Skip to main content
  • 1837 Accesses

Abstract

DC resistance measurements of precision and parasitic resistors form an important part of CMOS technology characterization. Sheet resistances are measured to monitor and control material properties such as film thickness and doping levels in silicon layers. Resistance measurements are utilized in monitoring product yield loss caused by electrical opens in metal wires and inter-level vias, or shorts between neighboring wires. In metrology and for process tuning applications, linewidths are extracted from resistance measurements. For CMOS circuit simulations, electrical models of resistors are constructed based on data collected from test structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schroder DK (2006) Semiconductor material and device characterization, 3rd edn. Wiley, Hoboken, NJ

    Google Scholar 

  2. Lindley D (2004) Degrees Kelvin. Joseph Henry, Washington, DC

    Google Scholar 

  3. Pauw van der LJ (1958) A method of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Res Rep 13:1–9

    Google Scholar 

  4. Versnel W (1979) Analysis of the Greek cross, a Van der Pauw structure with finite contacts. Solid State Electron 22:911–914

    Article  Google Scholar 

  5. Application Note 4156-11 Precision measurement of metal line width in sub-quarter micron interconnect systems. Agilent Technologies. Available via http://www.home.agilent.com/agilent/facet.jspx?t=80030.k.1&cc=US&lc=eng&sm=g&pageMode=TM. Accessed 3 Feb 2011

  6. Stapper CH, Rosner RJ (1995) Integrated circuit yield management and yield analysis: development and implementation. IEEE Trans Semicond Manuf 8:95–102

    Article  Google Scholar 

  7. Kuo W, Kim T (1999) An overview of manufacturing yield and reliability modeling for semiconductor products. Proc IEEE 87:1329–1344

    Article  Google Scholar 

  8. Verzi B (2009) Considerations for parallel and array test patterns. In: International conference on microelectronic test structures, Oxnard, 30 Mar 2009

    Google Scholar 

  9. Walton AJ, Gammie W, Fallon M, Stevenson JTM, Holwill RJ (1991) An interconnect scheme for reducing the number of contact pads on process control chips. IEEE Trans Semiconduct Manuf 4:233–240

    Article  Google Scholar 

  10. Ward D, Walton AJ, Gammie WG, Holwill RJ (1992) The use of a digital multiplexer to reduce process control chip pad count. Proceedings of the 1992 IEEE International conference on microelectronic test structures, 1992, pp. 129–133

    Google Scholar 

  11. Ketchen MB, Bhushan M, Costrini G (2009) Addressable arrays implemented with one metal level for MOSFET and resistor variability characterization. Proceedings of the 2009 IEEE International conference on microelectronic test structures, 2009, pp. 13–18

    Google Scholar 

  12. Hess C, Inani A, Lin Y, Squicciarini M, Lindley R, Akiya N (2006) Scribe characterization vehicle test chip for ultra fast product wafer yield monitoring. Proceedings of the 2006 IEEE international conference on microelectronic test structures, 2006, pp. 110–115

    Google Scholar 

  13. Hess C, Squicciarini M, Yu S, Burrows J, Cheng J, Lindley R et al (2008) High density test structure array for accurate detection and localization of soft fails. Proceedings of the 2008 IEEE International conference on microelectronic test structures, 2008, pp. 131–136

    Google Scholar 

  14. Karthikeyan M, Fox S, Cote W, Yeric G, Hall M, Garcia J et al (2006) A 65 nm random and systematic yield ramp infrastructure utilizing a specialized addressable array with integrated analysis software. Proceedings of the 2006 IEEE international conference on microelectronic test structures, 2006, pp. 104–109

    Google Scholar 

  15. Cabrini A, Cantarelli D, Cappelletti P, Casiraghi R, Maurelli A, Pasotti M et al (2006) A test structure for contact and via failure analysis in deep-submicrometer CMOS technologies. IEEE Trans Semicond Manuf 19:57–66

    Article  Google Scholar 

  16. Tian W, Steinmann P, Beach E, Khan I, Madhani P (2008) Mismatch characterization of a high precision resistor array test structure. Proceedings of the 2008 IEEE international conference on microelectronic test structures, 2008, pp. 11–16

    Google Scholar 

  17. Doong KY-Y, Hsieh S, Lin S-C, Shen B, Cheng J-Y, Kwai D-M et al (2001) Addressable failure site test structures (AFS-TS) for CMOS processes: design guidelines, fault simulation, and implementation. IEEE Trans Semicond Manuf 14:338–355

    Article  Google Scholar 

  18. Doong KYY, Bordelon J, Chang K-J, Hung LJ, Liao CC, Lin SC et al (2006) Field-configurable test structure array (FC-TSA): enabling design for monitor, model and manufacturability. Proceedings of the 2006 IEEE international conference on microelectronic test structures, 2006, pp. 98–103

    Google Scholar 

  19. Enderling S, Brown CLIII, Smith S, Dicks MH, Stevenson JTM, Mitkova M et al (2006) Sheet resistance measurement of non-standard cleanroom materials using suspended Greek cross test structures. IEEE Trans Semicond Manuf 19:2–9

    Article  Google Scholar 

  20. Shulver BJR, Bunting AS, Gundlach AM, Haworth LI, Ross AWS, Smith S et al (2008) Extraction of sheet resistance and line width from all-copper ECD test structures fabricated from silicon preforms. IEEE Trans Semicond Manuf 21:495–503

    Article  Google Scholar 

  21. Smith S, Tsiamis A, McCallum M, Hourd AC, Stevenson JTM, Walton AJ et al (2009) Comparison of measurement techniques for linewidth metrology on advanced photomasks. IEEE Trans Semicond Manuf 22:72–79

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjul Bhushan .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bhushan, M., Ketchen, M.B. (2011). Resistors. In: Microelectronic Test Structures for CMOS Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9377-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9377-9_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9376-2

  • Online ISBN: 978-1-4419-9377-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics