Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 523))

Abstract

The science or art of pharmacokinetic analysis embodies the description of the time-dependant concentration changes of a drug. Pharmacokinetic models may be used to predict the behaviour of the drug in individuals, preferably under various circumstances. In the practice of anaesthesia pharmacokinetics can be studied on the work floor. Differences in pharmacokinetics between individuals are observed on a daily basis. Factors responsible for the interindividual variability are being studied extensively and more data become available in time. From these data the significance of demographic factors such as age and gender become increasingly apparent. Other factors like weight or lean body mass may be substitute parameters for physiologically based variations in pathways of distribution and elimination. Obesity e.g. may be considered as a disproportionate increase in adipose tissue mass. Peripheral blood flow must increase to supply this extra tissue. As organ-specific blood flow remains equal, cardiac output will increase. The surplus of fatty tissue will act as an extra depot for lipid-soluble drugs like thiopental. As a consequence, peak-concentrations are expected to decrease, whereas the terminal half-life and steady state volume of distribution will increase.1 Physiological parameters such as cardiac output, flow and tissue distribution have a more direct relationship with pharmacokinetic parameters like distribution volumes and clearances. Inclusion of a parameter like cardiac output into a pharmacokinetic model may improve the accuracy of the model, especially with respect to fast acting drugs like intravenous anaesthetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. R. Wada, S. Bjorkman, W. F. Ebling, H. Harashima, S. R. Harapat, and D. R. Stanski, Computer simulation of the effects of alterations in blood flows and body composition on thiopental pharmacokinetics in humans, Anesthesiology 87, 884–899 (1997).

    Article  PubMed  CAS  Google Scholar 

  2. J. A. Kuipers, F. Boer, A. de Roode, E. Olofsen, J. G. Bovill, and A. G. Burm, Modeling population pharmacokinetics of lidocaine: should cardiac output be included as a patient factor?, Anesthesiology 94, 566–573 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. T. K. Henthorn, T. C. Krejcie, and M. J. Avram, The relationship between alfentanil distribution kinetics and cardiac output, Clin. Pharmacol. Ther. 52, 190–196 (1992).

    Article  PubMed  CAS  Google Scholar 

  4. G. L. Ludbrook and R. N. Upton, A physiological model of induction of anaesthesia with propofol in sheep. 2. Model analysis and implications for dose requirements, Br. J. Anaesth. 79, 505–513 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. E. Gepts, F. Camu, I. D. Cockshott, and E. J. Douglas, Disposition of propofol administered as constant rate intravenous infusions in humans, Anesth. Analg. 66, 1256–1263 (1987).

    Article  PubMed  CAS  Google Scholar 

  6. J. Vuyk, F. H. Engbers, A. G. Burm, A. A. Vletter, and J. G. Bovill, Performance of computer-controlled infusion of propofol: an evaluation of five pharmacokinetic parameter sets, Anesth. Analg. 81, 1275–1282 (1995).

    PubMed  CAS  Google Scholar 

  7. T. W. Schnider, C. F. Minto, P. L. Gambus, C. Andresen, D. B. Goodale, S. L. Shafer, and E. J. Youngs, The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers, Anesthesiology 88, 1170–1182 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. G. T. Tucker, Pharmacokinetic models - different approaches, in: Quantitation, Modelling and Control in Anaesthesia, edited by H. Stoeckel (Georg Thieme Verlag, Stuttgart, 1985), pp 54–63.

    Google Scholar 

  9. W. L. Chiou, Potential pitfalls in the conventional pharmacokinetic studies: effects of the initial mixing of drug in blood and the pulmonary first-pass elimination, J. Pharmacokinet. Biopharm. 7, 527–536 (1979).

    Article  PubMed  CAS  Google Scholar 

  10. D. L. Roerig, K. J. Kotrly, E. J. Vucins, S. B. Ahlf, C. A. Dawson, and J. P. Kampine, First pass uptake of fentanyl, meperidine, and morphine in the human lung, Anesthesiology 67, 466–472 (1987).

    Article  PubMed  CAS  Google Scholar 

  11. F. Boer, J. G. Bovill, A. G. Burm, and R. A. Mooren, Uptake of sufentanil, alfentanil and morphine in the lungs of patients about to undergo coronary artery surgery, Br. J. Anaesth. 68, 370–375 (1992).

    Article  PubMed  CAS  Google Scholar 

  12. Y. L. He, H. Ueyama, C. Tashiro, T. Mashimo, and I. Yoshiya, Pulmonary disposition of propofol in surgical patients, Anesthesiology 93, 986–991 (2000).

    Article  PubMed  CAS  Google Scholar 

  13. J. A. Kuipers, F. Boer, W. Olieman, A. G. Burm, and J. G. Bovill, First-pass lung uptake and pulmonary clearance of propofol: assessment with a recirculatory indocyanine green pharmacokinetic model, Anesthesiology 91, 1780–1787 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. T. K. Henthorn, T. C. Krejcie, C. U. Niemann, C. Enders-Klein, C. A. Shanks, and M. J. Avram, Ketamine distribution described by a recirculatory pharmacokinetic model is not stereoselective, Anesthesiology 91, 1733–1743 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. C. Post and D. H. Lewis, Displacement of nortriptyline and uptake of 14C-lidocaine in the lung after administration of 14C-lidocaine to nortriptyline intoxicated pigs, Acta Pharmacol. Toxicol. (Copenh) 45, 218–224 (1979).

    Article  CAS  Google Scholar 

  16. T. C. Krejcie, M. J. Avram, W. B. Gentry, C. U. Niemann, M. P. Janowski, and T. K. Henthorn, A recirculatory model of the pulmonary uptake and pharmacokinetics of lidocaine based on analysis of arterial and mixed venous data from dogs, J. Pharmacokinet. Biopharm. 25, 169–190 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. R. N. Upton and Y. F. Huang, Influence of cardiac output, injection time and injection volume on the initial mixing of drugs with venous blood after i.v. bolus administration to sheep, Br. J. Anaesth. 70, 333–338 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. D. P. Vaughan and I. Hope, Applications of a recirculatory stochastic pharmacokinetic model: limitations of compartmental models, J. Pharmacokinet. Biopharm. 7, 207–225 (1979).

    Article  PubMed  CAS  Google Scholar 

  19. J. M. van Rossum, J. E. de Bie, G. van Lingen, and H. W. Teeuwen, Pharmacokinetics from a dynamical systems point of view, J. Pharmacokinet. Biopharm. 17, 365–392 (1989).

    Article  PubMed  Google Scholar 

  20. M. Weiss, Hemodynamic influences upon the variance of disposition residence time distribution of drugs, J.Pharmacokinet. Biopharm. 11, 63–75 (1983).

    Article  PubMed  CAS  Google Scholar 

  21. M. J. Avram, T. C. Krejcie, and T. K. Henthorn, The relationship of age to the pharmacokinetics of early drug distribution: the concurrent disposition of thiopental and indocyanine green, Anesthesiology 72, 403–411(1990).

    Article  PubMed  Google Scholar 

  22. T. C. Krejcie, T. K. Henthorn, C. A. Shanks, and M. J. Avram, A recirculatory pharmacokinetic model describing the circulatory mixing, tissue distribution and elimination of antipyrine in dogs, J. Pharmacol Exp. Ther. 269, 609–616 (1994).

    PubMed  CAS  Google Scholar 

  23. T. C. Krejcie, T. K. Henthorn, C. U. Niemann, C. Klein, D. K. Gupta, W. B. Gentry, C. A. Shanks, and M. J. Avram, Recirculatory pharmacokinetic models of markers of blood, extracellular fluid and total body water administered concomitantly, J. Pharmacol. Exp. Ther. 278, 1050–1057 (1996).

    PubMed  CAS  Google Scholar 

  24. M. J. Avram, T. C. Krejcie, C. U. Niemann, C. Klein, W. B. Gentry, C. A. Shanks, and T. K. Henthorn, The effect of halothane on the recirculatory pharmacokinetics of physiologic markers, Anesthesiology 87, 1381–1393 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. J. A. Kuipers, F. Boer, E. Olofsen, W. Olieman, A. A. Vletter, A. G. Burm, and J. G. Bovill, Recirculatory and compartmental pharmacokinetic modeling of alfentanil in pigs: the influence of cardiac output, Anesthesiology 90, 1146–1157 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. J. A. Kuipers, F. Boer, E. Olofsen, J. G. Bovill, and A. G. Burm, Recirculatory pharmacokinetics and pharmacodynamics of rocuronium in patients: the influence of cardiac output, Anesthesiology 94, 47–55 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. J. A. Jacquez and T. Perry, Parameter estimation: local identifiability of parameters, Am. J. Physiol. 258, E727–E736(1990).

    PubMed  CAS  Google Scholar 

  28. T. C. Krejcie and M. J. Avram, What determines anesthetic induction dose? It’s the front-end kinetics, doctor!, Anesth. Analg. 89, 541–544 (1999).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reekers, M., Boer, F., Vuyk, J. (2003). Basic Concepts of Recirculatory Pharmacokinetic Modelling. In: Vuyk, J., Schraag, S. (eds) Advances in Modelling and Clinical Application of Intravenous Anaesthesia. Advances in Experimental Medicine and Biology, vol 523. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9192-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9192-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4830-6

  • Online ISBN: 978-1-4419-9192-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics