Skip to main content

Regulatory T Cells in Cancer

  • Chapter
  • First Online:
Innate Immune Regulation and Cancer Immunotherapy
  • 1833 Accesses

Abstract

CD4+CD25+Foxp3+ regulatory T cells (Tregs) are increased in the peripheral circulation of patients suffering from many different types of cancers and can prevent protective antitumor immunity from optimal functioning. Properties of Tregs in the solid tumor mass and its draining lymph nodes may differ compared to Tregs in peripheral circulation, making studies of tumor microenvironmental Tregs the focus of more recent work. These tumor-associated Tregs are heterogeneous with respect to mechanisms of their origin and in their mechanisms for regulating and impeding successful antitumor immunity. Although many studies now report that tumor Treg content inversely correlates with survival or therapeutic response, there are conflicting data, including reports that Tregs are beneficial in some types of cancers. Strategies to manage Treg-mediated immune dysfunction for therapeutic purposes include depleting Tregs, blocking their regulatory functions or differentiation, altering their trafficking, diverting them into a different T cell differentiation pathway, or raising the effector cell threshold to Treg-mediated regulation. Several clinical trials have now been conducted demonstrating the feasibility and relative safety of managing Tregs in human cancer. This chapter surveys current understandings of Tregs in malignancies, including their origins, mechanisms of action, interactions with other immune cells and strategies to manage them therapeutically. Other regulatory cells in cancer will be addressed in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahonen CL, Wasiuk A et al (2008) Enhanced efficacy and reduced toxicity of multifactorial adjuvants compared to unitary adjuvants as cancer vaccines. Blood 111(6):3116–3125

    Article  PubMed  CAS  Google Scholar 

  • Bach JF (2003) Regulatory T cells under scrutiny. Nat Rev Immunol 3(3):189–198

    Article  PubMed  CAS  Google Scholar 

  • Banerjee DK, Dhodapkar MV et al (2006) Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients. Blood 108(8):2655–2661

    Article  PubMed  CAS  Google Scholar 

  • Banissi C, Ghiringhelli F et al (2009) Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother 58(10):1627–1634

    Article  PubMed  CAS  Google Scholar 

  • Barnett B, Kryczek I et al (2005) Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am J Reprod Immunol 54(6):369–377

    Article  PubMed  CAS  Google Scholar 

  • Battaglia A, Buzzonetti A et al (2008) Neuropilin-1 expression identifies a subset of regulatory T cells in human lymph nodes that is modulated by preoperative chemoradiation therapy in cervical cancer. Immunology 123(1):129–138

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner J, Wilson C et al (2007) Melanoma induces immunosuppression by up-regulating FOXP3(+) regulatory T cells. J Surg Res 141(1):72–77

    Article  PubMed  CAS  Google Scholar 

  • Beissert S, Loser K (2008) Molecular and cellular mechanisms of photocarcinogenesis. Photochem Photobiol 84(1):29–34

    PubMed  CAS  Google Scholar 

  • Bergmann C, Strauss L et al (2007) Expansion of human T regulatory type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Res 67(18):8865–8873

    Article  PubMed  CAS  Google Scholar 

  • Betts G, Twohig J et al (2007) The impact of regulatory T cells on carcinogen-induced sarcogenesis. Br J Cancer 96(12):1849–1854

    Article  PubMed  CAS  Google Scholar 

  • Bluestone JA, Abbas AK (2003) Natural versus adaptive regulatory T cells. Nat Rev Immunol 3(3):253–257

    Article  PubMed  CAS  Google Scholar 

  • Brode S, Cooke A (2008) Immune-potentiating effects of the chemotherapeutic drug cyclophosphamide. Crit Rev Immunol 28(2):109–126

    Article  PubMed  CAS  Google Scholar 

  • Calzascia T, Pellegrini M et al (2008) CD4 T cells, lymphopenia, and IL-7 in a multistep pathway to autoimmunity. Proc Natl Acad Sci USA 105(8):2999–3004

    Article  PubMed  CAS  Google Scholar 

  • Chaput N, Louafi S et al (2009) Identification of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer tissue. Gut 58(4):520–529

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Yan W et al (2008) A simple but effective cancer vaccine consisting of an antigen and a cationic lipid. Cancer Immunol Immunother 57(4):517–530

    Article  PubMed  CAS  Google Scholar 

  • Colombo MP, Piconese S (2007) Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat Rev Cancer 7(11):880–887

    Article  PubMed  CAS  Google Scholar 

  • Curiel TJ (2007a) Regulatory T-cell development: is Foxp3 the decider? Nat Med 13(3):250–253

    Article  PubMed  CAS  Google Scholar 

  • Curiel TJ (2007b) Tregs and rethinking cancer immunotherapy. J Clin Invest 117(5):1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Curiel TJ (2008) Regulatory T cells and treatment of cancer. Curr Opin Immunol 20(2):241–246

    Article  PubMed  CAS  Google Scholar 

  • Curiel TJ, Wei S et al (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9(5):562–567

    Article  PubMed  CAS  Google Scholar 

  • Curiel TJ, Coukos G et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949

    Article  PubMed  CAS  Google Scholar 

  • Daniel BJ, Liu A, Kious MJ et al (2009) Aged mice do not benefit from Treg depletion as melanoma treatment. Paper presented at the Aspen cancer conference, Aspen, CO, 19–22 July 2009

    Google Scholar 

  • Degl’Innocenti E, Grioni M et al (2008) Peripheral T-cell tolerance associated with prostate cancer is independent from CD4+CD25+ regulatory T cells. Cancer Res 68(1):292–300

    Article  PubMed  CAS  Google Scholar 

  • Egilmez NK, Kilinc MO et al (2007) Controlled-release particulate cytokine adjuvants for cancer therapy. Endocr Metab Immune Disord Drug Targets 7(4):266–270

    Article  PubMed  CAS  Google Scholar 

  • Fontenot JD, Gavin MA et al (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–336

    Article  PubMed  CAS  Google Scholar 

  • Fontenot JD, Rasmussen JP et al (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22(3):329–341

    Article  PubMed  CAS  Google Scholar 

  • Foss FM (2000) DAB(389)IL-2 (ONTAK): a novel fusion toxin therapy for lymphoma. Clin Lymphoma 1(2):110–116; discussion 117

    Google Scholar 

  • Francois V, Ottaviani S et al (2009) The CD4(+) T-cell response of melanoma patients to a MAGE-A3 peptide vaccine involves potential regulatory T cells. Cancer Res 69(10):4335–4345

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich DI, Chen HL et al (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells [published erratum appears in Nat Med 1996;2(11):1267]. Nat Med 2(10):1096–1103

    Article  PubMed  CAS  Google Scholar 

  • Galustian C, Meyer B et al (2009) The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother 58(7):1033–1045

    Article  PubMed  CAS  Google Scholar 

  • Generali D, Bates G et al (2009) Immunomodulation of FOXP3+ regulatory T cells by the aromatase inhibitor letrozole in breast cancer patients. Clin Cancer Res 15(3):1046–1051

    Article  PubMed  CAS  Google Scholar 

  • Ghiringhelli F, Puig PE et al (2005) Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 202(7):919–929

    Article  PubMed  CAS  Google Scholar 

  • Golgher D, Jones E et al (2002) Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur J Immunol 32(11):3267–3275

    Article  PubMed  CAS  Google Scholar 

  • Habicht A, Dada S et al (2007) A link between PDL1 and T regulatory cells in fetomaternal tolerance. J Immunol 179(8):5211–5219

    PubMed  CAS  Google Scholar 

  • Hallermann C, Niermann C et al (2007) Regulatory T-cell phenotype in association with large cell transformation of mycosis fungoides. Eur J Haematol 78(3):260–263

    Article  PubMed  Google Scholar 

  • Han S, Wang B et al (2008) Overcoming immune tolerance against multiple myeloma with lentiviral calnexin-engineered dendritic cells. Mol Ther 16(2):269–279

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Guo Q et al (2009) CD69+ CD4+ CD25- T cells, a new subset of regulatory T cells, suppress T cell proliferation through membrane-bound TGF-beta 1. J Immunol 182(1):111–120

    PubMed  CAS  Google Scholar 

  • Haxhinasto S, Mathis D et al (2008) The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med 205(3):565–574

    Article  PubMed  CAS  Google Scholar 

  • Hirschhorn-Cymerman D, Rizzuto GA et al (2009) OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. J Exp Med 206(5):1103–1116

    Article  PubMed  CAS  Google Scholar 

  • Hori S, Nomura T et al (2003) Control of regulatory T cell development by the transcription factor foxp3. Science 299(5609):1057–1061

    Article  PubMed  CAS  Google Scholar 

  • Horlock C, Stott B et al (2009) The effects of trastuzumab on the CD4+CD25+FoxP3+ and CD4+IL17A+ T-cell axis in patients with breast cancer. Br J Cancer 100(7):1061–1067

    Article  PubMed  CAS  Google Scholar 

  • Hus I, Schmitt M et al (2008) Vaccination of B-CLL patients with autologous dendritic cells can change the frequency of leukemia antigen-specific CD8+ T cells as well as CD4+CD25+FoxP3+ regulatory T cells toward an antileukemia response. Leukemia 22(5):1007–1017

    Article  PubMed  CAS  Google Scholar 

  • Javia LR, Rosenberg SA (2003) CD4+CD25+ suppressor lymphocytes in the circulation of patients immunized against melanoma antigens. J Immunother 26(1):85–93

    Article  PubMed  CAS  Google Scholar 

  • Jing W, Orentas RJ et al (2007) Induction of immunity to neuroblastoma early after syngeneic hematopoietic stem cell transplantation using a novel mouse tumor vaccine. Biol Blood Marrow Transplant 13(3):277–292

    Article  PubMed  CAS  Google Scholar 

  • Jordanova ES, Gorter A et al (2008) Human leukocyte antigen class I, MHC class I chain-related molecule A, and CD8+/regulatory T-cell ratio: which variable determines survival of cervical cancer patients? Clin Cancer Res 14(7):2028–2035

    Article  PubMed  CAS  Google Scholar 

  • Juszczynski P, Ouyang J et al (2007) The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci USA 104(32):13134–13139

    Article  PubMed  CAS  Google Scholar 

  • Kakinuma T, Nadiminti H et al (2007) Small numbers of residual tumor cells at the site of primary inoculation are critical for anti-tumor immunity following challenge at a secondary location. Cancer Immunol Immunother 56(7):1119–1131

    Article  PubMed  Google Scholar 

  • Kanamaru F, Youngnak P et al (2004) Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells. J Immunol 172(12):7306–7314

    PubMed  CAS  Google Scholar 

  • Kang SG, Lim HW et al (2007) Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J Immunol 179(6):3724–3733

    PubMed  CAS  Google Scholar 

  • Kaporis HG, Guttman-Yassky E et al (2007) Human basal cell carcinoma is associated with Foxp3+ T cells in a Th2 dominant microenvironment. J Invest Dermatol 127(10):2391–2398

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Yoshimura K et al (2007) Synergistic in vivo antitumor effect of the histone deacetylase inhibitor MS-275 in combination with interleukin 2 in a murine model of renal cell carcinoma. Clin Cancer Res 13(15 pt 1):4538–4546

    Article  PubMed  CAS  Google Scholar 

  • Kelley TW, Pohlman B et al (2007) The ratio of FOXP3+ regulatory T cells to granzyme B+ cytotoxic T/NK cells predicts prognosis in classical Hodgkin lymphoma and is independent of bcl-2 and MAL expression. Am J Clin Pathol 128(6):958–965

    Article  PubMed  Google Scholar 

  • Kiniwa Y, Miyahara Y et al (2007) CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin Cancer Res 13(23):6947–6958

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, Hiraoka N et al (2007) FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 13(3):902–911

    Article  PubMed  CAS  Google Scholar 

  • Krupnick AS, Gelman AE et al (2005) Murine vascular endothelium activates and induces the generation of allogeneic CD4+25+Foxp3+ regulatory T cells. J Immunol 175(10):6265–6270

    PubMed  CAS  Google Scholar 

  • Kryczek I, Zou L et al (2006) B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 203(4):871–881

    Article  PubMed  CAS  Google Scholar 

  • Kryczek I, Liu R et al (2009) FOXP3 defines regulatory T cells in human tumor and autoimmune disease. Cancer Res 69(9):3995–4000

    Article  PubMed  CAS  Google Scholar 

  • Kurooka M, Kaneda Y (2007) Inactivated Sendai virus particles eradicate tumors by inducing immune responses through blocking regulatory T cells. Cancer Res 67(1):227–236

    Article  PubMed  CAS  Google Scholar 

  • Ladoire S, Arnould L et al (2008) Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells. Clin Cancer Res 14(8):2413–2420

    Article  PubMed  CAS  Google Scholar 

  • Larmonier N, Janikashvili N et al (2008) Imatinib mesylate inhibits CD4+ CD25+ regulatory T cell activity and enhances active immunotherapy against BCR-ABL- tumors. J Immunol 181(10):6955–6963

    PubMed  CAS  Google Scholar 

  • Lau KM, Cheng SH et al (2007) Increase in circulating Foxp3+CD4+CD25(high) regulatory T cells in nasopharyngeal carcinoma patients. Br J Cancer 96(4):617–622

    Article  PubMed  CAS  Google Scholar 

  • Levings MK, Sangregorio R et al (2002) Human CD25+CD4+ T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells. J Exp Med 196(10):1335–1346

    Article  PubMed  CAS  Google Scholar 

  • Li B, Samanta A et al (2007a) FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA 104(11):4571–4576

    Article  PubMed  CAS  Google Scholar 

  • Li B, Saouaf SJ et al (2007b) Biochemistry and therapeutic implications of mechanisms involved in FOXP3 activity in immune suppression. Curr Opin Immunol 19(5):583–588

    Article  PubMed  CAS  Google Scholar 

  • Li X, Ye F et al (2007c) Human ovarian carcinoma cells generate CD4(+)CD25(+) regulatory T cells from peripheral CD4(+)CD25(−) T cells through secreting TGF-beta. Cancer Lett 253(1):144–153

    Article  PubMed  CAS  Google Scholar 

  • Lin PY, Sun L, Thibodeaux SR, et al. B7-H1-dependent sex-related differences in tumor immunity and immunotherapy responses. J Immunol 185: 2747–53.

    Google Scholar 

  • Ling KL, Pratap SE et al (2007) Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients. Cancer Immun 7:7

    PubMed  Google Scholar 

  • Litzinger MT, Fernando R et al (2007) IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood 110(9):3192–3201

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Putnam AL et al (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203(7):1701–1711

    Article  PubMed  CAS  Google Scholar 

  • Liu JY, Wu Y et al (2007a) Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine. Cancer Immunol Immunother 56(10):1597–1604

    Article  PubMed  CAS  Google Scholar 

  • Liu VC, Wong LY et al (2007b) Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta. J Immunol 178(5):2883–2892

    PubMed  CAS  Google Scholar 

  • Liyanage UK, Moore TT et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169(5):2756–2761

    PubMed  CAS  Google Scholar 

  • Lonnroth C, Andersson M et al (2008) Preoperative treatment with a non-steroidal anti-inflammatory drug (NSAID) increases tumor tissue infiltration of seemingly activated immune cells in colorectal cancer. Cancer Immun 8:5

    PubMed  Google Scholar 

  • Loskog A, Ninalga C et al (2007) Human bladder carcinoma is dominated by T-regulatory cells and Th1 inhibitory cytokines. J Urol 177(1):353–358

    Article  PubMed  Google Scholar 

  • Malek TR, Porter BO et al (2000) Normal lymphoid homeostasis and lack of lethal autoimmunity in mice containing mature T cells with severely impaired IL-2 receptors. J Immunol 164(6):2905–2914

    PubMed  CAS  Google Scholar 

  • Malek TR, Yu A et al (2002) CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17(2):167–178

    Article  PubMed  CAS  Google Scholar 

  • Mandapathil M, Lang S et al (2009) Isolation of functional human regulatory T cells (Treg) from the peripheral blood based on the CD39 expression. J Immunol Methods 346(1–2):55–63

    Article  PubMed  CAS  Google Scholar 

  • Mantel PY, Kuipers H et al (2007) GATA3-driven Th2 responses inhibit TGF-beta1-induced FOXP3 expression and the formation of regulatory T cells. PLoS Biol 5(12):e329

    Article  PubMed  CAS  Google Scholar 

  • McHugh RS, Shevach EM (2002) Cutting edge: depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J Immunol 168(12):5979–5983

    PubMed  CAS  Google Scholar 

  • Miracco C, Mourmouras V et al (2007) Utility of tumour-infiltrating CD25+FOXP3+ regulatory T cell evaluation in predicting local recurrence in vertical growth phase cutaneous melanoma. Oncol Rep 18(5):1115–1122

    PubMed  Google Scholar 

  • Mittal S, Marshall NA et al (2008) Local and systemic induction of CD4+CD25+ regulatory T cell population by non-Hodgkin’s lymphoma. Blood 111(11):5359–5370

    Article  PubMed  CAS  Google Scholar 

  • Mizukami Y, Kono K et al (2008a) CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer 122(10):2286–2293

    Article  PubMed  CAS  Google Scholar 

  • Mizukami Y, Kono K et al (2008b) Localisation pattern of Foxp3(+) regulatory T cells is associated with clinical behaviour in gastric cancer. Br J Cancer 98(1):148–153

    Article  PubMed  CAS  Google Scholar 

  • Molavi O, Ma Z et al (2008) Synergistic antitumor effects of CpG oligodeoxynucleotide and STAT3 inhibitory agent JSI-124 in a mouse melanoma tumor model. Immunol Cell Biol 86(6):506–514

    Article  PubMed  CAS  Google Scholar 

  • Molenkamp BG, van Leeuwen PA et al (2007) Intradermal CpG-B activates both plasmacytoid and myeloid dendritic cells in the sentinel lymph node of melanoma patients. Clin Cancer Res 13(10):2961–2969

    Article  PubMed  CAS  Google Scholar 

  • Molling JW, de Gruijl TD et al (2007) CD4(+)CD25hi regulatory T-cell frequency correlates with persistence of human papillomavirus type 16 and T helper cell responses in patients with cervical intraepithelial neoplasia. Int J Cancer 121(8):1749–1755

    Article  PubMed  CAS  Google Scholar 

  • Mourmouras V, Fimiani M et al (2007) Evaluation of tumour-infiltrating CD4+CD25+FOXP3+ regulatory T cells in human cutaneous benign and atypical naevi, melanomas and melanoma metastases. Br J Dermatol 157(3):531–539

    Article  PubMed  CAS  Google Scholar 

  • Nagorsen D, Voigt S et al (2007) Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival. J Transl Med 5:62

    Article  PubMed  CAS  Google Scholar 

  • Nair S, Boczkowski D et al (2007) Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res 67(1):371–380

    Article  PubMed  CAS  Google Scholar 

  • Nitcheu-Tefit J, Dai MS et al (2007) Listeriolysin O expressed in a bacterial vaccine suppresses CD4+CD25high regulatory T cell function in vivo. J Immunol 179(3):1532–1541

    PubMed  CAS  Google Scholar 

  • O’Mahony D, Morris JC et al (2007) A pilot study of CTLA-4 blockade after cancer vaccine failure in patients with advanced malignancy. Clin Cancer Res 13(3):958–964

    Article  PubMed  Google Scholar 

  • Obeid M, Tesniere A et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13(1):54–61

    Article  PubMed  CAS  Google Scholar 

  • Ono M, Yaguchi H et al (2007) Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446(7136):685–689

    Article  PubMed  CAS  Google Scholar 

  • Ostroukhova M, Qi Z et al (2006) Treg-mediated immunosuppression involves activation of the Notch-HES1 axis by membrane-bound TGF-beta. J Clin Invest 116(4):996–1004

    Article  PubMed  CAS  Google Scholar 

  • Pallandre JR, Brillard E et al (2007) Role of STAT3 in CD4+CD25+FOXP3+ regulatory lymphocyte generation: implications in graft-versus-host disease and antitumor immunity. J Immunol 179(11):7593–7604

    PubMed  CAS  Google Scholar 

  • Palucka AK, Ueno H et al (2007) Taming cancer by inducing immunity via dendritic cells. Immunol Rev 220:129–150

    Article  PubMed  CAS  Google Scholar 

  • Park JM, Terabe M et al (2005) Unmasking immunosurveillance against a syngeneic colon cancer by elimination of CD4+ NKT regulatory cells and IL-13. Int J Cancer 114(1):80–87

    Article  PubMed  CAS  Google Scholar 

  • Perrone G, Ruffini PA et al (2008) Intratumoural FOXP3-positive regulatory T cells are associated with adverse prognosis in radically resected gastric cancer. Eur J Cancer 44(13):1875–1882

    Article  PubMed  CAS  Google Scholar 

  • Phan GQ, Yang JC et al (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100(14):8372–8377

    Article  PubMed  CAS  Google Scholar 

  • Piconese S, Valzasina B et al (2008) OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 205(4):825–839

    Article  PubMed  CAS  Google Scholar 

  • Pillai V, Karandikar NJ (2007) Human regulatory T cells: a unique, stable thymic subset or a reversible peripheral state of differentiation? Immunol Lett 114(1):9–15

    Article  PubMed  CAS  Google Scholar 

  • Poutahidis T, Haigis KM et al (2007) Rapid reversal of interleukin-6-dependent epithelial invasion in a mouse model of microbially induced colon carcinoma. Carcinogenesis 28(12):2614–2623

    Article  PubMed  CAS  Google Scholar 

  • Powell DJ Jr, de Vries CR et al (2007a) Inability to mediate prolonged reduction of regulatory T Cells after transfer of autologous CD25-depleted PBMC and interleukin-2 after lymphodepleting chemotherapy. J Immunother 30(4):438–447

    Article  PubMed  CAS  Google Scholar 

  • Powell DJ Jr, Felipe-Silva A et al (2007b) Administration of a CD25-directed immunotoxin, LMB-2, to patients with metastatic melanoma induces a selective partial reduction in regulatory T cells in vivo. J Immunol 179(7):4919–4928

    PubMed  CAS  Google Scholar 

  • Quezada SA, Peggs KS et al (2008) Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J Exp Med 205(9):2125–2138

    Article  PubMed  CAS  Google Scholar 

  • Quintana FJ, Basso AS et al (2008) Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453(7191):65–71

    Article  PubMed  CAS  Google Scholar 

  • Radhakrishnan S, Cabrera R et al (2008) Reprogrammed FoxP3+ T regulatory cells become IL-17+ antigen-specific autoimmune effectors in vitro and in vivo. J Immunol 181(5):3137–3147

    PubMed  CAS  Google Scholar 

  • Rüter J, Barnett BG et al (2009) Altering regulatory T cell function in cancer immunotherapy: a novel means to boost efficacy. Front Biosci 14:1761–1770

    Article  PubMed  Google Scholar 

  • Sakaguchi S, Sakaguchi N et al (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151–1164

    PubMed  CAS  Google Scholar 

  • Sasada T, Kimura M et al (2003) CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 98(5):1089–1099

    Article  PubMed  Google Scholar 

  • Sasaki A, Tanaka F et al (2008) Prognostic value of tumor-infiltrating FOXP3+ regulatory T cells in patients with hepatocellular carcinoma. Eur J Surg Oncol 34(2):173–179

    Article  PubMed  CAS  Google Scholar 

  • Scarpino S, Di Napoli A et al (2007) Expression of autoimmune regulator gene (AIRE) and T regulatory cells in human thymomas. Clin Exp Immunol 149(3):504–512

    Article  PubMed  CAS  Google Scholar 

  • Schreiber TH (2007) The use of FoxP3 as a biomarker and prognostic factor for malignant human tumors. Cancer Epidemiol Biomarkers Prev 16(10):1931–1934

    Article  PubMed  CAS  Google Scholar 

  • Sharma MD, Baban B et al (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 117(9):2570–2582

    Article  PubMed  CAS  Google Scholar 

  • Sharma MD, Hou DY et al (2009) Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113(24):6102–6111

    Article  PubMed  CAS  Google Scholar 

  • Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2(6):389–400

    PubMed  CAS  Google Scholar 

  • Shimizu J, Yamazaki S et al (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163(10):5211–5218

    PubMed  CAS  Google Scholar 

  • Shimizu J, Yamazaki S et al (2002) Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3(2):135–142

    Article  PubMed  CAS  Google Scholar 

  • Shimizu Y, Dobashi K et al (2009) CXCR4+FOXP3+CD25+ lymphocytes accumulate in CXCL12-expressing malignant pleural mesothelioma. Int J Immunopathol Pharmacol 22(1):43–51

    PubMed  CAS  Google Scholar 

  • Siddiqui SA, Frigola X et al (2007) Tumor-infiltrating Foxp3-CD4+CD25+ T cells predict poor survival in renal cell carcinoma. Clin Cancer Res 13(7):2075–2081

    Article  PubMed  CAS  Google Scholar 

  • Somasundaram R, Jacob L et al (2002) Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+/CD25+ regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-beta. Cancer Res 62(18):5267–5272

    PubMed  CAS  Google Scholar 

  • Song XT, Kabler KE et al (2008) A20 is an antigen presentation attenuator, and its inhibition overcomes regulatory T cell-mediated suppression. Nat Med 14(3):258–265

    Article  PubMed  CAS  Google Scholar 

  • Sosman JA, Carrillo C et al (2008) Three phase II cytokine working group trials of gp100 (210 M) peptide plus high-dose interleukin-2 in patients with HLA-A2-positive advanced melanoma. J Clin Oncol 26(14):2292–2298

    Article  PubMed  CAS  Google Scholar 

  • Steitz J, Bruck J et al (2001) Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced, CD8(+) T-cell-dependent immune defense of B16 melanoma. Cancer Res 61(24):8643–8646

    PubMed  CAS  Google Scholar 

  • Strauss L, Bergmann C et al (2007) The frequency and suppressor function of CD4+CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13(21):6301–6311

    Article  PubMed  CAS  Google Scholar 

  • Strauss L, Bergmann C et al (2009) Human circulating CD4+CD25highFoxp3+ regulatory T cells kill autologous CD8+ but not CD4+ responder cells by Fas-mediated apoptosis. J Immunol 182(3):1469–1480

    PubMed  CAS  Google Scholar 

  • Sugihara AQ, Rolle CE et al (2009) Regulatory T cells actively infiltrate metastatic brain tumors. Int J Oncol 34(6):1533–1540

    PubMed  Google Scholar 

  • Sutmuller RP, van Duivenvoorde LM et al (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 194(6):823–832

    Article  PubMed  CAS  Google Scholar 

  • Szczepanski MJ, Szajnik M et al (2009) Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res 15(10):3325–3332

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Tanaka J et al (2002) Depletion of CD4+ CD25+ regulatory cells augments the generation of specific immune T cells in tumor-draining lymph nodes. J Immunother 25(3):207–217

    Article  PubMed  CAS  Google Scholar 

  • Tao R, de Zoeten EF et al (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13(11):1299–1307

    Article  PubMed  CAS  Google Scholar 

  • Terabe M, Matsui S et al (2000) NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol 1(6):515–520

    Article  PubMed  CAS  Google Scholar 

  • Turk MJ, Guevara-Patino JA et al (2004) Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med 200(6):771–782

    Article  PubMed  CAS  Google Scholar 

  • Tzankov A, Meier C et al (2008) Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin’s lymphoma. Haematologica 93(2):193–200

    Article  PubMed  CAS  Google Scholar 

  • van der Burg SH, Piersma SJ et al (2007) Association of cervical cancer with the presence of CD4+ regulatory T cells specific for human papillomavirus antigens. Proc Natl Acad Sci USA 104(29):12087–12092

    Article  PubMed  CAS  Google Scholar 

  • van der Most RG, Currie AJ et al (2009) Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy. Cancer Immunol Immunother 58(8):1219–1228

    Article  PubMed  CAS  Google Scholar 

  • van der Vliet HJ, Koon HB et al (2007) Effects of the administration of high-dose interleukin-2 on immunoregulatory cell subsets in patients with advanced melanoma and renal cell cancer. Clin Cancer Res 13(7):2100–2108

    Article  PubMed  Google Scholar 

  • Vence L, Palucka AK et al (2007) Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma. Proc Natl Acad Sci USA 104(52):20884–20889

    Article  PubMed  CAS  Google Scholar 

  • Visser J, Nijman HW et al (2007) Frequencies and role of regulatory T cells in patients with (pre)malignant cervical neoplasia. Clin Exp Immunol 150(2):199–209

    Article  PubMed  CAS  Google Scholar 

  • Wada J, Yamasaki A et al (2008) Regulatory T-cells are possible effect prediction markers of immunotherapy for cancer patients. Anticancer Res 28(4C):2401–2408

    PubMed  CAS  Google Scholar 

  • Wall S, Thibodeaux S, Daniel B et al (2009) International Society for Interferon and Cytokine Research, Lisbon, Portugal, 17–21 Oct 2009

    Google Scholar 

  • Wang HY, Lee DA et al (2004) Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity 20(1):107–118

    Article  PubMed  CAS  Google Scholar 

  • Wei S, Kryczek I et al (2005) Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res 65(12):5020–5026

    Article  PubMed  CAS  Google Scholar 

  • Wei S, Kryczek I et al (2007) Interleukin-2 administration alters the CD4+FOXP3+ T-cell pool and tumor trafficking in patients with ovarian carcinoma. Cancer Res 67(15):7487–7494

    Article  PubMed  CAS  Google Scholar 

  • Wieczorek G, Asemissen A et al (2009) Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res 69(2):599–608

    Article  PubMed  CAS  Google Scholar 

  • Wolf AM, Wolf D et al (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9(2):606–612

    PubMed  Google Scholar 

  • Woo EY, Chu CS et al (2001) Regulatory CD4(+)CD25(+) T cells in tumors from patients with early- stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61(12):4766–4772

    PubMed  CAS  Google Scholar 

  • Woo EY, Yeh H et al (2002) Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 168(9):4272–4276

    PubMed  CAS  Google Scholar 

  • Xie Q, Gan L et al (2007) Loss of the innate immunity negative regulator IRAK-M leads to enhanced host immune defense against tumor growth. Mol Immunol 44(14):3453–3461

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Hirota K et al (2007) Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity 27(1):145–159

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Huang CT et al (2004) Persistent toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol 5(5):508–515

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Yang S et al (2007a) Tumor cells expressing anti-CD137 scFv induce a tumor-destructive environment. Cancer Res 67(5):2339–2344

    Article  PubMed  CAS  Google Scholar 

  • Yang ZZ, Novak AJ et al (2007b) CD70+ non-Hodgkin lymphoma B cells induce Foxp3 expression and regulatory function in intratumoral CD4+CD25 T cells. Blood 110(7):2537–2544

    Article  PubMed  CAS  Google Scholar 

  • Yano H, Ishida T et al (2007) Regulatory T-cell function of adult T-cell leukemia/lymphoma cells. Int J Cancer 120(9):2052–2057

    Article  PubMed  CAS  Google Scholar 

  • Yaqub S, Henjum K et al (2008) Regulatory T cells in colorectal cancer patients suppress anti-tumor immune activity in a COX-2 dependent manner. Cancer Immunol Immunother 57(6):813–821

    Article  PubMed  CAS  Google Scholar 

  • Yokokawa J, Cereda V et al (2008) Enhanced functionality of CD4+CD25highFoxP3+ regulatory T cells in the peripheral blood of patients with prostate cancer. Clin Cancer Res 14(4):1032–1040

    Article  PubMed  CAS  Google Scholar 

  • Zabala M, Lasarte JJ et al (2007) Induction of immunosuppressive molecules and regulatory T cells counteracts the antitumor effect of interleukin-12-based gene therapy in a transgenic mouse model of liver cancer. J Hepatol 47(6):807–815

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Lou J et al (2007) Donor CD8+ T cells mediate graft-versus-leukemia activity without clinical signs of graft-versus-host disease in recipients conditioned with anti-CD3 monoclonal antibody. J Immunol 178(2):838–850

    PubMed  CAS  Google Scholar 

  • Zhou G, Levitsky HI (2007) Natural regulatory T cells and de novo-induced regulatory T cells contribute independently to tumor-specific tolerance. J Immunol 178(4):2155–2162

    PubMed  CAS  Google Scholar 

  • Zhou G, Drake CG et al (2006) Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood 107(2):628–636

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Bailey-Bucktrout SL et al (2009) Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10(9):1000–1007

    Article  PubMed  CAS  Google Scholar 

  • Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5(4):263–274

    Article  PubMed  CAS  Google Scholar 

  • Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6(4):295–307

    Article  PubMed  CAS  Google Scholar 

  • Zuo T, Wang L et al (2007) FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell 129(7):1275–1286

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I regret not citing many important works from my colleagues due to space limitations. Thanks to Ai-Jie Liu and Sara Ludwig for expert technical assistance. This work was supported by CA105207, FD003118, the Fanny Rippel Foundation, the Voelcker Trust, the Hayes Endowment and UTHSCSA endowments. The Holly Beach Public Library Association, CA54174, Texas STARS, The Hogg Foundation and the Owens Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyler J. Curiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Curiel, T.J. (2012). Regulatory T Cells in Cancer. In: Wang, R. (eds) Innate Immune Regulation and Cancer Immunotherapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9914-6_9

Download citation

Publish with us

Policies and ethics