Skip to main content

Biological Role, Properties, and Therapeutic Applications of the Reduced Folate Carrier (RFC-SLC19A1) and the Proton-Coupled Folate Transporter (PCFT-SLC46A1)

  • Chapter
  • First Online:
Targeted Drug Strategies for Cancer and Inflammation

Abstract

The mechanisms by which folates are transported across cell membranes have been an area of research interest for nearly five decades. Major transport systems include the facilitative carriers, the reduced folate carrier (RFC) and the proton-coupled folate transporter (PCFT), and the high affinity folate receptors (FRs) α and β which transport folates by endocytosis. RFC is the major transport system in mammalian cells and tissues for folate cofactors and clinically relevant antifolate drugs including methotrexate, raltitrexed, pemetrexed, and pralatrexate. PCFT was identified in 2006 as the mechanism by which folates are transported across the apical brush border of the proximal small intestine. Whereas both PCFT and RFC are widely expressed in tumors, PCFT differs from RFC in its acidic pH optimum which favors transport at the low pH commonly found in the hypoxic microenvironment of solid tumors. Reflecting tumor-specific patterns of expression and/or function, recent studies have focused on the identification of folate-targeted therapeutics with selective transport by PCFT and FRs over RFC. The goal is to circumvent RFC and the potentially toxic consequences of drug transport by RFC in normal tissues. RFC in tumor cells can also influence the pharmacologic activity of PCFT and FR-selective agents by transporting physiological folates which compete for polyglutamylation and binding to intracellular targets. This review focuses on the facilitative pathways of (anti)folate transport, including RFC (SLC19A1) and PCFT (SLC46A1) in relation to their molecular properties, and their physiological and pharmacological roles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AICAR:

5-Amino-4-imidazolecarboxamide ribonucleotide

AICARTase:

5-Amino-4-imidazolecarboxamide ribonucleotide formyltransferase

ALL:

Acute lymphoblastic leukemia

BCRP:

Breast-cancer resistant protein

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

5-FormylTHF:

5-Formyltetrahydrofolate

FR:

Folate receptor

GARFTase:

Glycinamide ribonucleotide formyltransferase

GlpT:

Glycerol phosphate/inorganic phosphate antiporter

HFM:

Hereditary folate malabsorption

LacY:

Lactose/proton symporter

5-MethylTHF:

5-Methyltetrahydrofolate

MFS:

Major facilitator superfamily

MRP:

Multidrug resistance-associated protein

mTOR:

Mammalian target of rapamycin

MTX:

Methotrexate

OAT:

Organic anion transporters

PCFT:

Proton-coupled folate transporter

RFC:

Reduced folate carrier

RTX:

Raltitrexed

SCAM:

Substituted cysteine accessibility methods

THF:

Tetrahydrofolate

TMD:

Transmembrane domain

UTR:

Untranslated region

References

  • Abramson J et al (2003) The lactose permease of Escherichia coli: overall structure, the sugar-binding site and the alternating access model for transport. FEBS Lett 555(1):96–101

    Article  PubMed  CAS  Google Scholar 

  • Antony AC (1992) The biological chemistry of folate receptors. Blood 79(11):2807–2820

    PubMed  CAS  Google Scholar 

  • Antony AC (1996) Folate receptors. Annu Rev Nutr 16:501–521

    Article  PubMed  CAS  Google Scholar 

  • Assaraf YG (2007) Molecular basis of antifolate resistance. Cancer Metastasis Rev 26(1):153–181

    Article  PubMed  CAS  Google Scholar 

  • Assaraf YG, Babani S, Goldman ID (1998) Increased activity of a novel low pH folate transporter associated with lipophilic antifolate resistance in Chinese hamster ovary cells. J Biol Chem 273(14):8106–8111

    Article  PubMed  CAS  Google Scholar 

  • Belkov VM et al (1999) Reduced folate carrier expression in acute lymphoblastic leukemia: a mechanism for ploidy but not lineage differences in methotrexate accumulation. Blood 93(5):1643–1650

    PubMed  CAS  Google Scholar 

  • Benepal TS, Judson I (2005) ZD9331: discovery to clinical development. Anticancer Drugs 16(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Boritzki TJ et al (1996) AG2034: a novel inhibitor of glycinamide ribonucleotide formyltransferase. Invest New Drugs 14(3):295–303

    Article  PubMed  CAS  Google Scholar 

  • Borzutzky A et al (2009) Reversible severe combined immunodeficiency phenotype secondary to a mutation of the proton-coupled folate transporter. Clin Immunol 133:287–294

    Article  PubMed  CAS  Google Scholar 

  • Bozard BR et al (2010) Molecular and biochemical characterization of folate transport proteins in retinal Muller cells. Invest Ophthalmol Vis Sci 51:3226–3235

    Article  PubMed  Google Scholar 

  • Cao W, Matherly LH (2004) Analysis of the membrane topology for transmembrane domains 7–12 of the human reduced folate carrier by scanning cysteine accessibility methods. Biochem J 378(Pt 1):201–206

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay S et al (2006) The inverse relationship between reduced folate carrier function and pemetrexed activity in a human colon cancer cell line. Mol Cancer Ther 5(2):438–449

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay S, Moran RG, Goldman ID (2007) Pemetrexed: biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol Cancer Ther 6(2):404–417

    Article  PubMed  CAS  Google Scholar 

  • Chiang PK et al (1996) S-Adenosylmethionine and methylation. FASEB J 10(4):471–480

    PubMed  CAS  Google Scholar 

  • Chiao JH et al (1997) RFC-1 gene expression regulates folate absorption in mouse small intestine. J Biol Chem 272(17):11165–11170

    Article  PubMed  CAS  Google Scholar 

  • Chladek J et al (1998) Pharmacokinetics of low doses of methotrexate in patients with psoriasis over the early period of treatment. Eur J Clin Pharmacol 53(6):437–444

    Article  PubMed  CAS  Google Scholar 

  • Chu E et al (2003) Thymidylate synthase inhibitors as anticancer agents: from bench to bedside. Cancer Chemother Pharmacol 52(Suppl 1):S80–S89

    Article  PubMed  CAS  Google Scholar 

  • Ciuleanu T et al (2009) Maintenance pemetrexed plus best supportive care versus placebo plus best supportive care for non-small-cell lung cancer: a randomised, double-blind, phase 3 study. Lancet 374(9699):1432–1440

    Article  PubMed  CAS  Google Scholar 

  • Deng Y et al (2008a) Synthesis and discovery of high affinity folate receptor-specific glycinamide ribonucleotide formyltransferase inhibitors with antitumor activity. J Med Chem 51(16):5052–5063

    Article  PubMed  CAS  Google Scholar 

  • Deng Y et al (2008b) Role of lysine 411 in substrate carboxyl group binding to the human reduced folate carrier, as determined by site-directed mutagenesis and affinity inhibition. Mol Pharmacol 73(4):1274–1281

    Article  PubMed  CAS  Google Scholar 

  • Deng Y et al (2009) Synthesis and biological activity of a novel series of 6-substituted thieno[2, 3-d]pyrimidine antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors over the reduced folate carrier and proton-coupled folate transporter for cellular entry. J Med Chem 52(9):2940–2951

    Article  PubMed  CAS  Google Scholar 

  • Dixon KH et al (1994) A novel cDNA restores reduced folate carrier activity and methotrexate sensitivity to transport deficient cells. J Biol Chem 269(1):17–20

    PubMed  CAS  Google Scholar 

  • Dosio F, Milla P, Cattel L (2010) EC-145, a folate-targeted Vinca alkaloid conjugate for the potential treatment of folate receptor-expressing cancers. Curr Opin Investig Drugs 11:1424–1433

    PubMed  CAS  Google Scholar 

  • Drori S et al (2000) Characterization of a human alternatively spliced truncated reduced folate carrier increasing folate accumulation in parental leukemia cells. Eur J Biochem 267(3):690–702

    Article  PubMed  CAS  Google Scholar 

  • Elnakat H, Ratnam M (2004) Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev 56(8):1067–1084

    Article  PubMed  CAS  Google Scholar 

  • Ferguson PL, Flintoff WF (1999) Topological and functional analysis of the human reduced folate carrier by hemagglutinin epitope insertion. J Biol Chem 274(23):16269–16278

    Article  PubMed  CAS  Google Scholar 

  • Flatley RM et al (2004) Primary acute lymphoblastic leukemia cells use a novel promoter and 5′ noncoding exon for the human reduced folate carrier that encodes a modified carrier translated from an upstream translational start. Clin Cancer Res 10(15):5111–5122

    Article  PubMed  CAS  Google Scholar 

  • Flintoff WF, Williams FM, Sadlish H (2003) The region between transmembrane domains 1 and 2 of the reduced folate carrier forms part of the substrate-binding pocket. J Biol Chem 278(42):40867–40876

    Article  PubMed  CAS  Google Scholar 

  • Flintoff WF et al (2004) Functional analysis of altered reduced folate carrier sequence changes identified in osteosarcomas. Biochim Biophys Acta 1690(2):110–117

    PubMed  CAS  Google Scholar 

  • Ge Y et al (2007) Prognostic role of the reduced folate carrier, the major membrane transporter for methotrexate, in childhood acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Clin Cancer Res 13(2 Pt 1):451–457

    Article  PubMed  CAS  Google Scholar 

  • Geller J et al (2002) Hereditary folate malabsorption: family report and review of the literature. Medicine (Baltimore) 81(1):51–68

    Article  CAS  Google Scholar 

  • Gibbs DD et al (2005) BGC 945, a novel tumor-selective thymidylate synthase inhibitor targeted to alpha-folate receptor-overexpressing tumors. Cancer Res 65(24):11721–11728

    Article  PubMed  CAS  Google Scholar 

  • Goldman ID (1969) Transport energetics of the folic acid analogue, methotrexate, in L1210 leukemia cells. Enhanced accumulation by metabolic inhibitors. J Biol Chem 244(14):3779–3785

    PubMed  CAS  Google Scholar 

  • Goldman ID (1971) The characteristics of the membrane transport of amethopterin and the naturally occurring folates. Ann N Y Acad Sci 186:400–422

    Article  PubMed  CAS  Google Scholar 

  • Goldman ID et al (2010) The antifolates: evolution, new agents in the clinic, and how targeting delivery via specific membrane transporters is driving the development of a next generation of folate analogs. Curr Opin Investig Drugs 11:1409–1423

    Article  PubMed  CAS  Google Scholar 

  • Goldman ID, Matherly LH (1985) The cellular pharmacology of methotrexate. Pharmacol Ther 28(1):77–102

    Article  PubMed  CAS  Google Scholar 

  • Goldman ID, Lichtenstein NS, Oliverio VT (1968) Carrier-mediated transport of the folic acid analogue, methotrexate, in the L1210 leukemia cell. J Biol Chem 243(19):5007–5017

    PubMed  CAS  Google Scholar 

  • Gorlick R et al (1997) Defective transport is a common mechanism of acquired methotrexate resistance in acute lymphocytic leukemia and is associated with decreased reduced folate carrier expression. Blood 89(3):1013–1018

    PubMed  CAS  Google Scholar 

  • Gravalos C et al (2009) Adjuvant chemotherapy for stages II, III and IV of colon cancer. Clin Transl Oncol 11(8):526–533

    Article  PubMed  CAS  Google Scholar 

  • Gunshin H et al (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641):482–488

    Article  PubMed  CAS  Google Scholar 

  • Guo W et al (1999) Mechanisms of methotrexate resistance in osteosarcoma. Clin Cancer Res 5(3):621–627

    PubMed  CAS  Google Scholar 

  • Hakala MT (1965) On the nature of permeability of sarcoma-180 cells to amethopterin in vitro. Biochim Biophys Acta 102(1):210–225

    Article  PubMed  CAS  Google Scholar 

  • Halsted CH (1979) The intestinal absorption of folates. Am J Clin Nutr 32(4):846–855

    PubMed  CAS  Google Scholar 

  • Helmlinger G et al (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3(2):177–182

    Article  PubMed  CAS  Google Scholar 

  • Henderson GB, Strauss BP (1990) Characteristics of a novel transport system for folate compounds in wild-type and methotrexate-resistant L1210 cells. Cancer Res 50(6):1709–1714

    PubMed  CAS  Google Scholar 

  • Henderson GB, Zevely EM (1983) Structural requirements for anion substrates of the methotrexate transport system in L1210 cells. Arch Biochem Biophys 221(2):438–446

    Article  PubMed  CAS  Google Scholar 

  • Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117(3):285–297

    Article  PubMed  CAS  Google Scholar 

  • Hilgenbrink AR, Low PS (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 94(10):2135–2146

    Article  PubMed  CAS  Google Scholar 

  • Horne DW (1990) Na+ and pH dependence of 5-methyltetrahydrofolic acid and methotrexate transport in freshly isolated hepatocytes. Biochim Biophys Acta 1023(1):47–55

    Article  PubMed  CAS  Google Scholar 

  • Horne DW, Reed KA (1992) Transport of methotrexate in basolateral membrane vesicles from rat liver. Arch Biochem Biophys 298(1):121–128

    Article  PubMed  CAS  Google Scholar 

  • Horne DW et al (1993) 5-Methyltetrahydrofolate transport in basolateral membrane vesicles from human liver. Am J Clin Nutr 58(1):80–84

    PubMed  CAS  Google Scholar 

  • Hou Z, Matherly LH (2009) Oligomeric structure of the human reduced folate carrier: identification of homo-oligomers and dominant-negative effects on carrier expression and function. J Biol Chem 284(5):3285–3293

    Article  PubMed  CAS  Google Scholar 

  • Hou Z et al (2005) Localization of a substrate binding domain of the human reduced folate carrier to transmembrane domain 11 by radioaffinity labeling and cysteine-substituted accessibility methods. J Biol Chem 280(43):36206–36213

    Article  PubMed  CAS  Google Scholar 

  • Hou Z et al (2006) Transmembrane domains 4, 5, 7, 8, and 10 of the human reduced folate carrier are important structural or functional components of the transmembrane channel for folate substrates. J Biol Chem 281(44):33588–33596

    Article  PubMed  CAS  Google Scholar 

  • Hou Z et al (2010) Identification of the minimal functional unit of the homo-oligomeric human reduced folate carrier. J Biol Chem 285:4732–4740

    Article  PubMed  CAS  Google Scholar 

  • Huang Y et al (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301(5633):616–620

    Article  PubMed  CAS  Google Scholar 

  • Ifergan I, Jansen G, Assaraf YG (2008) The reduced folate carrier (RFC) is cytotoxic to cells under conditions of severe folate deprivation. RFC as a double edged sword in folate homeostasis. J Biol Chem 283(30):20687–20695

    Article  PubMed  CAS  Google Scholar 

  • Jansen G (1999) Receptor- and carrier-mediated transport systems for folates and antifolates. Exploitation for folate chemotherapy and immunotherapy. In: Jackman AL (ed) Anticancer development guide: antifolate drugs in cancer therapy. Humana Press, Totowa, pp 293–321

    Google Scholar 

  • Kamen BA (2011) Folate receptors and therapeutic applications. Targeted drug strategies for cancer and inflammation. Springer, New York

    Google Scholar 

  • Kennedy MD et al (2003) Evaluation of folate conjugate uptake and transport by the choroid plexus of mice. Pharm Res 20(5):714–719

    Article  PubMed  CAS  Google Scholar 

  • Kitamura Y et al (2008) Increasing systemic exposure of methotrexate by active efflux mediated by multidrug resistance-associated protein 3 (mrp3/abcc3). J Pharmacol Exp Ther 327(2):465–473

    Article  PubMed  CAS  Google Scholar 

  • Kruh GD, Belinsky MG (2003) The MRP family of drug efflux pumps. Oncogene 22(47):7537–7552

    Article  PubMed  CAS  Google Scholar 

  • Kruh GD et al (2007) ABCC10, ABCC11, and ABCC12. Pflugers Arch 453(5):675–684

    Article  PubMed  CAS  Google Scholar 

  • Kugel Desmoulin S et al (2010) Targeting the proton-coupled folate transporter for selective delivery of 6-substituted pyrrolo[2,3-d]pyrimidine antifolate inhibitors of de novo purine biosynthesis in the chemotherapy of solid. Mol Pharmacol 78:577–587

    Google Scholar 

  • Kumar CK et al (1997) A protein-tyrosine kinase-regulated, pH-dependent, carrier-mediated uptake system for folate in human normal colonic epithelial cell line NCM460. J Biol Chem 272(10):6226–6231

    Article  PubMed  CAS  Google Scholar 

  • Kumar CK et al (1998) Comparison of intestinal folate carrier clone expressed in IEC-6 cells and in Xenopus oocytes. Am J Physiol 274(1 Pt 1):C289–C294

    PubMed  CAS  Google Scholar 

  • Laftah AH et al (2009) Haem and folate transport by proton-coupled folate transporter/haem carrier protein 1 (SLC46A1). Br J Nutr 101(8):1150–1156

    Article  PubMed  CAS  Google Scholar 

  • Lasry I et al (2008) A novel loss-of-function mutation in the proton-coupled folate transporter from a patient with hereditary folate malabsorption reveals that Arg 113 is crucial for function. Blood 112(5):2055–2061

    Article  PubMed  CAS  Google Scholar 

  • Lasry I et al (2009) Hereditary folate malabsorption: a positively charged amino acid at position 113 of the proton-coupled folate transporter (PCFT/SLC46A1) is required for folic acid binding. Biochem Biophys Res Commun 386(3):426–431

    Article  PubMed  CAS  Google Scholar 

  • Leamon CP (2008) Folate-targeted drug strategies for the treatment of cancer. Curr Opin Investig Drugs 9(12):1277–1286

    PubMed  CAS  Google Scholar 

  • Lemieux MJ (2007) Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure. Mol Membr Biol 24(5–6):333–341

    Article  PubMed  CAS  Google Scholar 

  • Liu XY, Matherly LH (2001) Functional interactions between arginine-133 and aspartate-88 in the human reduced folate carrier: evidence for a charge-pair association. Biochem J 358(Pt 2):511–516

    Article  PubMed  CAS  Google Scholar 

  • Liu XY, Matherly LH (2002) Analysis of membrane topology of the human reduced folate carrier protein by hemagglutinin epitope insertion and scanning glycosylation insertion mutagenesis. Biochim Biophys Acta 1564(2):333–342

    Article  PubMed  CAS  Google Scholar 

  • Liu XY, Witt TL, Matherly LH (2003) Restoration of high-level transport activity by human reduced folate carrier/ThTr1 thiamine transporter chimaeras: role of the transmembrane domain 6/7 linker region in reduced folate carrier function. Biochem J 369(Pt 1):31–37

    Article  PubMed  CAS  Google Scholar 

  • Liu M et al (2004) Roles of USF, Ikaros and Sp proteins in the transcriptional regulation of the human reduced folate carrier B promoter. Biochem J 383(Pt 2):249–257

    PubMed  CAS  Google Scholar 

  • Mackenzie B et al (2006) Divalent metal-ion transporter DMT1 mediates both H+ -coupled Fe2+ transport and uncoupled fluxes. Pflugers Arch 451(4):544–558

    Article  PubMed  CAS  Google Scholar 

  • Mahadeo KM et al (2010a) Hereditary folate malabsorption. In: Pagon RA, Bird TD, Dolan CR, Stephens K, (eds). GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle, 1993–2008

    Article  PubMed  CAS  Google Scholar 

  • Mahadeo KM et al (2010b) Properties of the Arg376 residue of the proton-coupled folate transporter (PCFT-SLC46A1) and a glutamine mutant causing hereditary folate malabsorption. Am J Physiol Cell Physiol 299:C1153–1161

    Article  PubMed  CAS  Google Scholar 

  • Mason JB, Rosenberg IH (1994) Intestinal absorption of folate. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 1975–1995

    Google Scholar 

  • Mason JB et al (1990) Carrier affinity as a mechanism for the pH-dependence of folate transport in the small intestine. Biochim Biophys Acta 1024(2):331–335

    Article  PubMed  CAS  Google Scholar 

  • Masuda S (2003) Functional characteristics and pharmacokinetic significance of kidney-specific organic anion transporters, OAT-K1 and OAT-K2, in the urinary excretion of anionic drugs. Drug Metab Pharmacokinet 18(2):91–103

    Article  PubMed  CAS  Google Scholar 

  • Masuda M et al (1997) Methotrexate is excreted into the bile by canalicular multispecific organic anion transporter in rats. Cancer Res 57(16):3506–3510

    PubMed  CAS  Google Scholar 

  • Matherly LH, Gangjee A (2011) Discovery of novel antifolate inhibitors of de novo purine nucleotide biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry. Targeted drug strategies for cancer and inflammation. Springer, New York

    Google Scholar 

  • Matherly LH, Goldman DI (2003) Membrane transport of folates. Vitam Horm 66:403–456

    Article  PubMed  CAS  Google Scholar 

  • Matherly LH, Hou Z (2008) Structure and function of the reduced folate carrier a paradigm of a major facilitator superfamily mammalian nutrient transporter. Vitam Horm 79:145–184

    Article  PubMed  CAS  Google Scholar 

  • Matherly LH, Hou Z, Deng Y (2007) Human reduced folate carrier: translation of basic biology to cancer etiology and therapy. Cancer Metastasis Rev 26(1):111–128

    Article  PubMed  CAS  Google Scholar 

  • McGuire JJ, Haile WH, Yeh CC (2006) 5-Amino-4-imidazolecarboxamide riboside potentiates both transport of reduced folates and antifolates by the human reduced folate carrier and their subsequent metabolism. Cancer Res 66(7):3836–3844

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn LG, Worzalla JF, Walling JM (1999) Preclinical and clinical evaluation of the glycinamide ribonucleotide formyltransferase inhibitors lometrexol and LY309887. In: Jackman AL (ed) Anticancer drug development guide: antifolate drugs in cancer therapy. Humana Press, Totowa, pp 261–280

    Google Scholar 

  • Min SH et al (2008) The clinical course and genetic defect in the PCFT gene in a 27-year-old woman with hereditary folate malabsorption. J Pediatr 153(3):435–437

    Article  PubMed  CAS  Google Scholar 

  • Monahan BP, Allegra CJ (2006) Antifolates. In: Chabner BA, Longo DL (eds) Cancer chemotherapy and biotherapy. Lippincott Williams and Wilkins, Philadelphia, pp 91–124

    Google Scholar 

  • Moscow JA et al (1995) Isolation of a gene encoding a human reduced folate carrier (RFC1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells. Cancer Res 55(17):3790–3794

    PubMed  CAS  Google Scholar 

  • Parker N et al (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338(2):284–293

    Article  PubMed  CAS  Google Scholar 

  • Patrick TA et al (1997) Folate receptors as potential therapeutic targets in choroid plexus tumors of SV40 transgenic mice. J Neurooncol 32(2):111–123

    Article  PubMed  CAS  Google Scholar 

  • Payton SG et al (2005a) Transcriptional regulation of the human reduced folate carrier A1/A2 promoter: identification of critical roles for the USF and GATA families of transcription factors. Biochim Biophys Acta 1731(2):115–124

    PubMed  CAS  Google Scholar 

  • Payton SG et al (2005b) Transcriptional regulation of the human reduced folate carrier promoter C: synergistic transactivation by Sp1 and C/EBP beta and identification of a downstream repressor. Biochim Biophys Acta 1727(1):45–57

    PubMed  CAS  Google Scholar 

  • Payton SG et al (2007) Effects of 5′ untranslated region diversity on the posttranscriptional regulation of the human reduced folate carrier. Biochim Biophys Acta 1769(2):131–138

    PubMed  CAS  Google Scholar 

  • Peeters M, Poon A (1987) Down syndrome and leukemia: unusual clinical aspects and unexpected methotrexate sensitivity. Eur J Pediatr 146(4):416–422

    Article  PubMed  CAS  Google Scholar 

  • Qiu A et al (2006) Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127(5):917–928

    Article  PubMed  CAS  Google Scholar 

  • Qiu A et al (2007) Rodent intestinal folate transporters (SLC46A1): secondary structure, functional properties, and response to dietary folate restriction. Am J Physiol Cell Physiol 293(5):C1669–C1678

    Article  PubMed  CAS  Google Scholar 

  • Racanelli AC et al (2009) Therapeutics by cytotoxic metabolite accumulation: pemetrexed causes ZMP accumulation, AMPK activation, and mammalian target of rapamycin inhibition. Cancer Res 69(13):5467–5474

    Article  PubMed  CAS  Google Scholar 

  • Raghunand N et al (1999) Plasmalemmal pH-gradients in drug-sensitive and drug-resistant MCF-7 human breast carcinoma xenografts measured by 31P magnetic resonance spectroscopy. Biochem Pharmacol 57(3):309–312

    Article  PubMed  CAS  Google Scholar 

  • Rajgopal A et al (2001) Expression of the reduced folate carrier SLC19A1 in IEC-6 cells results in two distinct transport activities. Am J Physiol Cell Physiol 281(5):C1579–C1586

    PubMed  CAS  Google Scholar 

  • Ray MS et al (1993) Phase I study of (6R)-5, 10-dideazatetrahydrofolate: a folate antimetabolite inhibitory to de novo purine synthesis. J Natl Cancer Inst 85(14):1154–1159

    Article  PubMed  CAS  Google Scholar 

  • Reddy JA et al. (2007) Preclinical evaluation of EC145, a folate-vinca alkaloid conjugate. Cancer Res 67(9):4434–4442

    Article  PubMed  CAS  Google Scholar 

  • Rizwan AN, Burckhardt G (2007) Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res 24(3):450–470

    Article  PubMed  CAS  Google Scholar 

  • Rosowsky A (1999) PT523 and other aminopterin analogs with a hemiphthaloyl-L-ornithine side chain: exceptionally tight-binding inhibitors of dihydrofolate reductase which are transported by the reduced folate carrier but cannot form polyglutamates. Curr Med Chem 6(4):329–352

    PubMed  CAS  Google Scholar 

  • Russel FG, Masereeuw R, van Aubel RA (2002) Molecular aspects of renal anionic drug transport. Annu Rev Physiol 64:563–594

    Article  PubMed  CAS  Google Scholar 

  • Sadlish H, Williams FM, Flintoff WF (2002a) Cytoplasmic domains of the reduced folate carrier are essential for trafficking, but not function. Biochem J 364(Pt 3):777–786

    Article  PubMed  CAS  Google Scholar 

  • Sadlish H, Williams FM, Flintoff WF (2002b) Functional role of arginine 373 in substrate translocation by the reduced folate carrier. J Biol Chem 277(44):42105–42112

    Article  PubMed  CAS  Google Scholar 

  • Said HM (2004) Recent advances in carrier-mediated intestinal absorption of water-soluble vitamins. Annu Rev Physiol 66:419–446

    Article  PubMed  CAS  Google Scholar 

  • Said HM et al (1997) Intracellular regulation of intestinal folate uptake: studies with cultured IEC-6 epithelial cells. Am J Physiol 272(2 Pt 1):C729–C736

    PubMed  CAS  Google Scholar 

  • Saier MH Jr et al (1999) The major facilitator superfamily. J Mol Microbiol Biotechnol 1(2):257–279

    PubMed  CAS  Google Scholar 

  • Salazar MD, Ratnam M (2007) The folate receptor: what does it promise in tissue-targeted therapeutics? Cancer Metastasis Rev 26(1):141–152

    Article  PubMed  CAS  Google Scholar 

  • Scagliotti GV et al (2008) Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 26(21):3543–3551

    Article  PubMed  CAS  Google Scholar 

  • Schirch V, Strong WB (1989) Interaction of folylpolyglutamates with enzymes in one-carbon metabolism. Arch Biochem Biophys 269(2):371–380

    Article  PubMed  CAS  Google Scholar 

  • Segal MB (2000) The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cell Mol Neurobiol 20(2):183–196

    Article  PubMed  CAS  Google Scholar 

  • Selhub J, Franklin WA (1984) The folate-binding protein of rat kidney. Purification, properties, and cellular distribution. J Biol Chem 259(10):6601–6606

    PubMed  CAS  Google Scholar 

  • Selhub J, Rosenberg IH (1981) Folate transport in isolated brush border membrane vesicles from rat intestine. J Biol Chem 256(9):4489–4493

    PubMed  CAS  Google Scholar 

  • Shane B (1989) Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam Horm 45:263–335

    Article  PubMed  CAS  Google Scholar 

  • Sharina IG et al (2001) Mutational analysis of the functional role of conserved arginine and lysine residues in transmembrane domains of the murine reduced folate carrier. Mol Pharmacol 59(5):1022–1028

    PubMed  CAS  Google Scholar 

  • Sharina IG et al (2002) Role of the C-terminus and the long cytoplasmic loop in reduced folate carrier expression and function. Biochem Pharmacol 63(9):1717–1724

    Article  PubMed  CAS  Google Scholar 

  • Shayeghi M et al (2005) Identification of an intestinal heme transporter. Cell 122(5):789–801

    Article  PubMed  CAS  Google Scholar 

  • Shibayama Y et al (2006) Effect of methotrexate treatment on expression levels of multidrug resistance protein 2, breast cancer resistance protein and organic anion transporters Oat1, Oat2 and Oat3 in rats. Cancer Sci 97(11):1260–1266

    Article  PubMed  CAS  Google Scholar 

  • Shin DS et al (2010) Functional roles of aspartate residues of the proton-coupled folate transporter (PCFT-SLC46A1); a D156Y mutation causing hereditary folate malabsorption. Blood 116:5162–5169

    Article  PubMed  CAS  Google Scholar 

  • Shin DS et al. (2011) Identification of novel mutations in the proton-coupled folate transporter (PCFT-SLC46A1) associated with hereditary folate malabsorption. Mol Genet Metab, in press

    Article  PubMed  CAS  Google Scholar 

  • Sierra EE et al (1995) Comparison of transport properties of the reduced folate carrier and folate receptor in murine L1210 leukemia cells. Biochem Pharmacol 50(8):1287–1294

    Article  PubMed  CAS  Google Scholar 

  • Sierra EE et al (1997) pH dependence of methotrexate transport by the reduced folate carrier and the folate receptor in L1210 leukemia cells. Further evidence for a third route mediated at low pH. Biochem Pharmacol 53(2):223–231

    Article  PubMed  CAS  Google Scholar 

  • Sirotnak FM, Donsbach RC (1974) Stereochemical characteristics of the folate-antifolate transport mechanism in L1210 leukemia cells. Cancer Res 34(2):371–377

    PubMed  CAS  Google Scholar 

  • Sirotnak FM, Kurita S, Hutchison DJ (1968) On the nature of a transport alteration determining resistance to amethopterin in the L1210 leukemia. Cancer Res 28(1):75–80

    PubMed  CAS  Google Scholar 

  • Sirotnak FM et al (1979) Stereospecificity at carbon 6 of fomyltetrahydrofolate as a competitive inhibitor of transport and cytotoxicity of methotrexate in vitro. Biochem Pharmacol 28(19):2993–2997

    Article  PubMed  CAS  Google Scholar 

  • Sirotnak FM et al (1987) 10-Ethyl-10-deaza-aminopterin: structural design and biochemical, pharmacologic, and antitumor properties. NCI Monogr 5:127–131

    PubMed  Google Scholar 

  • Smith GK, Bigley JW, Dev IK, Duch DS, Ferone R, Pendergast W (1999) A potent, noncompetitive thymidylate synthase inhibitor-preclinical and preliminary clinical studies. In: Jackman AL (ed) Anticancer drug development guide: antifolate drugs in cancer therapy. Humana Press, Totowa, pp 59–100

    Google Scholar 

  • Spinella MJ et al (1995) Distinguishing between folate receptor-alpha-mediated transport and reduced folate carrier-mediated transport in L1210 leukemia cells. J Biol Chem 270(14):7842–7849

    Article  PubMed  CAS  Google Scholar 

  • Steinfeld R et al (2009) Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Hum Genet 85(3):354–363

    Article  PubMed  CAS  Google Scholar 

  • Stokstad ELR (1990) Historical perspective on key advances in the biochemistry and physiology of folates. In: Picciano MF, Stokstad ELR, Spector R (eds) Folic acid metabolism in health and disease. Wiley-Liss, New York, pp 1–21

    Google Scholar 

  • Subramanian VS, Marchant JS, Said HM (2008) Apical membrane targeting and trafficking of the human proton-coupled transporter in polarized epithelia. Am J Physiol Cell Physiol 294(1):C233–C240

    Article  PubMed  CAS  Google Scholar 

  • Theti DS et al (2003) Selective delivery of CB300638, a cyclopenta[g]quinazoline-based thymidylate synthase inhibitor into human tumor cell lines overexpressing the alpha-isoform of the folate receptor. Cancer Res 63(13):3612–3618

    PubMed  CAS  Google Scholar 

  • Thompson CA (2009) FDA approves pralatrexate for treatment of rare lymphoma. Am J Health Syst Pharm 66(21):1890

    Article  PubMed  Google Scholar 

  • Thwaites DT, Anderson CM (2007) H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp Physiol 92(4):603–619

    Article  PubMed  CAS  Google Scholar 

  • Tredan O et al (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99(19):1441–1454

    Article  PubMed  CAS  Google Scholar 

  • Umapathy NS et al (2007) Cloning and functional characterization of the proton-coupled electrogenic folate transporter and analysis of its expression in retinal cell types. Invest Ophthalmol Vis Sci 48(11):5299–5305

    Article  PubMed  Google Scholar 

  • Unal ES et al (2008) N-linked glycosylation and its impact on the electrophoretic mobility and function of the human proton-coupled folate transporter (HsPCFT). Biochim Biophys Acta 1778(6):1407–1414

    Article  PubMed  CAS  Google Scholar 

  • Unal ES et al (2009a) The functional roles of the His247 and His281 residues in folate and proton translocation mediated by the human proton-coupled folate transporter (PCFT-SLC46A1). J Biol Chem 284:17846–17857

    Article  PubMed  CAS  Google Scholar 

  • Unal ES, Zhao R, Goldman ID (2009b) Role of the glutamate 185 residue in proton translocation mediated by the proton-coupled folate transporter (PCFT-SLC46A1). Am J Physiol Cell Physiol 297:C66–C74

    Article  PubMed  CAS  Google Scholar 

  • Vincent ML, Russell RM, Sasak V (1985) Folic acid uptake characteristics of a human colon carcinoma cell line, Caco-2. A newly-described cellular model for small intestinal epithelium. Hum Nutr Clin Nutr 39(5):355–360

    PubMed  CAS  Google Scholar 

  • Vogelzang NJ et al (2003) Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 21(14):2636–2644

    Article  PubMed  CAS  Google Scholar 

  • Wang Y et al (2001) Localization of the murine reduced folate carrier as assessed by immunohistochemical analysis. Biochim Biophys Acta 1513(1):49–54

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zhao R, Goldman ID (2004) Characterization of a folate transporter in HeLa cells with a low pH optimum and high affinity for pemetrexed distinct from the reduced folate carrier. Clin Cancer Res 10(18 Pt 1):6256–6264

    Article  PubMed  CAS  Google Scholar 

  • Wang Y et al (2005) Preservation of folate transport activity with a low-pH optimum in rat IEC-6 intestinal epithelial cell lines that lack reduced folate carrier function. Am J Physiol Cell Physiol 288(1):C65–C71

    PubMed  CAS  Google Scholar 

  • Wang L et al (2010) Synthesis and antitumor activity of a novel series of 6-substituted pyrrolo[2, 3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry. J Med Chem 53(3):1306–1318

    Article  PubMed  CAS  Google Scholar 

  • Weitman SD et al (1992a) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52(12):3396–3401

    PubMed  CAS  Google Scholar 

  • Weitman SD et al (1992b) Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis. Cancer Res 52(23):6708–6711

    PubMed  CAS  Google Scholar 

  • Wessels JA, Huizinga TW, Guchelaar HJ (2008) Recent insights in the pharmacological actions of methotrexate in the treatment of rheumatoid arthritis. Rheumatology (Oxford) 47(3):249–255

    Article  CAS  Google Scholar 

  • Westerhof GR et al (1995) Carrier- and receptor-mediated transport of folate antagonists targeting folate-dependent enzymes: correlates of molecular-structure and biological activity. Mol Pharmacol 48(3):459–471

    PubMed  CAS  Google Scholar 

  • Whetstine JR, Matherly LH (2001) The basal promoters for the human reduced folate carrier gene are regulated by a GC-box and a cAMP-response element/AP-1-like element. Basis for tissue-specific gene expression. J Biol Chem 276(9):6350–6358

    Article  PubMed  CAS  Google Scholar 

  • Whetstine JR et al (2001) Single nucleotide polymorphisms in the human reduced folate carrier: characterization of a high-frequency G/A variant at position 80 and transport properties of the His(27) and Arg(27) carriers. Clin Cancer Res 7(11):3416–3422

    PubMed  CAS  Google Scholar 

  • Whetstine JR, Flatley RM, Matherly LH (2002a) The human reduced folate carrier gene is ubiquitously and differentially expressed in normal human tissues: identification of seven non-coding exons and characterization of a novel promoter. Biochem J 367(Pt 3):629–640

    Article  PubMed  CAS  Google Scholar 

  • Whetstine JR, Witt TL, Matherly LH (2002b) The human reduced folate carrier gene is regulated by the AP2 and sp1 transcription factor families and a functional 61-base pair polymorphism. J Biol Chem 277(46):43873–43880

    Article  PubMed  CAS  Google Scholar 

  • White JC, Bailey BD, Goldman ID (1978) Lack of stereospecificity at carbon 6 of methyltetrahydrofolate transport in Ehrlich ascites tumor cells. Carrier-mediated transport of both stereoisomers. J Biol Chem 253(1):242–245

    PubMed  CAS  Google Scholar 

  • Whitehead VM et al (1992) Accumulation of high levels of methotrexate polyglutamates in lymphoblasts from children with hyperdiploid (greater than 50 chromosomes) B-lineage acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 80(5):1316–1323

    PubMed  CAS  Google Scholar 

  • Wilson KS, Malfair Taylor SC (2009) Raltitrexed: optimism and reality. Expert Opin Drug Metab Toxicol 5(11):1447–1454

    Article  PubMed  CAS  Google Scholar 

  • Witt TL, Stapels SE, Matherly LH (2004) Restoration of transport activity by co-expression of human reduced folate carrier half-molecules in transport-impaired K562 cells: localization of a substrate binding domain to transmembrane domains 7-12. J Biol Chem 279(45):46755–46763

    Article  PubMed  CAS  Google Scholar 

  • Wollack JB et al (2008) Characterization of folate uptake by choroid plexus epithelial cells in a rat primary culture model. J Neurochem 104(6):1494–1503

    Article  PubMed  CAS  Google Scholar 

  • Wong SC et al (1995) Isolation of human cDNAs that restore methotrexate sensitivity and reduced folate carrier activity in methotrexate transport-defective Chinese hamster ovary cells. J Biol Chem 270(29):17468–17475

    Article  PubMed  CAS  Google Scholar 

  • Wong SC et al (1998) Effects of the loss of capacity for N-glycosylation on the transport activity and cellular localization of the human reduced folate carrier. Biochim Biophys Acta 1375(1–2):6–12

    PubMed  CAS  Google Scholar 

  • Wong SC et al (1999) Impaired membrane transport in methotrexate-resistant CCRF-CEM cells involves early translation termination and increased turnover of a mutant reduced folate carrier. J Biol Chem 274(15):10388–10394

    Article  PubMed  CAS  Google Scholar 

  • Worm J et al (2001) Methylation-dependent silencing of the reduced folate carrier gene in inherently methotrexate-resistant human breast cancer cells. J Biol Chem 276(43):39990–40000

    Article  PubMed  CAS  Google Scholar 

  • Xia W, Low PS (2010) Folate-targeted therapies for cancer. J Med Chem 53: 6811–6824

    Article  PubMed  CAS  Google Scholar 

  • Yang R et al (2003) Sequence alterations in the reduced folate carrier are observed in osteosarcoma tumor samples. Clin Cancer Res 9(2):837–844

    PubMed  CAS  Google Scholar 

  • Yang J et al (2007) Characterization of the pH of folate receptor-containing endosomes and the rate of hydrolysis of internalized acid-labile folate-drug conjugates. J Pharmacol Exp Ther 321(2):462–468

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Wong SC, Matherly LH (1998a) Structure and organization of the human reduced folate carrier gene. Biochim Biophys Acta 1442(2–3):389–393

    PubMed  CAS  Google Scholar 

  • Zhang L et al (1998b) Reduced folate carrier gene expression in childhood acute lymphoblastic leukemia: relationship to immunophenotype and ploidy. Clin Cancer Res 4(9):2169–2177

    PubMed  CAS  Google Scholar 

  • Zhao R, Goldman ID (2003) Resistance to antifolates. Oncogene 22(47):7431–7457

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Goldman ID (2007) The molecular identity and characterization of a proton-coupled folate transporter – PCFT; biological ramifications and impact on the activity of pemetrexed. Cancer Metastasis Rev 26(1):129–139

    Article  PubMed  CAS  Google Scholar 

  • Zhao R et al (2010) Membrane topological analysis of the proton-coupled folate transporter (PCFT-SLC46A1) by the substituted cysteine accessibility method. Biochemistry 49:2925–2931

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Gao F, Goldman ID (1999) Discrimination among reduced folates and methotrexate as transport substrates by a phenylalanine substitution for serine within the predicted eighth transmembrane domain of the reduced folate carrier. Biochem Pharmacol 58(10):1615–1624

    Article  PubMed  CAS  Google Scholar 

  • Zhao R et al (2001) Impact of the reduced folate carrier on the accumulation of active thiamin metabolites in murine leukemia cells. J Biol Chem 276(2):1114–1118

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Gao F, Goldman ID (2002) Reduced folate carrier transports thiamine monophosphate: an alternative route for thiamine delivery into mammalian cells. Am J Physiol Cell Physiol 282(6):C1512–C1517

    PubMed  CAS  Google Scholar 

  • Zhao R et al (2004a) A prominent low-pH methotrexate transport activity in human solid tumors: contribution to the preservation of methotrexate pharmacologic activity in HeLa cells lacking the reduced folate carrier. Clin Cancer Res 10(2):718–727

    Article  PubMed  CAS  Google Scholar 

  • Zhao R et al (2004b) Selective preservation of pemetrexed pharmacological activity in HeLa cells lacking the reduced folate carrier: association with the presence of a secondary transport pathway. Cancer Res 64(9):3313–3319

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Hanscom M, Goldman ID (2005) The relationship between folate transport activity at low pH and reduced folate carrier function in human Huh7 hepatoma cells. Biochim Biophys Acta 1715(1):57–64

    Article  PubMed  CAS  Google Scholar 

  • Zhao R et al (2007) The spectrum of mutations in the PCFT gene, coding for an intestinal folate transporter, that are the basis for hereditary folate malabsorption. Blood 110(4):1147–1152

    Article  PubMed  CAS  Google Scholar 

  • Zhao R et al (2008) The proton-coupled folate transporter: impact on pemetrexed transport and on antifolates activities compared with the reduced folate carrier. Mol Pharmacol 74(3):854–862

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Matherly LH, Goldman ID (2009a) Membrane transporters and folate homeostasis: intestinal absorption and transport into systemic compartments and tissues. Expert Rev Mol Med 11:e4

    Article  PubMed  Google Scholar 

  • Zhao R et al (2009b) A role for the proton-coupled folate transporter (PCFT-SLC46A1) in folate receptor-mediated endocytosis. J Biol Chem 284(7):4267–4274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by grants from the National Institutes of Health, National Cancer Institute, CA53535 (LHM), CA152316 (LHM), and CA82621 (IDG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry H. Matherly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Matherly, L.H., Diop-Bove, N., Goldman, I.D. (2011). Biological Role, Properties, and Therapeutic Applications of the Reduced Folate Carrier (RFC-SLC19A1) and the Proton-Coupled Folate Transporter (PCFT-SLC46A1). In: Jackman, A., Leamon, C. (eds) Targeted Drug Strategies for Cancer and Inflammation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8417-3_1

Download citation

Publish with us

Policies and ethics