Skip to main content

Identification of the Catalytic Site of Clostridial ADP-Ribosyltransferases

  • Chapter
ADP-Ribosylation in Animal Tissues

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 419))

Abstract

The catalytic sites of clostridial ADP-ribosyltransferases were studied by photoaffinity-labelling with [carbonyl-14C]NAD+. In C3-like transferases, which are known to modify low molecular mass GTP-binding Rho proteins, Glu-174 was identified to be essential for catalysis. In C. perfringens iota toxin, Glu-380 and Glu-378 may have pivotal roles in the active site of this actin-ADP-ribosylating toxin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aktories, K., U. Braun, B. Habermann, & S. Rösener. 1990. ADP-ribosylating Toxins and G Proteins: Botulinwn ADP-ribosyltransferase C3. American Society for Microbiology. Washington. 97–115.

    Google Scholar 

  2. Aktories, K., C. Mohr, & G. Koch. 1992. Clostridium botulinum C3 ADP-ribosyltransferase. Curr. Top. Microbiol. Immunol. 175: 115–131.

    Article  PubMed  CAS  Google Scholar 

  3. Just, I., C. Mohr, G. Schallehn, L. Menard, J.R. Didsbury, J. Vandekerckhove, J. van Damme, & K. Aktories. 1992. Purification and characterization of an ADP-ribosyltransferase produced by Clostridium limosum. J. Biol. Chem. 267: 10274–10280.

    PubMed  CAS  Google Scholar 

  4. Aktories, K.,U. Weller, & G.S. Chhatwal. 1987. Clostridium botulinum type C produces a novel ADP-ribosyltransferase distinct from botulinum C2 toxin. FEBS Lett. 212: 109–113.

    Article  PubMed  Google Scholar 

  5. Rubin, E.J.,D.M. Gill, P. Boquet, & M.R. Popoff. 1988. Functional modification of a 21-Kilodalton G protein when ADP-ribosylated by exoenzyme C3 of Clostridium botulinum. Mol. Cell. Biol. 8: 418–426.

    PubMed  Google Scholar 

  6. Just, I.,J. Selzer, M. Jung, J. van Damme, J. Vandekerckhove, & K. Aktories. 1995. Rho-ADP-ribosylating exoenzyme from Bacillus cereus-purification, characterization and identification of the NAD-binding site. Biochemistry, 34: 334–340.

    Article  PubMed  Google Scholar 

  7. Sugai, M.,K. Hashimoto, A. Kikuchi, S. Inoue, H. Okumura, K. Matsumota, Y. Goto, H. Ohgai, K. Moriishi, B. Syuto, K. Yoshikawa, H. Suginaka, & Y. Takai. 1992. Epidermal cell differentiation inhibitor ADP-ribosylates small GTP-binding proteins and induces hyperplasia of epidermis. J. Biol. Chem. 267: 2600–2604.

    PubMed  Google Scholar 

  8. Sekine, A., M. Fujiwara, & S. Narumiya. 1989. Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J. Biol. Chem. 264: 8602–8605.

    PubMed  CAS  Google Scholar 

  9. Paterson, H.F.,A.J. Self, M.D. Garrett, I. Just, K. Aktories, & A. Hall. 1990. Microinjection of recombinant p21rh0 induces rapid changes in cell morphology. J. Cell Biol. 111: 1001–1007.

    Article  PubMed  Google Scholar 

  10. Chardin, P.,P. Boquet, P. Madaule, M.R. Popoff, E.J. Rubin, & D.M. Gill. 1989. The mammalian G protein rho C is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilament in Vero cells. EMBOJ. 8: 1087–1092.

    Google Scholar 

  11. Zhang, J.,W.G. King, S. Dillon, A. Hall, L. Feig, & S.E. Rittenhouse. 1993. Activation of platelet phosphatidylinositide 3-kinase requires the small GTP-binding protein Rho. J. Biol. Chem. 268: 22251–22254.

    PubMed  Google Scholar 

  12. Chong, L.D.,A. Traynor-Kaplan, G.M. Bokoch, & M.A. Schwartz. 1994. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell, 79: 507–513.

    Article  PubMed  Google Scholar 

  13. Malcolm, K.C.,A.H. Ross, R.-G. Qiu, M. Symons, & J.H. Exton. 1994. Activation of rat liver phospholipase D by the small GTP-binding protein RhoA. J. Biol. Chem. 269: 25951–25954.

    PubMed  Google Scholar 

  14. Hirata, K.-i.,A. Kikuchi, T. Sasaki, S. Kuroda, K. Kaibuchi, Y. Matsuura, H. Seki, K. Saida, & Y. Takai. 1992. Involvement of rho p21 in the GTP-enhanced calcium ion sensitivity of smooth muscle contraction. J. Biol. Chem. 267: 8719–8722.

    PubMed  Google Scholar 

  15. Tominaga, T.,K. Sugie, M. Hirata, N. Morii, J. Fukata, A. Uchida, H. Imura, & S. Narumiya. 1993. Inhibition of PMA-induced, LFA-1-dependent Lymphocyte aggregation by ADP-ribosylation of the small molecular weight GTP binding protein, rho. J. Cell Biol. 120, No. 6: 1529–1537.

    Google Scholar 

  16. Schmalzing, G.,H.P. Richter, A. Hansen, W. Schwarz, I. Just, & K. Aktories. 1995. Involvement of the GTP binding protein Rho in constitutive endocytosis in Xenopus laevis oocytes. J. Cell Biol. 130: 1319–1332.

    Article  PubMed  Google Scholar 

  17. Olson, M.F.,A. Ashworth, & A. Hall. 1995. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G,. Science, 269: 1270–1272.

    Article  PubMed  Google Scholar 

  18. Hill, C.S.,J. Wynne, & R. Treisman. 1995. The Rho family GTPases RhoA, Racl, and CDC42Hs regulate transcriptional activation by SRF. Cell, 81: 1159–1170.

    Article  PubMed  Google Scholar 

  19. Aktories, K. &A. Wegner. 1989. ADP-ribosylation of actin by clostridial toxins. J. Cell Biol. 109: 1385–1387.

    Article  PubMed  CAS  Google Scholar 

  20. Aktories, K. &I. Just. 1993. GTPases in biology 1: GTPases and actin as targets for bacterial toxins. Springer-Verlag. Berlin-Heidelberg. 87–112.

    Google Scholar 

  21. Aktories, K. &A. Wegner. 1992. Mechanisms of the cytopathic action of actin-ADP-ribosylating toxins. Mol. Microbiol. 6: 2905–2908.

    Article  PubMed  CAS  Google Scholar 

  22. Aktories, K.,M. Bärmann, I. Ohishi, S. Tsuyama, K.H. Jakobs, & E. Habermann. 1986. Botulinum C2 toxin ADP-ribosylates actin. Nature, 322: 390–392.

    Article  PubMed  Google Scholar 

  23. Simpson, L.L.,B.G. Stiles, H.H. Zapeda, & T.D. Wilkins. 1987. Molecular basis for the pathological actions of Clostridium perfringens Iota toxin. Infect. Immun. 55: 118–122.

    PubMed  Google Scholar 

  24. Stiles, B.G. &T.D. Wilkens. 1986. Purification and characterization of Clostridium perfringens iota toxin: dependence on two nonlinked proteins for biological activity. Infect. Immun. 54: 683–688.

    PubMed  CAS  Google Scholar 

  25. Stiles, B.G. &T.D. Wilkins. 1986. Clostridium perfringens iota toxin: Synergism between two proteins. Toxicon, 24: 767–773.

    Article  PubMed  CAS  Google Scholar 

  26. Simpson, L.L.,B.G. Stiles, H. Zepeda, & T.D. Wilkins. 1989. Production by Clostridium spiroforme of an iotalike toxin that possesses mono(ADP-ribosyl)transferase activity: Identification of a novel class of ADP-ribosyltransferases. Infect. Immun. 57: 255–261.

    PubMed  Google Scholar 

  27. Popoff, M.R.,E.J. Rubin, D.M. Gill, & P. Boquet. 1988. Actin-specific ADP-ribosyltransferase produced by a clostridium difficile strain. Infect. Immun. 56: 2299–2306.

    PubMed  Google Scholar 

  28. Vandekerckhove, J.,B. Schering, M. Bärmann, & K. Aktories. 1988. Botulinum C2 toxin ADP-ribosylates cytoplasmic β/g-actin in arginine 177. J. Biol. Chem. 263: 696–700.

    PubMed  Google Scholar 

  29. Wegner, A. &K. Aktories. 1988. ADP-ribosylated actin caps the barbed ends of actin filaments. J. Biol. Chem. 263: 13739–13742.

    PubMed  CAS  Google Scholar 

  30. Wille, M.,I. Just, A. Wegner, & K. Aktories. 1992. ADP-ribosylation of the gelsolin-actin complex by clostridial toxins. J. Biol. Chem. 267: 50–55.

    PubMed  Google Scholar 

  31. Carroll, S.F. &R.J. Collier. 1984. NAD binding site of diphtheria toxin: identification of a residue within the nicotinamide subsite by photochemical modification with NAD. Proc. Natl. Acad. Sci. USA, 81: 3307–3311.

    Article  PubMed  CAS  Google Scholar 

  32. Jung, M.,I. Just, J. van Damme, J. Vandekerckhove, & K. Aktories. 1993. NAD-binding site of the C3-like ADP-ribosyltransferase from Clostridium limosum. J. Biol. Chem. 268: 23215–23218.

    PubMed  Google Scholar 

  33. van Damme, J.,M. Jung, F. Hofmann, I. Just, J. Vandekerckhove, & K. Aktories. 1996. Analysis of the catalytic site of the actin ADP-ribosylating Clostridium perfringens iota toxin. FEBS Lett. 380:291–295.

    Article  PubMed  Google Scholar 

  34. Böhmer, J.,M. Jung, P. Sehr, G. Fritz, M. Popoff, I. Just, & K. Aktories. 1996. Active site mutation of the C3-like ADP-ribosyltransferase from Clostridium limosum-Analysis of glutamic acid 174. Biochemistry, 35: 282–289.

    Article  PubMed  Google Scholar 

  35. Saito, Y.,Y. Nemoto, T. Ishizaki, N. Watanabe, N. Morii, & S. Narumiya. 1995. Identification of Glu173 as the critical amino acid residue for the ADP-ribosyltransferase activity of Clostridium botulinum C3 exoenzyme. FEBS Lett. 371: 105–109.

    Article  PubMed  Google Scholar 

  36. Just, I., G. Schallehn, & K. Aktories. 1992. ADP-ribosylation of small GTP-binding proteins by Bacillus cereus. Biochem. Biophys. Res. Commun. 183: 931–936.

    Article  PubMed  CAS  Google Scholar 

  37. Carroll, S.F.,J.A. McCloskey, P.F. Crain, N.J. Oppenheimer, T.M. Marschner, & R.J. Collier. 1985. Photoaffinity labeling of diphtheria toxin fragment A with NAD:structure of the photoproduct at position 148. Proc. Natl. Acad Sci. USA, 82: 7237–7241.

    Article  PubMed  Google Scholar 

  38. Carroll, S.F. &R.J. Collier. 1987. Active site of Pseudomonas aeruginosa exotoxin A. Glutamic acid 553 is photolabeled by NAD and shows functional homology with glutamic acid 148 of diphtheria toxin. J. Biol. Chem. 262: 8707–8711.

    PubMed  CAS  Google Scholar 

  39. Barbieri, J.T.,M. Mende-Mueller, R. Rappuoli, & R.J. Collier. 1989. Photolabeling of glu-129 of the S-l subunit of pertussis toxin with NAD. Infect. Immun. 57: 3549–3554.

    PubMed  Google Scholar 

  40. Choe, S.,M.J. Bennett, G. Fujii, P.M.G. Curmi, K.A. Kantardjieff, R.J. Collier, & D. Eisenberg. 1992. The crystal structure of diphtheria toxin. Nature, 357: 216–222.

    Article  PubMed  Google Scholar 

  41. Allured, V.S.,R.J. Collier, S.F. Carroll. & D.B. McKay. 1986. Structure of exotoxin A of Pseudomonas aeruginosa at 3,0-Angstrom resolution. Proc. Natl. Acad. Sci. USA, 83: 1320–1324.

    Article  PubMed  Google Scholar 

  42. Stein, P.E.,A. Boodhoo, G.D. Armstrong, S.A. Cockle, M.H. Klein, & R.J. Read. 1994. The crystal structure of pertussis toxin. Structure, 2: 45–57.

    Article  PubMed  Google Scholar 

  43. Sixma, T.K.,S.E. Pronk, K.H. Kalk, E.S. Wartna, B.A.M. van Zanten, B. Witholt, & W.G.J. Hol. 1991. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature, 351: 371–377.

    Google Scholar 

  44. Barbieri, J.T. &R.J. Collier. 1987. Expression of a mutant, full-length form of diphtheria toxin in Escherichia coli. Infect. Immun. 55: 1647–1651.

    PubMed  CAS  Google Scholar 

  45. Douglas, C.M. &R.J. Collier. 1987. Exotoxin A of Pseudomonas aeruginosa substitution of glutamic acid 553 with aspartic acid drastically reduces toxicity and enzymatic activity. J. Bacteriol. 169: 4967–4971.

    PubMed  CAS  Google Scholar 

  46. Locht, C.,C. Capian, & L. Feron. 1989. Identification of amino acid residues essential for the enzymatic activities of pertussis toxin. Proc. Natl. Acad. Sci. USA, 86: 3075–3079.

    Article  Google Scholar 

  47. Fitzmaurice, W.P.,L.L. Saari, R.G. Lowery, P.W. Ludden, & G.P. Roberts. 1989. Genes coding for the reversible ADP-ribosylation system of dinitrogenase reductase from Rhodospirillum rubrum. Mol. Gen. Genet. 218: 340–347.

    Article  PubMed  Google Scholar 

  48. Koch, T. &W. Rüger. 1994. The ADP-ribosyltransferases (gpAlt) of bacteriophages T2, T4, and T6: Sequencing of the genes and comparison of their products. Virology, 203: 294–298.

    Article  PubMed  CAS  Google Scholar 

  49. Zolkiewska, A.,M.S. Nightingale, & J. Moss. 1992. Molecular characterization of NAD:arginine ADP-ribosyltransferase from rabbit skeletal muscle. Proc. Natl. Acad. Sci. USA, 89: 11352–11356.

    Article  PubMed  Google Scholar 

  50. Takada, T.,K. Iida, & J. Moss. 1995. Conservation of a common motif in enzymes catalyzing ADP-ribose transfer. J. Biol. Chem. 270: 541–544.

    Article  PubMed  Google Scholar 

  51. Lobet, Y.,C. Cluff, & J.W. Cieplak. 1991. Effect of site-directed mutagenic alterations on ADP-ribosyltransferase activity of the A subunit of Escherichia coli heat-labile enterotoxin. Infect. Immun. 59, No. 9: 2870–2879.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aktories, K. (1997). Identification of the Catalytic Site of Clostridial ADP-Ribosyltransferases. In: Haag, F., Koch-Nolte, F. (eds) ADP-Ribosylation in Animal Tissues. Advances in Experimental Medicine and Biology, vol 419. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8632-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8632-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4652-4

  • Online ISBN: 978-1-4419-8632-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics