Control of Procollagen Gene Transcription and Prolyl Hydroxylase Activity by Poly(ADP-Ribose)

  • Q. Perveen Ghani
  • M. Zamir Hussain
  • Jincai Zhang
  • Thomas K. Hunt

Abstract

The synthesis of collagen increases during induced injury, growth and wound healing. There is an emerging consensus that collagen synthesis is controlled at the level of collagen gene transcription. The synthesis of specific collagen types in keloids (Bauer et al, 1986), virus transformed fibroblasts (Adams et al, 1982; Parker et al, 1979) and transforming growth factor-ß (TGF-ß) or interleukin-1 (IL-1) treated fibroblasts (Ignotz et al, 1987; Postlethwaite et al, 1988) is accompanied by an increase in the levels of the respective procollagen mRNAs. However, molecular events leading to this stimulation is not clear. Poly(ADPribose) is closely associated with the differentiation of several eukaryotic cells (Farzaneh et al, 1982; Ohashi et al, 1985) and is also implicated in the expression of individual genes (Kun et al, 1986; Poirer et al, 1982). (Tanuma et al, 1983) showed a clear relationship between ADP-ribosylation of HMG 14/HMG 17 and glucocorticoid regulated expression of MMTV gene. The use of 3-aminobenzamide (3-AB), lowered poly(ADP-ribose) levels on these nuclear proteins and enhanced the level of MMTV mRNA. Similarly, the expressions of c-myc and c-fos proto-oncogenes were stimulated by the treatment of fibroblasts with 3-methoxybenzamide (McNerney et al, 1987). Earlier, we found that exposure of fibroblasts to 20 mM lactate lowered [NAD+], total ADP-ribosylation and activated prolyl hydroxylase causing increased collagen synthesis (Hussain et al, 1989).

Keywords

Lactate Polypeptide Arginine Glucocorticoid Hunt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baurer, E. A., Uitto, J., Cruz, D. S., Turner, M. L. Progressive nodular fibrosis of the skin: Altered procollagen and collagenase expression by cultured fibroblasts. J Invest. Dermatol. 87:210–216; 1986.CrossRefGoogle Scholar
  2. 2.
    Parker, M. I., Judge, K., Gevers, W. Loss of type I procollagen gene expression in SV40 transformed human fibroblasts is accompanied by hypermethylation of these genes. Nucleic Acid Res. 10:5879–5891; 1982.PubMedCrossRefGoogle Scholar
  3. 3.
    Adams, S., Alwine, J. C., Crombrugghe, B., Pastan, I. Use of recombinant plasmids to characterize collagen RNAs in normal and transformed chick embryo fibroblasts. J. Biol. Chem. 254:4935–4938; 1979.PubMedGoogle Scholar
  4. 4.
    Ignotz, R. A., Endo, T., Massague, J. Regulation of fibronectin and type I collagen mRNA levels by transforming growth factor-B. J. Biol. Chem. 262:6443–6446; 1987.PubMedGoogle Scholar
  5. 5.
    Postlethwaite, A. E., Raghow, R., Stricklin, G. P., Poppleton, H., Seyer, J. M., Kang, A. H. Modulation of fibroblast-functions by interleukin 1: Increased steady-state accumulation of type I procollagen messenger RNAs and stimulation of other functions but not chemotaxis by human recombinant interleukin 1 a and P. J. Cell Biol. 106:311–318; 1988.PubMedCrossRefGoogle Scholar
  6. 6.
    Farzaneh, F., Zalin, R., Brill, D., Shall, S. DNA strand breaks and ADP-ribosyl transferase activation during cell differentiation. Nature 300:362–366; 1982.PubMedCrossRefGoogle Scholar
  7. 7.
    Ohashi, Y., Ueda, K., Hayaishi, O., Ikai, K., Niwa, O. Induction of murine terato-carcinoma cell differentiation by suppression of poly(ADP-ribose) synthesis. Proceedings of the National Academy of Science, USA. 81:7132–7136; 1985.CrossRefGoogle Scholar
  8. 8.
    Kun, E., Minaga, T., Kirsten, E., Hakam, A., Jackowski, G., Tseng, A., Jr., Brooks, M. Possible participation of nuclear poly(ADPribosylation) in hormonal mechanisms. In: Litwack, ed. Chemical Actions of Hormones, Vol. 13, New York: Academic Press; 1986:p. 33–53.CrossRefGoogle Scholar
  9. 9.
    Poker, G. G., Murcia, G. D., Jongstra-Bilen, J., Niedergang, C., Mandel, P. Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. Proceedings of the National Academy of Science, USA. 79:3423–3427; 1982.CrossRefGoogle Scholar
  10. 10.
    Tanuma, S., Johnson, L. D., Johnson, G. S. ADP-ribosylation of chromosomal proteins and mouse mammary tumor virus gene expression. J. Biol. Chem. 258:15371–15375; 1983.PubMedGoogle Scholar
  11. 11.
    McNerney, R., Darling, D., Johnstone, A. Differential control of proto-oncongene c-myc and c-fos expression in lymphocytes and fibroblasts. Biochem. J. 245:605–608; 1987.PubMedGoogle Scholar
  12. 12.
    Hussain, M. Z., Ghani, Q. P., Hunt, T. K. Inhibition of prolyl hydroxylase by poly(ADP-ribose) and phosphoribosyl-AMP. J. Biol. Chem. 264:7850–7855; 1989.PubMedGoogle Scholar
  13. 13.
    Ghani, Q. P., Enriquez, B., Hunt, T. K., Hussain, M. Z. Prolyl hydroxylase activity in fibroblasts exposed to NAD+. FASEB J. 4:A2120, 1990 (abst.)Google Scholar
  14. 14.
    Loetscher, P., Alvares-Gonzales, R., Althaus, F. R. Poly(ADP-ribose) may signal changing metabolic conditions to the chromatin of mammalian cells. Proceedings of the National Academy of Science, USA. 84:1286–1289; 1987.CrossRefGoogle Scholar
  15. 15.
    Sabir, J., Tavassoli, M., Shall, S. Purification, characterization of NAD:Arginine mono(ADP-ribosyl) transferases and study of inhibitors. This volume.Google Scholar
  16. 16.
    Prockop, D. J., Kivirikko, K. I., Tuderman, L. Biosynthesis of collagen and its disorders. New Engl. J. Med. 301:13–23; 1979.Google Scholar
  17. 17.
    Kivirikko, K. I., Myllyla, R. The hydroxylation of prolyl and lysyl residues. In: Weiss, J. B., Jayson, M. I. V., eds. Collagen in Health and Disease. New York: Churchill-Livingstone, Inc.; 1982;p. 101–120.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Q. Perveen Ghani
  • M. Zamir Hussain
  • Jincai Zhang
  • Thomas K. Hunt

There are no affiliations available

Personalised recommendations