Google Scholar 

  24. Greitz, D., Greitz, T., Hindmarsh, T.: A new view on the CSF-circulation with the potential for pharmacological treatment of childhood hydrocephalus. Acta Paediatr. 86(2), 125–132 (1997)

    Article  Google Scholar 

  25. Koh, L., Zakharov, A., Johnston, M.: Integration of the subarachnoid space and lymphatics: is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res. 2, 6 (2005). doi:10.1186/1743-8454-2-6

    Article  Google Scholar 

  26. Grzybowski, D.M., Herderick, E.E., Kapoor, K.G., et al.: Human arachnoid granulations. Part I: a technique for quantifying area and distribution on the superior surface of the cerebral cortex. Cerebrospinal Fluid Res. 4, 6 (2007). doi:10.1186/1743-8454-4-6

    Article  Google Scholar 

  27. Holman, D.W., Kurtcuoglu, V., Grzybowski, D.M.: Cerebrospinal fluid dynamics in the human cranial subarachnoid space: an overlooked mediator of cerebral disease. II. In vitro arachnoid outflow model. J. R. Soc. Interface 7(49), 1205–1218 (2010). doi:rsif.2010.0032 [pii]10.1098/rsif.2010.0032

    Article  Google Scholar 

  28. Bateman, G.: Hyperemic hydrocephalus: a new form of childhood hydrocephalus analogous to hyperemic intracranial hypertension in adults. J. Neurosurg. Pediatr. 5(1), 20–26 (2010). doi:10.3171/2009.8.PEDS09204

    Article  Google Scholar 

  29. Knight, J., Olgac, U., Saur, S.C., et al.: Choosing the optimal wall shear parameter for the prediction of plaque location-A patient-specific computational study in human right coronary arteries. Atherosclerosis 211(2), 445–450 (2010). doi:10.1016/j.atherosclerosis.2010.03.001

    Article  Google Scholar 

  30. Bloomfield, I.G., Johnston, I.H., Bilston, L.E.: Effects of proteins, blood cells and glucose on the viscosity of cerebrospinal fluid. Pediatr. Neurosurg. 28(5), 246–251 (1998)

    Article  Google Scholar 

  31. Brydon, H.L., Hayward, R., Harkness, W., et al.: Physical properties of cerebrospinal fluid of relevance to shunt function. 1: the effect of protein upon CSF viscosity. Br. J. Neurosurg. 9(5), 639–644 (1995)

    Article  Google Scholar 

  32. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  33. Jacobson, E.E., Fletcher, D.F., Morgan, M.K., et al.: Computer modelling of the cerebrospinal fluid flow dynamics of aqueduct stenosis. Med. Biol. Eng. Comput. 37(1), 59–63 (1999)

    Article  Google Scholar 

  34. Fin, L., Grebe, R.: Three dimensional modeling of the cerebrospinal fluid dynamics and brain interactions in the aqueduct of sylvius. Comput. Methods Biomech. Biomed. Engin. 6(3), 163–170 (2003). doi:10.1080/1025584031000097933016C8J55KCLQF4JT[pii]

    Article  Google Scholar 

  35. Kurtcuoglu, V., Poulikakos, D., Ventikos, Y.: Computational modeling of the mechanical behavior of the cerebrospinal fluid system. J. Biomech. Eng. 127(2), 264–269 (2005)

    Article  Google Scholar 

  36. Du Boulay, G., O’Connell, J., Currie, J., et al.: Further investigations on pulsatile movements in the cerebrospinal fluid pathways. Acta Radiol. Diagn. (Stockh) 13, 496–523 (1972)

    Google Scholar 

  37. Kurtcuoglu, V., Soellinger, M., Summers, P., et al.: Mixing and modes of mass transfer in the third cerebral ventricle: a computational analysis. J. Biomech. Eng. 129(5), 695–702 (2007). doi:10.1115/1.2768376

    Article  Google Scholar 

  38. Tricoire, H., Locatelli, A., Chemineau, P., et al.: Melatonin enters the cerebrospinal fluid through the pineal recess. Endocrinology 143(1), 84–90 (2002)

    Article  Google Scholar 

  39. Cheng, S., Tan, K., Bilston, L.E.: The effects of the interthalamic adhesion position on cerebrospinal fluid dynamics in the cerebral ventricles. J. Biomech. 43(3), 579–582 (2010). doi:S0021-9290(09)00566-1[pii]10.1016/j.jbiomech.2009.10.002

    Article  Google Scholar 

  40. Howden, L., Giddings, D., Power, H., et al.: Three-dimensional cerebrospinal fluid flow within the human ventricular system. Comput. Methods Biomech. Biomed. Engin. 11(2), 123–133 (2008). doi:785046036[pii]10.1080/10255840701492118

    Article  Google Scholar 

  41. Linninger, A.A., Xenos, M., Zhu, D.C., et al.: Cerebrospinal fluid flow in the normal and hydrocephalic human brain. IEEE Trans. Biomed. Eng. 54(2), 291–302 (2007). doi:10.1109/TBME.2006.886853

    Article  Google Scholar 

  42. Sweetman, B., Linninger, A.A.: Cerebrospinal fluid flow dynamics in the central nervous system. Ann. Biomed. Eng. 39(1), 484–496 (2011). doi:10.1007/s10439-010-0141-0

    Article  Google Scholar 

  43. Sweetman, B., Xenos, M., Zitella, L., et al.: Three-dimensional computational prediction of cerebrospinal fluid flow in the human brain. Comput. Biol. Med. 41(2), 67–75 (2011). doi:10.1016/j.compbiomed.2010.12.001

    Article  Google Scholar 

  44. Loth, F., Yardimci, M.A., Alperin, N.: Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. J. Biomech. Eng. 123(1), 71–79 (2001)

    Article  Google Scholar 

  45. The Visible Human Project. 1997. http://www.nlm.nih.gov/research/visible/visible_human.html. Accessed February 2011

  46. Stockman, H.W.: Effect of anatomical fine structure on the flow of cerebrospinal fluid in the spinal subarachnoid space. J. Biomech. Eng. 128(1), 106–114 (2006)

    Article  Google Scholar 

  47. Bilston, L.E., Fletcher, D.F., Stoodley, M.A.: Focal spinal arachnoiditis increases subarachnoid space pressure: a computational study. Clin. Biomech. (Bristol, Avon) 21(6), 579–584 (2006)

    Article  Google Scholar 

  48. Hentschel, S., Mardal, K.A., Lovgren, A.E., et al.: Characterization of cyclic CSF flow in the foramen magnum and upper cervical spinal canal with MR flow imaging and computational fluid dynamics. AJNR Am. J. Neuroradiol. 31(6), 997–1002 (2010). doi:ajnr.A1995 [pii] 10.3174/ajnr.A1995

    Article  Google Scholar 

  49. Linge, S.O., Haughton, V., Lovgren, A.E., et al.: CSF flow dynamics at the craniovertebral junction studied with an idealized model of the subarachnoid space and computational flow analysis. AJNR Am. J. Neuroradiol. 31(1), 185–192 (2010). doi:ajnr.A1766 [pii] 10.3174/ajnr.A1766

    Article  Google Scholar 

  50. Kuttler, A., Dimke, T., Kern, S., et al.: Understanding pharmacokinetics using realistic computational models of fluid dynamics: biosimulation of drug distribution within the CSF space for intrathecal drugs. J. Pharmacokinet. Pharmacodyn. 37(6), 629–644 (2010). doi:10.1007/s10928-010-9184-y

    Article  Google Scholar 

  51. Riley, N.: Steady streaming. Annu. Rev. Fluid Mech. 33, 43–65 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  52. Bilston, L.E., Fletcher, D.F., Brodbelt, A.R., et al.: Arterial pulsation-driven cerebrospinal fluid flow in the perivascular space: a computational model. Comput. Methods Biomech. Biomed. Engin. 6(4), 235–241 (2003)

    Article  Google Scholar 

  53. Wang, P., Olbricht, W.L.: Fluid mechanics in the perivascular space. J. Theor. Biol. (2011). doi:10.1016/j.jtbi.2011.01.014

    Google Scholar 

  54. Bilston, L.E., Stoodley, M.A., Fletcher, D.F.: The influence of the relative timing of arterial and subarachnoid space pulse waves on spinal perivascular cerebrospinal fluid flow as a possible factor in syrinx development. J. Neurosurg. 112(4), 808–813 (2010). doi:10.3171/2009.5.JNS08945

    Article  Google Scholar 

  55. Tully, B., Ventikos, Y.: Coupling poroelasticity and CFD for cerebrospinal fluid hydrodynamics. IEEE Trans. Biomed. Eng. 56(6), 1644–1651 (2009). doi:10.1109/TBME.2009.2016427

    Article  Google Scholar 

  56. Sarntinoranont, M., Chen, X., Zhao, J., et al.: Computational model of interstitial transport in the spinal cord using diffusion tensor imaging. Ann. Biomed. Eng. 34(8), 1304–1321 (2006). doi:10.1007/s10439-006-9135-3

    Article  Google Scholar 

  57. Tillmann, B.: Atlas der Anatomie des Menschen. Springer, Berlin (2005)

    Google Scholar 

  58. Schmid Daners, M., Knobloch, V., Soellinger, M., et al.: Age-specific characteristics and coupling of cerebral arterial inflow and cerebrospinal fluid dynamics (2011)

    Google Scholar 

  59. Schley, D., Carare-Nnadi, R., Please, C.P., et al.: Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Theor Biol. 238(4), 962–974 (2006). doi:10.1016/j.jtbi.2005.07.005

    Google Scholar 

Download references

Acknowledgment

Swiss National Science Foundation through SmartShunt – The Hydrocephalus Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vartan Kurtcuoglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kurtcuoglu, V. (2011). Computational Fluid Dynamics for the Assessment of Cerebrospinal Fluid Flow and Its Coupling with Cerebral Blood Flow. In: Miller, K. (eds) Biomechanics of the Brain. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9997-9_8

Download citation

Publish with us

Policies and ethics