Skip to main content

Devices and Techniques for Contact Microgripping

  • Chapter
  • First Online:
Advanced Mechatronics and MEMS Devices

Part of the book series: Microsystems ((MICT,volume 23))

Abstract

The gripping and manipulation of microparts significantly differs from the handling and assembly of macroscopic components. In the macroworld gravity dominates, whereas in the microdomain, it becomes negligible, and superficial forces dominate pick and place operations. Releasing a part from the grasp of a microgripper is not a simple task as the part may stick to the gripper due to the presence of these adhesive forces. For this reason, beside the numerous attempts of downscaling traditional grippers also innovative actuation strategies have been proposed. The chapter critically reviews some of the most widely used micromanipulation techniques with contact, highlighting their advantages and disadvantages and describing some innovative solutions based on capillary forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Brussels H et al (2000) Assembly of micro-systems. Annals CIRP 49(2):451–472

    Article  Google Scholar 

  2. Kim C-J, Pisano AP, Muller RS (1992) Silicon-processed overhanging microgripper. Trans ASME J Microelectromech Syst 1(1):31–36

    Article  Google Scholar 

  3. Chu PB, Pister KSJ (1994) Analysis of closed-loop control of parallel-plate electrostatic microgrippers. In: Proceedings of the IEEE international conference on robotics and automation, San Diego, California, 8–13 May 1994, pp 820–825

    Google Scholar 

  4. Jericho SK, Jericho MH, Hubard T, Kujath M (2004) Micro-electromechanical systems microtweezers for the manipulation of bacteria and small particles. Rev Sci Instrum 75(5):1280–1282

    Article  Google Scholar 

  5. Salim R, Wurmus H, Harnisch A, Hulsenberg D (1997) Microgrippers created in microstructurable glass. Microsystem Technol 4:32–34

    Article  Google Scholar 

  6. Chronis N, Lee LP (2005) Electrothermally activated SU-8 microgripper for single cell manipulation in solution. J Microelectromech Syst 14(4):857–863

    Article  Google Scholar 

  7. Ivanova K, Ivanov T, Badar A, Volland BE, Rangelow IW, Andrijasevic D, Säumecz F, Fischer S, Spitzbart M, Brenner W, Kosti I (2006) Thermally driven microgripper as a tool for micro assembly. Microelectron Eng 83:1393–1395

    Article  Google Scholar 

  8. Carrozza MC, Menciassi A, Tiezzi G, Dario P (1997) The development of a LIGA-microfabricated gripper for micromanipulation tasks. In: Proceedings of micro mechanics Europe 1997, Southampton, UK, 31 August–2 September 1997, pp 156–159

    Google Scholar 

  9. Menciassi A, Eisinberg A, Carrozza MC, Dario P (2003) Force sensing microinstrument for measuring tissue properties and pulse in microsurgery. IEEE/ASME Trans Mechatron 8(1):10–17

    Article  Google Scholar 

  10. Kohl M, Krevet B, Just E (2002) SMA microgripper system. Sensor Actuator A 97–98:646–652

    Article  Google Scholar 

  11. Bellouard Y, Lehnert T, Bidaux JE, Sidler T, Clavel R, Gottardt R, Bellouard Y (1999) Local annealing of complex mechanical devices: a new approach for developing monolithic microdevices. Mater Sci Eng A273–A275:795–798

    Google Scholar 

  12. Kim D-H, Kim B, Kang H (2004) Development of a piezoelectric polymer-based sensorized microgripper for microassembly and micromanipulation. Microsyst Technol 10(4):275–280

    Article  Google Scholar 

  13. Nah SK, Zhong ZW (2007) A microgripper using piezoelectric actuation for micro-object manipulation. Sensor Actuator A 133:218–224

    Article  Google Scholar 

  14. Petrovic D et al (2002) Gripping tools for handling and assembly of microcomponents. In: Proceedings of the 23rd international conference on microelectron, vol 1, pp 247–250

    Google Scholar 

  15. Beyeler F, Neild A, Oberti S, Bell DJ, Sun Y, Dual J, Nelson BJ (2007) Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field. J Microelectromech Syst 16(1):7–15

    Article  Google Scholar 

  16. Butefisch S, Seidemann V, Buttgenbach S (2002) Novel micro-pneumatic actuator for MEMS. Sensor Actuator A Phys 97–98:638–645

    Article  Google Scholar 

  17. Molhave K, Hansen O (2005) Electro-thermally actuated microgrippers with integrated force-feedback. J Micromech Microeng 15:1256–1270

    Article  Google Scholar 

  18. Arai F, Andou D, Nonoda Y, Fukuda T, Iwata H, Itoigawa K (1998) Integrated microendeffector for micromanipulation. IEEE/ASME Trans Mechatron 3(1):17–23

    Article  Google Scholar 

  19. Park J, Moon W (2003) A hybrid-type micro-gripper with an integrated force sensor. Microsyst Technol Micro Nanosyst Inf Storage Process Syst 9(8):511–519

    Google Scholar 

  20. Lu MSC, Huang CE, Wu ZH, Chen CF, Huang SY, King YC (2006) A CMOS micromachined gripper array with on-chip optical detection. In: 2006 I.E. sensors, vols 1–3, pp 37–40

    Google Scholar 

  21. Kim DH, Lee MG, Kim B, Sun Y (2005) A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors: a numerical and experimental study. Smart Mater Struct 15:1265–1272

    Article  Google Scholar 

  22. Zesch W, Brunner M, Weber A (1997) Vacuum tool for handling microobjects with a NanoRobot. In: Proceedings of the IEEE international conference on robotics and automation, Albuquerque, NM, pp 1761–1766

    Google Scholar 

  23. Vikramaditya B, Nelson BJ (2001) Modeling microassembly tasks with interactive forces. In: Proceedings of the IEEE international symposium on assembly and task planning, Fukuoka, Japan, pp 482–487

    Google Scholar 

  24. Wejinya UC, Shen Y, Xi N, Winder E (2005) Development of pneumatic end effector for micro robotic manipulators. In: Proceedings of the IEEE/ASME international conference on advanced intelligent mechatronics, Monterey, CA, pp 558–563

    Google Scholar 

  25. Arai F, Fukuda T (1997) Adhesion-type micro endeffector for micromanipulation. In: Proceedings of IEEE international conference on robotics and automation. Albuquerque, New Mexico, 20–25 April 1997, pp 1472–1477

    Google Scholar 

  26. Lambert P, Letier P, Delchambre A (2003) Capillary and surface tension forces in the manipulation of small parts. In: Proceedings of international symposium on assembly and tasks planning (ISATP), Besancon, France, 9–11 July 2003, pp 54–59

    Google Scholar 

  27. Lambert P, Delchambre A (2005) A study of capillary forces as a gripping principle. Assem Autom 25(4):275–283

    Article  Google Scholar 

  28. Grutzeck H (2005) Investigations of the capillary effect for gripping silicon chips. Microsyst Technol 11:194–203

    Google Scholar 

  29. Bark C, Binnenbose T, Vogele G, Weisener T, Widmann M (1998) Gripping with low viscosity fluids. In: Proceedings of the 11th annual international workshop micro electro mechanical system, Heidelberg, Germany, pp 301–305

    Google Scholar 

  30. Sinan Haliyo D, Regnier S, Guinot J-C (2003) MAD, the adhesion based dynamic micro-manipulator. J Mech A/Solids 22:903–916

    Article  MATH  Google Scholar 

  31. Saito S, Motokado T, Obata KJ, Takahashi K (2005) Capillary force with a concave probe-tip for micromanipulation. Appl Phys Lett 87(23):234103-1–234103-3

    Article  Google Scholar 

  32. Grutzeck H, Kiesewetter L (1998) Downscaling of grippers for micro assembly. In: Proceedings of sixth international conference on micro electro, opto mechanical systems and components, Potsdam, Germany, 1–3 Dec 1998

    Google Scholar 

  33. Obata KJ, Saito S, Takahashi K (2003) A scheme of micromanipulation using a liquid bridge. In Proceedings of MRS fall meeting, symposium A, vol 782, Boston, MA, pp A3.6.1–A3.6.6

    Google Scholar 

  34. Pagano C et al (2003) Micro-handling of parts in presence of adhesive forces. In: CIRP seminar on micro and nano technology 2003, Copenhagen, Denmark, 13–14 November 2003, pp 81–84

    Google Scholar 

  35. Vasudev A, Zhe J (2008) A capillary microgripper based on electrowetting. Appl Phys Lett 93(10):103503

    Article  Google Scholar 

  36. Biganzoli F, Fassi I, Pagano C (2005) Development of a gripping system based on capillary force. In: Proceedings of sixth IEEE international symposium assembly and task planning, Montreal, QC, Canada, pp 36–40

    Google Scholar 

  37. Kochan A (1998) European project develops ‘ice’ gripper for micro-sized components. Assem Autom 17(2):114–115

    Article  Google Scholar 

  38. Lang D, Tichem M, Blom S (2006) The investigation of intermediates for phase changing micro-gripping. In: Proceedings of international workshop on microfactories, Besancon, France

    Google Scholar 

  39. Changhai R, Xinliang W, Xiufen Y, Shuxiang G (2007) A new ice gripper based on thermoelectric effect for manipulating micro objects. In Proceedings of the 7th IEEE international conference on nanotechnology, Hong Kong, China, pp 438–441

    Google Scholar 

  40. Yang Y, Liu J, Zhou Y-X (2008) A convective cooling enabled freeze tweezer for manipulating micro-scale objects. J Micromech Microeng 18(9):095008-1–095008-10

    Article  Google Scholar 

  41. López-Walle B, Gauthier M, Chaillet N (2008) Principle of a submerged freeze gripper for microassembly. IEEE Trans Robot 24(4):897–902

    Article  Google Scholar 

  42. Fantoni G, Biganzoli F (2004) Design of a novel electrostatic gripper. Int J Manuf Sci Prod 6(4):163–179

    Google Scholar 

  43. Hesselbach J, Wrege J, Raatz A (2007) Micro handling devices supported by electrostatic forces. CIRP Ann Manuf Technol 56:45–48

    Article  Google Scholar 

  44. Enikov ET, Lazarov KV (2001) Optically transparent gripper for microassembly. In: Proceedings of SPIE, microrobotics and microassembly III, vol 4568, pp 40–49

    Google Scholar 

  45. Lang D, Tichem M (2006) Design and experimental evaluation of an electrostatic microgripping system. In: Proceedings of third international precision assembly seminar, Bad Hofgastein, Austria, 19–21 Feb 2006, pp 33–42

    Google Scholar 

  46. White EL, Enikov ET (2007) Self-aligning electrostatic gripper for assembly of millimeter- sized parts. In: IEEE/ASME international conference on advanced intelligent mechatronics, Zurich, Switzerland, 4–7 Sept 2007, pp 1–5

    Google Scholar 

  47. Lee SH, Lee KC, Lee SS, Oh HS (2003) Fabrication of an electrothermally actuated electrostatic microgripper. In: The 12th international conference on solid-state sensors, actuators and microsystems, vol 1, Boston, June 2003, pp 552–555

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Fassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pagano, C., Fassi, I. (2013). Devices and Techniques for Contact Microgripping. In: Zhang, D. (eds) Advanced Mechatronics and MEMS Devices. Microsystems, vol 23. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9985-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9985-6_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9984-9

  • Online ISBN: 978-1-4419-9985-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics