Skip to main content

Special Population Studies In Clinical Development: Pharmacokinetic Considerations

  • Chapter
Applications of Pharmacokinetic Principles in Drug Development
  • 522 Accesses

Abstract

Although the primary thrust of research during clinical development of a new molecular entity is to identify a dosing algorithm for the general patient population, the actual patient population in which the drug will be prescribed after marketing approval is far from homogeneous. The fields of pharmacology, pathology, and pharmacogenetics have made it increasingly clear that within the general patient population there exist sub-populations in which drug disposition as well as drug-receptor expression and activity differ from the population average. Depending on the magnitude of these differences and the width of the therapeutic window between effective and toxic blood concentrations, specific subpopulations might require a dose regimen which diverges from the population average regimen. Unmasking and exploring these special populations during clinical development is one of the focuses of clinical pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levy G. Patient-oriented pharmaceutical research: focus on the individual. Pharm Res. 1995;12:943–944.

    PubMed  CAS  Google Scholar 

  2. Spyker DA, Harvey ED, Harvey BE, Harvey AM, Rumack BH, Peck CC, et al. Assessment and reporting of clinical pharmacology information in drug labeling. Clin Pharmacol Ther. 2000;67:196–200.

    PubMed  CAS  Google Scholar 

  3. Food and Drug Administration. Guideline for the study and evaluation of gender differences in the clinical evaluation of drugs. Fed Register. 1993;58:39406–39416.

    Google Scholar 

  4. European Commission, Enterprise Directorate-General. Notice to applicants: a guideline on summary of product characteristics. 1999.

    Google Scholar 

  5. General requirements on content and format of labeling for human prescription drugs (revised 1 April 2001). US Code Fed Regul. 21:201.56.

    Google Scholar 

  6. Shirkey H. Editorial comment: therapeutic orphans. J Pediatrics. 1968;72:119–120.

    CAS  Google Scholar 

  7. Food and Drug Administration. Pediatric exclusivity provision: status report to Congress. 2001.http://www.fda.gov/cder/pediatric/reportcong01.pdf

    Google Scholar 

  8. Kearns GL. Introduction: drug development for infants and children: rescuing the therapeutic orphan. Drug Inform J. 1996;30:1121–1123.

    Google Scholar 

  9. Wilson JT. An update on the therapeutic orphan. Pediatrics. 1999;104:585–590.

    PubMed  CAS  Google Scholar 

  10. Roberts R, Maldonado S. FDA center for drug evaluation and research (CDER) pediatric plan and new regulations. Drug Inform J. 1996;30:1125–1127.

    Google Scholar 

  11. Milne CP. Pediatric research: coming of age in the new millennium. Am J Ther. 1999;6:263–282.

    PubMed  CAS  Google Scholar 

  12. Food and Drug Administration. Specific requirements on content and format of labeling for human prescription drugs; revision of “pediatric use” subsection in the labeling: final rule. Fed Register. 1994;59:64240–64250.

    Google Scholar 

  13. Food and Drug Administration. Pediatric patients: regulations requiring manufacturers to assess the safety and effectiveness of new drugs and biological products: proposed rule. Fed Register. 1997;62:43899–43916.

    Google Scholar 

  14. Food and Drug Administration. Regulations requiring manufacturers to assess the safety and effectiveness of new drugs and biological products in pediatric patients: final rule. Fed Register. 1998;63:66632–66671.

    Google Scholar 

  15. European Commission, Enterprise Directorate-General. Better medicines for children: proposed regulatory actions on paediatric medicinal products, consultation document. 2002.

    Google Scholar 

  16. Food and Drug Administration. General considerations for the clinical evaluation of drugs in infants and children. 1977.

    Google Scholar 

  17. American Academy of Pediatrics Committee on Drugs. Guidelines for the ethical conduct of studies to evaluate drugs in pediatric patients. Pediatrics. 1995;95(2):286–294.

    Google Scholar 

  18. Food and Drug Administration. Guidance for industry: the content and format for pediatric use supplements. 1996.

    Google Scholar 

  19. Food and Drug Administration. Draft guidance for industry: general considerations for pediatric pharmacokinetic studies for drugs and biological products. 1998.

    Google Scholar 

  20. Food and Drug Administration. Qualifying for pediatric exclusivity under section 505A of the Federal Food, Drug, and Cosmetic Act. 1999.

    Google Scholar 

  21. International Conference on Harmonization. Guidance for industry El 1: clinical investigations of medicinal products in pediatric populations. 2000.

    Google Scholar 

  22. Cohen SN. Pediatric pharmacology research unit (PPRU) network and its role in meeting pediatric labeling needs. Pediatrics. 1999;104:644–645.

    PubMed  CAS  Google Scholar 

  23. Kearns GL, Reed MD. Clinical pharmacokinetics in infants and children. Clin Pharmacokinet. 1989;17(Suppl 1):29–67.

    PubMed  Google Scholar 

  24. Kearns GL. Impact of developmental pharmacology on pediatric study design: overcoming the challenges. J Allergy Clin Immunol. 2000;106:S128–S138.

    PubMed  CAS  Google Scholar 

  25. Reed MD. Ontogeny of drug disposition: focus on drug absorption, distribution, and excretion. Drug Inform J. 1996;30:1129–1134.

    Google Scholar 

  26. Morselli PL. Clinical pharmacology of the perinatal period and early infancy. Clin Pharmacokinet. 1989;17(Suppl 1):13–28.

    PubMed  Google Scholar 

  27. Zenk KE. Challenges in providing pharmaceutical care to pediatric patients. Am J Hosp Pharm. 1994;51:688–694.

    PubMed  CAS  Google Scholar 

  28. Leeder JS, Keams GL. Pharmacogenetics in pediatrics: implications for practice. Ped Clin North Am. 1997;44:55–77.

    CAS  Google Scholar 

  29. Rane A. Phenotyping of drug metabolism in infants and children: potentials and problems. Pediatrics. 1999;104:640–643.

    PubMed  CAS  Google Scholar 

  30. Ptachcinski RJ, Burckart GJ, Rosenthal JT. Cyclosporine pharmacokinetics in children following cadaveric renal transplantation. Transplant Proc. 1986;18:766.

    Google Scholar 

  31. Dunn S, Cooney G, Sommeraurer J, Lindsay C, McDiarmid S, Wong RL, et al. Pharmacokinetics of an oral solution of the microemulsion formulation of cyclosporine in maintenance pediatric liver transplant recipients. Transplantation. 1997;63:1762–1767.

    PubMed  CAS  Google Scholar 

  32. Kovarik JM, Mueller EA, Niese D. Clinical development of a cyclosporine microemulsion in transplantation. Ther Drug Monit. 1996;18:429–434.

    PubMed  CAS  Google Scholar 

  33. McRorie T. Quality drug therapy in children: formulations and delivery. Drug Inform J. 1996;30:1173–1177.

    Google Scholar 

  34. Nahata MC. Lack of pediatric drug formulations. Pediatrics. 1999;104:607–609.

    PubMed  CAS  Google Scholar 

  35. American Academy of Pediatrics Committee on Drugs. “Inactive” ingredients in pharmaceutical products: update. Pediatrics. 1997;99:268–278.

    Google Scholar 

  36. Autret E. European regulatory authorities and pediatric labeling. Pediatrics. 1999;104:614–618.

    PubMed  CAS  Google Scholar 

  37. Reed MD. Optimal sampling theory: an overview of its application to pharmacokinetic studies in infants and children. Pediatrics. 1999;104:627–632.

    PubMed  CAS  Google Scholar 

  38. Collart L, Blaschke TF, Boucher F, Prober CG. Potential of population pharmacokinetics to reduce the frequency of blood sampling required for estimating kinetic parameters in neonates. Devel Pharmacol Ther. 1992;18:71–80.

    CAS  Google Scholar 

  39. Kauffman RE, Keams GL. Pharmacokinetic studies in paediatric patients: clinical and ethical considerations. Clin Pharmacokinet. 1992;23:10–29.

    PubMed  CAS  Google Scholar 

  40. Kovarik JM, Kahan BD, Rajagopalan PR, Bennett W, Mulloy LL, Gerbeau C, et al. Population pharmacokinetics and exposure-response relationships for basiliximab in kidney transplantation. Transplantation. 1999;68:1288–1294.

    PubMed  CAS  Google Scholar 

  41. Offner G, Broyer M, Niaudet P, Loirat C, Mentser M, Lemire J, et al. A multicenter, open-label, pharmacokinetic/pharmacodynamic safety and tolerability study of basiliximab (Simulect) in pediatric de novo renal transplant recipients. Transplantation. (in press).

    Google Scholar 

  42. Kovarik JM, Offner G, Broyer M, Niaudet P, Loirat C, Mentser M, et al. A rational dosing algorithm for basiliximab (Simulect) in pediatric renal transplantation based on pharmacokinetic-dynamic evaluations. Transplantation. (in press).

    Google Scholar 

  43. Simulect (basiliximab). In: Physicians’ desk reference. 55th ed. Montvale, NJ: Medical Economics Company; 2001. p. 2218–2220.

    Google Scholar 

  44. Food and Drug Administration. Guidance for industry: population pharmacokinetics. 1999.

    Google Scholar 

  45. Pamis SJ, Foate JA, van der Walt JH, Short T, Crowe CE. Oral midazolam is an effective premedication for children having day-stay anaesthesia. Anaesth Intensive Care. 1992;20:9–14.

    Google Scholar 

  46. Reed MJ, Rodarte A, Blumer JL, Khoo KC, Akbari B, Pou S, et al. Single-dose pharmacokinetics of midazolam and its primary metabolite in pediatric patients after oral and intravenous administration. J Clin Pharmacol. 2001;41:1359–1369.

    PubMed  CAS  Google Scholar 

  47. Marshall J, Rodarte A, Blumer JL, Khoo KC, Akbari B, Kearns GL and the Pediatric Pharmacology Research Unit Network. Pediatric pharmacodynamics of midazolam. J Clin Pharmacol. 2000;40:578–589.

    CAS  Google Scholar 

  48. Versed (midazolam hydrochloride). In: Physicians’ desk reference. 55th ed. Montvale, NJ: Medical Economics Company; 2001. p. 2800–2804.

    Google Scholar 

  49. Kinirons MT, Crome P. Clinical pharmacokinetic considerations in the elderly: an update. Clin Pharmacokinet. 1997;33:302–312.

    PubMed  CAS  Google Scholar 

  50. Anonymous. Geriatric study incentives modeled on pediatric patent extensions suggested. The Pink Sheet. 1998;60:11.

    Google Scholar 

  51. Crome P, Flanagan RJ. Pharmacokinetic studies in elderly people: are they necessary? Clin Pharmacokinet. 1994;26:243–247.

    PubMed  CAS  Google Scholar 

  52. Ozdemir V, Fourie J, Busto U, Naranjo CA. Pharmacokinetic changes in the elderly: do they contribute to drug abuse and dependence? Clin Pharmacokinet. 1996;31:372–385.

    PubMed  CAS  Google Scholar 

  53. Tregaskis BF, Stevenson IH. Pharmacokinetics in old age. British Med Bull. 1990;46:9–21.

    CAS  Google Scholar 

  54. Maletta G, Mattox KA, Dysken M. Guidelines for prescribing psychoactive drugs in the elderly: part 1. Geriatrics. 1991;46:40–47.

    PubMed  CAS  Google Scholar 

  55. International Conference on Harmonization. Note for guidance on studies in support of special population: geriatrics. 1994.

    Google Scholar 

  56. Food and Drug Administration. Guidance for industry: in vivo drug metabolism/drug interaction studies-study design, data analysis, and recommendations for dosing and labeling. 1999.

    Google Scholar 

  57. Exelon (rivastigmine tartrate). In: Physicians’ desk reference. 55th ed. Montvale, NJ: Medical Economics Company; 2001. p. 2171–2174.

    Google Scholar 

  58. Food and Drug Administration. Guidance for industry: content and format for geriatric labeling. 2001.

    Google Scholar 

  59. Food and Drug Administration. General considerations for the clinical evaluation of drugs. Publication no. HEW (FDA) 77–3040. Washington, DC: Government Printing Office; 1977.

    Google Scholar 

  60. Food and Drug Administration. Guideline for the format and content of the clinical and statistics sections of new drug applications. 1988.

    Google Scholar 

  61. Kim JS, Nafziger AN. Is it sex or is it gender? Clin Pharmacol Ther. 2000;68:1–3.

    PubMed  CAS  Google Scholar 

  62. Bush JK. Industry perspective on the inclusion of women in clinical trials. Acad Med. 1994;69:708–715.

    PubMed  CAS  Google Scholar 

  63. Chen ML, Williams RL. Women in bioavailability/bioequivalence trials: a regulatory perspective. Drug Inform J. 1995;29:813–820.

    Google Scholar 

  64. Chen ML, Lee SC, Ng MJ, Schuirmann DJ, Lesko LJ, Williams RL. Pharmacokinetic analysis of bioequivalence trials: implications for sex-related issues in clinical pharmacology and biopharmaceutics. Clin Pharmacol Ther. 2000;68:510–521.

    PubMed  CAS  Google Scholar 

  65. Harris RZ, Benet LZ, Schwartz JB. Gender effects in pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 1995;50:222–239.

    CAS  Google Scholar 

  66. Beierle I, Meibohm B, Derendorf H. Gender differences in pharmacokinetics and pharmacodynamics. Int J Clin Pharmacol Ther. 1999;37:529–547.

    PubMed  CAS  Google Scholar 

  67. Tanaka E. Gender-related differences in pharmacokinetics and their clinical significance. J Clin Pharmacol Ther. 1999;24:339–346.

    CAS  Google Scholar 

  68. Merkatz RB, Temple R, Sobel S, Feiden K, Kessler DA. Women in clinical trials of new drugs: a change in Food and Drug Administration policy. N Engl J Med. 1993;329:292–296.

    PubMed  CAS  Google Scholar 

  69. Hartter S, Wetzel H, Hammes E, Torkzadeh M, Hiemke C. Nonlinear pharmacokinetics of fluvoxamine and gender differences. Ther Drug Monit. 1998;20:446–449.

    PubMed  CAS  Google Scholar 

  70. Luvox (fluvoxamine maleate). In: Physicians’ desk reference. 55th ed. Montvale, NJ: Medical Economics Company; 2001. p. 3153–3156.

    Google Scholar 

  71. Sekar V, Gobburu J, Chang J, ZumBrunnen T. Population pharmacokinetic modeling to support pediatric use of fluvoxamine. Abstract. J Clin Pharmacol. 2001;41:1021.

    Google Scholar 

  72. Kashuba ADM, Nafziger AN. Physiological changes during the menstrual cycle and their effects on the pharmacokinetics and pharmacodynamics of drugs. Clin Pharmacokinet. 1998;34:203–218.

    PubMed  CAS  Google Scholar 

  73. Gustayson LE, Benet LZ. Menopause: pharmacodynamics and pharmacokinetics. Exp Gerontol. 1994;29:437–444.

    Google Scholar 

  74. Belle DJ, Callaghan JT, Gorski JC, Maya JF, Mousa O, Wrighton SA, et al. Effects of an oral contraceptive containing ethinyloestradiol and norgestrel on CYP3A activity. Br J Clin Pharmacol. 2002;53:67–74.

    PubMed  CAS  Google Scholar 

  75. Xie CX, Piecoro LT, Wermeling DP. Gender-related consideration in clinical pharmacology and drug therapeutics. Crit Care Nurs Clinics of North Am. 1997;9:459–468.

    CAS  Google Scholar 

  76. Back DJ, Orme ML. Pharmacokinetic drug interactions with oral contraceptives. Clin Pharmacokinet. 1990;18:472–484.

    PubMed  CAS  Google Scholar 

  77. Food and Drug Administration. Draft guidance for industry: combined oral contraceptives-labeling for healthcare providers and patients. 2000.

    Google Scholar 

  78. Food and Drug Administration and the National Institutes of Health Conference. Clinical pharmacology during pregnancy: addressing clinical needs through science. 2000. Conference transcript athttp://www.fda.gov/cder/present/clinpharm2000/1204pregtxt

    Google Scholar 

  79. Food and Drug Administration. Draft guidance for industry: establishing pregnancy registries. 1999.

    Google Scholar 

  80. Murray L, Seger D. Drug therapy during pregnancy and lactation. Emerg Clin North Am. 1994;12:129–149.

    CAS  Google Scholar 

  81. Wilson JT, Brown RD, Hinson JL, Dailey JW. Pharmacokinetic pitfalls in the estimation of the breast milk/plasma ratio from drugs. Ann Rev Pharmacol Toxicol. 1985;25:667–689.

    CAS  Google Scholar 

  82. American Academy of Pediatrics Committee on Drugs. Transfer of drugs and other chemicals into human milk. Pediatrics. 1994;93:137–150.

    Google Scholar 

  83. Breitzka RL, Sandritter TL, Hatzopoulos FK. Principles of drug transfer into breast milk and drug disposition in the nursing infant. J Human Lact. 1997;13:155–158.

    CAS  Google Scholar 

  84. Scialli AR. Drugs and lactation: another failure of product labeling. Reproductive Toxicol. 1996;10:91–92.

    CAS  Google Scholar 

  85. Shyu WC, Shah VR, Campbell DA, Venitz J, Jaganathan V, Pittman KA, et al. Excretion of cefprozil into human breast milk. Antimicrob Agents Chemother. 1992;36:938–941.

    PubMed  CAS  Google Scholar 

  86. Cefzil (cefprozil). In: Physicians’ desk reference. 55th ed. Montvale, NJ: Medical Economics Company; 2001. p. 998–1001.

    Google Scholar 

  87. International Committee on Harmonization. Guidance for industry E5: ethnic factors in the acceptability of foreign clinical data. 1998.

    Google Scholar 

  88. Foster MW, Sharp RR, Mulvihill JJ. Pharmacogenetics, race, and ethnicity: social identities and individualized medical care. Ther Drug Monitor. 2001;23:232–238.

    CAS  Google Scholar 

  89. Sheldon TA, Parker H. Race and ethnicity in health research. J Public Health Med. 1992;14:104–110.

    PubMed  CAS  Google Scholar 

  90. Anand SS. Using ethnicity as a classification variable in health research: perpetuating the myth of biological determinism, serving socio-political agendas, or making valuable contributions to medical sciences? Ethnic Health. 1999;4:241–244.

    CAS  Google Scholar 

  91. Freeman HP. The meaning of race in science-considerations for cancer research. Cancer. 1998;82:219–225.

    PubMed  CAS  Google Scholar 

  92. Kitler ME. Clinical trials and transethnic pharmacology. Drug Safety. 1994; II:378–391.

    Google Scholar 

  93. Wood AJJ. Ethnic differences in drug disposition. Ther Drug Monit. 1998;20:525–526.

    PubMed  CAS  Google Scholar 

  94. Xie HG, Kim RB, Wood AJJ, Stein CM. Molecular basis of ethnic differences in drug disposition and response. Ann Rev Pharmacol Toxicol. 2001;41:815–850.

    CAS  Google Scholar 

  95. Johnston JA. Predictability of the effects of race or ethnicity on pharmacokinetics of drugs. Int J Clin Pharmacol Ther. 2000;38:53–60.

    Google Scholar 

  96. Andersson T, Regàrdh CG, Lou YC, Zhang Y, Dahl ML, Bertilsson L. Polymorphic hydroxylation of Smephenytoin and omeprazole metabolism in Caucasian and Chinese subjects. Pharmacogenetics. 1992;2:25–31.

    PubMed  CAS  Google Scholar 

  97. Caraco Y, Lagerstrom PO, Wood AJJ. Ethnic and genetic determinants of omeprazole disposition and effect. Clin Pharmacol Ther. 1996;60:157–167.

    PubMed  CAS  Google Scholar 

  98. Furuta T, Ohashi K, Kamata T, Takashima M, Kosuge K, Kawasaki T, et al. Effect of genetic differences in omeprazole metabolism on cure rates forHelicobacter pyloriinfection and peptic ulcer. Ann Intern Med. 1998;129:1027–1030.

    PubMed  CAS  Google Scholar 

  99. Goldstein JA. Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol. 2001;52:349–355.

    PubMed  CAS  Google Scholar 

  100. Prilosec (omeprazole). In: Physicians’ desk reference. 55th ed. Montvale, NJ: Medical Economics Cornpany; 2001. p. 587–591.

    Google Scholar 

  101. Van Geerven JMA, Uchida E, Uchida N, Pieters MSM, Meinders AJ, Schoemaker RC, et al. Pharmacodynamics and pharmacokinetics of a single oral dose of nitrazepam in healthy volunteers: an interethnic comparative study between Japanese and European volunteers. J Clin Pharmacol. 1998;38:1129–1136.

    Google Scholar 

  102. Lam YWF, Banerji S, Hatfield C, Talbert RL. Principles of drug administration in renal insufficiency. Clin Pharmacokinet. 1997;32:30–57.

    PubMed  CAS  Google Scholar 

  103. Ibrahim S, Honig P, Huang SM, Gillespie W, Lesko U, Williams RL. Clinical pharmacology studies in patients with renal impairment: past experience and regulatory perspectives. J Clin Pharmacol. 2000;40:31–38.

    PubMed  CAS  Google Scholar 

  104. Food and Drug Administration. Guidance for industry: pharmacokinetics in patients with impaired renal function-study design, data analysis, and impact on dosing and labeling. 1998.

    Google Scholar 

  105. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:3141.

    Google Scholar 

  106. Schwartz GJ. A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr. 1984;104:849–854.

    PubMed  CAS  Google Scholar 

  107. Schwartz GJ. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics. 1978;35:53–62.

    Google Scholar 

  108. Lee CS, Marbury TC, Benet LZ. Clearance calculations in hemodialysis: application to blood, plasma, and dialysate measurements for ethambutol. J Pharmacokinet Biopharm. 1980;8:69–81.

    PubMed  Google Scholar 

  109. Keller E, Reetze P, Schollmeyer P. Drug therapy in patients undergoing continuous ambulatory peritoneal dialysis: clinical pharmacokinetic considerations. Clin Pharmacokinet. 1990;18:104–117.

    PubMed  CAS  Google Scholar 

  110. Gambertoglio JG. Drug use in renal disease. In: Knoben JE, Anderson PO, eds. Handbook of clinical drug data. Hamilton, IL: Drug Intelligence Publications. 1993. p. 161–170.

    Google Scholar 

  111. Rowland M, Tozer TN. Clinical pharmacokinetics: concepts and applications. 2nd ed. Philadelphia: Lee and Febiger; 1989. p. 238–254.

    Google Scholar 

  112. Lee CC, Marbury TC. Drug therapy in patients undergoing hemodialysis: clinical pharmacokinetic considerations. Clin Pharmacokinet. 1984;9:42–66.

    PubMed  CAS  Google Scholar 

  113. Boelaert J, Valcke Y, Schurgers M, Daneels R, Rosseneu M, Rosseel MT, Bogeart MG. Pharmacokinetics of ciprofloxacin in patients with impaired renal function. J Antimicrob Chemother. 1985;16:87–93.

    PubMed  CAS  Google Scholar 

  114. Webb DB, Roberts DE, Williams JD, Asscher AW. Pharmacokinetics of ciprofloxacin in healthy volun-teers and patients with impaired kidney function. J Antimicrob Chemother. 1986;18(Suppl D):83–87.

    PubMed  Google Scholar 

  115. Singlas E, Taburet AM, Landru I, Albin H, Ryckelinck JP. Pharmacokinetics of ciprofloxacin tablets in renal failure: influence of haemodialysis. Eur J Clin Pharmacol. 1987;31:589–593.

    PubMed  CAS  Google Scholar 

  116. Bergan T, Thorsteinsson SB, Rohwedder R, Scholl H. Elimination of ciprofloxacin and three major metabolites and consequences of reduced renal function. Chemother. 1989;35:393–405.

    CAS  Google Scholar 

  117. Cipro (ciprofloxacin hydrochloride). In: Physicians’ desk reference. 55th ed. Montvale, NJ: Medical Economics Company; 2001. p. 847–852.

    Google Scholar 

  118. Food and Drug Administration. Draft guidance for industry: pharmacokinetics in patients with impaired hepatic function-study design, data analysis, and impact on dosing and labeling. 1999.

    Google Scholar 

  119. Howden CW, Birnie GG, Brodie MJ. Drug metabolism in liver disease. Pharmacol Ther. 1989;40:439–474.

    PubMed  CAS  Google Scholar 

  120. McLean AJ, Morgan DJ. Clinical pharmacokinetics in patients with liver disease. Clin Pharmacokinet. 1991;21:42–69.

    PubMed  CAS  Google Scholar 

  121. Rodighiero V. Effects of liver disease on pharmacokinetics: an update. Clin Pharmacokinet. 1999;37:399431.

    Google Scholar 

  122. Benet LZ, Hoener B. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71:115–121.

    PubMed  CAS  Google Scholar 

  123. Morgan DJ, McLean AJ. Clinical pharmacokinetic and pharmacodynamic considerations in patients with liver disease: an update. Clin Pharmacokinet. 1995;29:370–391.

    PubMed  CAS  Google Scholar 

  124. Westphal JF, Brogard JM. Drug administration in chronic liver disease. Drug Safety. 1997;17:47–73.

    PubMed  CAS  Google Scholar 

  125. George J, Murray M, Byth K, Farrell GC. Differential alterations of cytochrome P450 proteins in livers from patients with severe chronic liver disease. Hepatology. 1995;21:120–128.

    PubMed  CAS  Google Scholar 

  126. Pugh RNH, Murrary-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. Brit J Surg. 1973;60:646–649.

    PubMed  CAS  Google Scholar 

  127. Brockmoller J, Roots I. Assessment of liver metabolic function: clinical implications. Clin Pharmacokinet. 1994;27:216–248.

    PubMed  CAS  Google Scholar 

  128. Figg WD, Dukes GE, Lesesne HR, Carson SW, Songer SS, Pritchard F, et al. Comparison of quantitative methods to assess hepatic function: Pugh’s classification, indocyanine green, antipyrine, and dextromethorphan. Pharmacother. 1995;15:693–700.

    CAS  Google Scholar 

  129. Bergquist C, Lindegard J, Salmonson T. Dosing recommendations in liver disease (Letter to the editor). Clin Pharmacol Ther. 1999;66:201–204.

    PubMed  CAS  Google Scholar 

  130. Kovarik JM, Kaplan B, Tedesco Silva H, Kahan BD, Dantal J, Vitko S, et al. Exposure-response relationships for everolimus in de novo kidney transplantation: defining a therapeutic range. Transplantation. 2002;73:920–925.

    PubMed  CAS  Google Scholar 

  131. Kovarik JM, Sabia HD, Figueiredo J, Zimmermann H, Reynolds C, Dilzer S, et al. Influence of hepatic impairment on everolimus pharmacokinetics: implications for dose adjustment. Clin Pharmacol Ther. 2001;70:425–430.

    PubMed  CAS  Google Scholar 

  132. Lee PID. Design and power of a population pharmacokinetic study. Pharm Res. 2001;18:75–82.

    PubMed  CAS  Google Scholar 

  133. Lesko LJ, Woodcock J. Pharmacogenomic-guided drug development: regulatory perspective. Pharmacogenomics J. 2002;2:20–24.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kovarik, J.M. (2004). Special Population Studies In Clinical Development: Pharmacokinetic Considerations. In: Krishna, R. (eds) Applications of Pharmacokinetic Principles in Drug Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9216-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9216-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4842-9

  • Online ISBN: 978-1-4419-9216-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics