Skip to main content

Systems Biology of Tuberculosis: Insights for Drug Discovery

  • Chapter
  • First Online:
Understanding the Dynamics of Biological Systems

Abstract

Tuberculosis has been a global health concern for decades and the emergence of resistant strains and co-infection with HIV warrant newer approaches to identify anti-tubercular drugs and targets. The availability of many “omics”-scale data sets, together with the advances in computation and modelling have enabled the application of several systems-level modelling techniques in drug discovery. In this chapter, we focus on how systems-level modelling of Mtb can provide us insights on various aspects of the pathogen, from metabolic pathways to protein-protein interaction networks, and how such models lend themselves to the identification of new and potentially improved drug targets.We present a brief overview of the modelling of mycobacterial metabolism, transcriptome and host-pathogen interactions, as well as how various models can be exploited for a rational identification of potential drug targets. Systems-level modelling and simulation of pathogenic organisms has an immense potential to impact most drug discovery programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.geneontology.org/.

  2. 2.

    http://www.ebi.ac.uk/interpro/.

References

  1. R. Albert and H. G. Othmer. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol, 223(1):1–18, 2003

    Article  PubMed  CAS  Google Scholar 

  2. P. W. Anderson. More is different. Science, 177(4047):393–396, 1972

    Article  PubMed  CAS  Google Scholar 

  3. S. Anishetty, M. Pulimi, and G. Pennathur. Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis. Comput Biol Chem, 29(5):368–378, 2005

    Article  PubMed  CAS  Google Scholar 

  4. G. Apic, T. Ignjatovic, S. Boyer, and R. B. Russell. Illuminating drug discovery with biological pathways. FEBS Lett, 579(8):1872–1877, 2005

    Article  PubMed  CAS  Google Scholar 

  5. G. Balázsi, A. P. Heath, L. Shi, and M. L. Gennaro. The temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest. Mol Syst Biol, 4:225, 2008

    Article  PubMed  Google Scholar 

  6. A-L. Barabási and Z. N. Oltvai. Network biology: Understanding the cell’s functional organization. Nat Rev Genet, 5(2):101–113, 2004

    Google Scholar 

  7. C. E. Barry III, R. E. Lee, K. Mdluli, A. E. Simpson, B. G. Schroeder, R. A. Slayden, and Y. Yuan. Mycolic acids: Structure, biosynthesis and physiological functions. Prog Lipid Res, 37:143–179, 1998

    Article  PubMed  CAS  Google Scholar 

  8. S. A. Becker and B. Ø. Palsson. Three factors underlying incorrect in silico predictions of essential metabolic genes. BMC Syst Biol, 2:14, 2008

    Article  PubMed  Google Scholar 

  9. E. Beretta, M. Carletti, D. E. Kirschner, and S. Marino. Stability analysis of a mathematical model of the immune response with delays, In: Mathematics for life science and medicine, pages 177–206. Springer, Berlin, 2007

    Google Scholar 

  10. D. J. V. Beste, T. Hooper, G. Stewart, B. Bonde, C. Avignone-Rossa, M. E. Bushell, P. Wheeler, S. Klamt, A. M. Kierzek, and J. McFadden. GSMN-TB: A web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol, 8:R89, 2007

    Article  PubMed  Google Scholar 

  11. H. P. J. Bonarius, G. Schmid, and J. Tramper. Flux analysis of underdetermined metabolic networks: The quest for the missing constraints. Trends Biotechnol, 15(8): 308–314, 1997

    Article  CAS  Google Scholar 

  12. S. Bonora and G. Di Perri. Interactions between antiretroviral agents and those used to treat tuberculosis: Clinical pharmacology of antiretroviral drugs. Curr Opin HIV & AIDS, 3:306–312, 2008

    Article  Google Scholar 

  13. H. I. Boshoff, T. G. Myers, B. R. Copp, M. R. McNeil, M. Wilson, and C. E. Barry III. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: Novel insights into drug mechanisms of action. J Biol Chem, 279(38): 40174–40184, 2004

    Article  PubMed  CAS  Google Scholar 

  14. A. Brückner, C. Polge, N. Lentze, D. Auerbach, and U. Schlattner. Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci, 10(6):2763–2788, 2009

    Article  PubMed  Google Scholar 

  15. L. Cabusora, E. Sutton, A. Fulmer, and C. V. Forst. Differential network expression during drug and stress response. Bioinformatics, 21(12):2898–2905, 2005

    Article  PubMed  CAS  Google Scholar 

  16. J-C. Camus, M. J. Pryor, C. Medigue, and S. T. Cole. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology, 148(10):2967–2973, 2002

    Google Scholar 

  17. B. L. Claus and D. J. Underwood. Discovery informatics: Its evolving role in drug discovery. Drug Discov Today, 7:957–966, 2002

    Article  PubMed  Google Scholar 

  18. S. T. Cole, R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V. Gordon, K. Eiglmeier, S. Gas, C. E. Barry III, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, A. Krogh, J. McLean, S. Moule, L. Murphy, K. Oliver, J. Osborne, M. A. Quail, M.-A. Rajandream, J. Rogerand, S. Rutter, K. Seeger, J. Skelton, R. Squares, S. Squares, J. E. Sulston, K. Taylor, S. Whitehead, and B. G. Barrell. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393:537–544, 1998

    Article  PubMed  CAS  Google Scholar 

  19. A. Cornish-Bowden and M. L. Cárdenas. Metabolic analysis in drug design. C R Biol, 326(5):509–515, 2003

    Article  PubMed  CAS  Google Scholar 

  20. D. C. Crick, S. Mahapatra, and P. J. Brennan. Biosynthesis of the arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis. Glycobiology, 11:107R–118R, 2001

    Article  PubMed  CAS  Google Scholar 

  21. P. Csermely, V. Ágoston, and S. Pongor. The efficiency of multi-target drugs: The network approach might help drug design. Trends Pharmacol Sci, 26:178–182, 2005

    Article  PubMed  CAS  Google Scholar 

  22. T. Dandekar, B. Snel, M. A. Huynen, and P. Bork. Conservation of gene order: A fingerprint of proteins that physically interact. Trends Biochem Sci, 23(9):324–328, 1998

    Article  PubMed  CAS  Google Scholar 

  23. E. J. Davidov, J. M. Holland, E. W. Marple, and S. Naylor. Advancing drug discovery through systems biology. Drug Discov Today, 8(4):175–183, 2003

    Article  PubMed  CAS  Google Scholar 

  24. J. Doyle. Computational biology. Beyond the spherical cow. Nature, 411(6834):151–152, 2001

    Google Scholar 

  25. P. Draper and M. Daffé. The cell envelope of Mycobacterium tuberculosis with special reference to the capsule and outer permeability barrier. In: Stewart T. Cole, Kathleen D. Eisenach, David N. McMurray, and William R. Jacobs Jr., editors, Tuberculosis and the tubercle bacillus, pages 261–273. American Society of Microbiology Press, 2005

    Google Scholar 

  26. E. Dubnau, J. Chan, C. Raynaud, V. P. Mohan, M. A. Lanéelle, K. Yu, A. Quémard, I. Smith, and M. Daffé. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol, 36(3):630–637, 2000

    Article  PubMed  CAS  Google Scholar 

  27. J. S. Edwards and B. Ø. Palsson. The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities. Proc Natl Acad Sci USA, 97 (10):5528–5533, 2000

    Article  PubMed  CAS  Google Scholar 

  28. J. S. Edwards, M. W. Covert, and B. Ø. Palsson. Metabolic modelling of microbes: The flux-balance approach. Environ Microbiol, 4(3):133–133, 2002

    Article  PubMed  Google Scholar 

  29. S. Fields and O. Song. A novel genetic system to detect protein-protein interactions. Nature, 340(6230):245–246, 1989

    Article  PubMed  CAS  Google Scholar 

  30. C. V. Forst. Host-pathogen systems biology. Drug Discov Today, 11(5–6):220–227, 2006

    Article  PubMed  CAS  Google Scholar 

  31. J. Förster, I. Famili, P. Fu, B. Ø. Palsson, and J. Nielsen. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res, 13(2):244–253, 2003

    Article  PubMed  Google Scholar 

  32. M. S. Glickman, J. S. Cox, and W. R. Jacobs Jr. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell, 5(4):717–727, 2000

    Article  PubMed  CAS  Google Scholar 

  33. S. Gupta, S. S. Bisht, R. Kukreti, S. Jain, and S. K. Brahmachari. Boolean network analysis of a neurotransmitter signaling pathway. J Theor Biol, 244(3):463–469, Feb 2007

    Article  PubMed  CAS  Google Scholar 

  34. S. Hasan, S. Daugelat, P. S. Rao, and M. Schreiber. Prioritizing genomic drug targets in pathogens: Application to Mycobacterium tuberculosis. PLoS Comput Biol, 2(6):e61, 2006

    Google Scholar 

  35. P. J. Hunter and T. K. Borg. Integration from proteins to organs: The Physiome project. Nat Rev Mol Cell Biol, 4(3):237–243, 2003

    Article  PubMed  CAS  Google Scholar 

  36. T. Ideker, O. Ozier, B. Schwikowski, and A. F. Siegel. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics, 18 Suppl 1: S233–S240, 2002

    Google Scholar 

  37. P-E. Jacques, A. L. Gervais, M. Cantin, J-F. Lucier, G. Dallaire, G. Drouin, L. Gaudreau, J. Goulet, and J. Brzezinski. MtbRegList, a database dedicated to the analysis of transcriptional regulation in Mycobacterium tuberculosis. Bioinformatics, 21 (10):2563–2565, 2005

    Google Scholar 

  38. N. Jamshidi and B. Ø. Palsson. Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol, 1:26, 2007

    Article  PubMed  Google Scholar 

  39. H. Jeong, S. P. Mason, A-L. Barabási, and Z. N. Oltvai. Lethality and centrality in protein networks. Nature, 411(6833):41–42, 2001

    Google Scholar 

  40. Y. Kalidas and N. Chandra. Pocketdepth: A new depth based algorithm for identification of ligand binding sites in proteins. J Struct Biol, 161(1):31–42, 2008

    Article  PubMed  CAS  Google Scholar 

  41. K. J. Kauffman, P. Prakash, and J. S. Edwards. Advances in flux balance analysis. Curr Opin Biotechnol, 14(5):491–496, 2003

    Article  PubMed  CAS  Google Scholar 

  42. S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 22(3):437–467, 1969

    Article  PubMed  CAS  Google Scholar 

  43. D. Kirschner and S. Marino. Mycobacterium tuberculosis as viewed through a computer. Trends Microbiol, 13(5):206–211, 2005

    Article  PubMed  CAS  Google Scholar 

  44. E. M. Marcotte, M. Pellegrini, H-L. Ng, D. W. Rice, T. O. Yeates, and D. Eisenberg. Detecting protein function and protein-protein interactions from genome sequences. Science, 285(5428):751–753, 1999

    Google Scholar 

  45. S. Marino and D. E. Kirschner. The human immune response to Mycobacterium tuberculosis in lung and lymph node. J Theor Biol, 227(4):463–486, 2004

    Article  PubMed  CAS  Google Scholar 

  46. S. Marino, S. Pawar, C. L. Fuller, T. A. Reinhart, J. L. Flynn, and D. E. Kirschner. Dendritic cell trafficking and antigen presentation in the human immune response to Mycobacterium tuberculosis. J Immunol, 173(1):494–506, 2004

    PubMed  CAS  Google Scholar 

  47. S. Marino, E. Beretta, and D. E. Kirschner. The role of delays in innate and adaptive immunity to intracellular bacterial infection. Math Biosci Eng, 4(2):261–288, 2007a

    Article  PubMed  Google Scholar 

  48. S. Marino, D. Sud, H. Plessner, L. P. Lin, J. Chan, J. L. Flynn, and D. E. Kirschner. Differences in reactivation of tuberculosis induced from anti-TNF treatments are based on bioavailability in granulomatous tissue. PLoS Comput Biol, 3(10):1909–1924, 2007b

    Article  PubMed  CAS  Google Scholar 

  49. K. Mdluli and M. Spigelman. Novel targets for tuberculosis drug discovery. Curr Opin Pharmacol, 6(5):459–467, 2006

    Article  PubMed  CAS  Google Scholar 

  50. P. Nunn, B. Williams, K. Floyd, C. Dye, G. Elzinga, and M. Raviglione. Tuberculosis control in the era of HIV. Nat Rev Immunol, 5(10):819–826, 2005

    Article  PubMed  CAS  Google Scholar 

  51. J. A. Papin, T. Hunter, B. Ø. Palsson, and S. Subramaniam. Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol, 6(2):99–111, 2005

    Article  PubMed  CAS  Google Scholar 

  52. M. Pellegrini, E. M. Marcotte, M. J. Thompson, D. Eisenberg, and T. O. Yeates. Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles. Proc Natl Acad Sci USA, 96(8):4285–4288, 1999

    Article  PubMed  CAS  Google Scholar 

  53. G. Ramachandraiah and N. Chandra. Sequence and structural determinants of mannose recognition. Proteins, 39(4):358–364, 2000

    Article  PubMed  CAS  Google Scholar 

  54. K. Raman. Systems-level modelling and simulation of Mycobacterium tuberculosis: Insights for drug discovery. PhD thesis, Indian Institute of Science, Bangalore, 2008

    Google Scholar 

  55. K. Raman and N. Chandra. Mycobacterium tuberculosis interactome analysis unravels potential pathways to drug resistance. BMC Microbiol, 8:234, 2008

    Article  PubMed  Google Scholar 

  56. K. Raman and N. Chandra. Flux balance analysis of biological systems: Applications and challenges. Brief Bioinform, 10(4):435–449, 2009

    Article  PubMed  CAS  Google Scholar 

  57. K. Raman, P. Rajagopalan, and N. Chandra. Flux balance analysis of mycolic acid pathway: Targets for anti-tubercular drugs. PLoS Comput Biol, 1(5):e46, 2005

    Google Scholar 

  58. K. Raman, Y. Kalidas, and N. Chandra. targetTB: A target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst Biol, 2(1):109, 2008

    Google Scholar 

  59. K. Raman, R. Vashisht, and N. Chandra. Strategies for efficient disruption of metabolism in Mycobacterium tuberculosis from network analysis. Mol Biosyst, 5:1740–1751, 2009

    Article  PubMed  CAS  Google Scholar 

  60. K. Raman, A. G. Bhat, and N. Chandra. A systems perspective of hostpathogen interactions: Predicting disease outcome in tuberculosis. Mol Biosyst, 6:516–530, 2010

    Article  PubMed  CAS  Google Scholar 

  61. K. Raman, Y. Kalidas, and N. Chandra. Model-driven drug discovery: Principles and practices, Biological database modeling, pages 163–188. Artech House, New York, 2007

    Google Scholar 

  62. J. C. J. Ray and D. E. Kirschner. Requirement for multiple activation signals by anti-inflammatory feedback in macrophages. J Theor Biol, 241(2):276–294, 2006

    Article  PubMed  CAS  Google Scholar 

  63. J. C. J. Ray, J. Wang, J. Chan, and D. E. Kirschner. The timing of TNF and IFN-γ signaling affects macrophage activation strategies during Mycobacterium tuberculosis infection. J Theor Biol, 252(1):24–38, 2008

    Article  PubMed  CAS  Google Scholar 

  64. J. L. Reed, I. Famili, I Thiele, and B. Ø. Palsson. Towards multidimensional genome annotation. Nat Rev Genet, 7(2):130–141, 2006a

    Google Scholar 

  65. J. L. Reed, T. R. Patel, K. H. Chen, A. R. Joyce, M. K. Applebee, D. D. Herring, O. T. Bui, E. M. Knight, S. S. Fong, and B. Ø. Palsson. Systems approach to refining genome annotation. Proc Natl Acad Sci USA, 103(46):17480–17484, Nov 2006b

    Article  PubMed  CAS  Google Scholar 

  66. C. M. Sassetti, D. M. Boyd, and E. J. Rubin. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol, 48(1):77–84, 2003

    Article  PubMed  CAS  Google Scholar 

  67. D. Schnappinger, S. Ehrt, M. I. Voskuil, Y. Liu, J. A. Mangan, I. M. Monahan, G. Dolganov, B. Efron, P. D. Butcher, C. Nathan, and G. K. Schoolnik. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: Insights into the phagosomal environment. J Exp Med, 198(5):693–704, 2003

    Article  PubMed  CAS  Google Scholar 

  68. J. L. Segovia-Juarez, S. Ganguli, and D. E. Kirschner. Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J Theor Biol, 231(3):357–376, 2004

    Google Scholar 

  69. I. Smith. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev, 16(3):463–496, 2003

    Article  PubMed  CAS  Google Scholar 

  70. M. Strong, T. G. Graeber, M. Beeby, M. Pellegrini, M. J. Thompson, T. O. Yeates, and D. Eisenberg. Visualization and interpretation of protein networks in Mycobacterium tuberculosis based on hierarchical clustering of genome-wide functional linkage maps. Nucleic Acids Res, 31(24):7099–7109, 2003

    Article  PubMed  CAS  Google Scholar 

  71. D. Sud, C. Bigbee, J. L. Flynn, and D. E. Kirschner. Contribution of CD8 +  T cells to control of Mycobacterium tuberculosis infection. J Immunol, 176(7): 4296–4314, 2006

    PubMed  CAS  Google Scholar 

  72. K. Takayama, C. Wang, and G. S. Besra. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev, 18:81–101, 2005

    Article  PubMed  CAS  Google Scholar 

  73. J. Thakar, M. Pilione, G. Kirimanjeswara, E. T. Harvill, and R. Albert. Modeling systems-level regulation of host immune responses. PLoS Comput Biol, 3(6):e109, 2007

    Google Scholar 

  74. T. Thomas. Boolean formalization of genetic control circuits. J Theor Biol, 42(3):563–585, 1973

    Article  PubMed  CAS  Google Scholar 

  75. K. D. Verkhedkar, K. Raman, N. Chandra, and S. Vishveshwara. Metabolome based reaction graphs of M. tuberculosis and M. leprae: A comparative network analysis. PLoS One, 2(9):e881, 2007

    Google Scholar 

  76. P. K. Vinod, B. Konkimalla, and N. Chandra. In-silico pharmacodynamics: Correlation of adverse effects of H2-antihistamines with histamine N-methyl transferase binding potential. Appl Bioinform, 5(3):141–150, 2006

    Article  CAS  Google Scholar 

  77. C. Von Mering, L. J. Jensen, M. Kuhn, S. Chaffron, T. Doerks, B. Krüger, B. Snel, and P. Bork. STRING 7 – recent developments in the integration and prediction of protein interactions. Nucleic Acids Res, 35(Database issue):358–362, 2007

    Google Scholar 

  78. J. S. Waddell and P. D. Butcher. Microarray analysis of whole genome expression of intracellular Mycobacterium tuberculosis. Curr Mol Med, 7(3):287–296, 2007

    Article  PubMed  CAS  Google Scholar 

  79. S. J. Waddell, R. A. Stabler, K. Laing, L. Kremer, R. C. Reynolds, and G. S. Besra. The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. Tuberculosis (Edinb), 84(3–4):263–274, 2004

    Google Scholar 

  80. S. J. Waddell, P. D. Butcher, and N. G. Stoker. Rna profiling in host-pathogen interactions. Curr Opin Microbiol, 10(3):297–302, 2007

    Article  PubMed  CAS  Google Scholar 

  81. S. J. Waddell, K. Laing, C. Senner, and P. D. Butcher. Microarray analysis of defined Mycobacterium tuberculosis populations using rna amplification strategies. BMC Genomics, 9:94, 2008

    Article  PubMed  Google Scholar 

  82. J. E. Wigginton and D. E. Kirschner. A model to predict cell-mediated immune regulatory mechanisms during human infection with Mycobacterium tuberculosis. J Immunol, 166(3):1951–1967, 2001

    PubMed  CAS  Google Scholar 

  83. World Health Organisation. Global tuberculosis control: Surveillance, planning, financing: WHO report 2008. World Health Organisation, 2008 ISBN 978-9241563543

    Google Scholar 

  84. K. Yeturu and N. Chandra. PocketMatch: A new algorithm to compare binding sites in protein structures. BMC Bioinform, 9:543, 2008

    Article  Google Scholar 

  85. D. Young, J. Stark, and D. E. Kirschner. Systems biology of persistent infection: Tuberculosis as a case study. Nat Rev Microbiol, 6(7):520–528, 2008

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik Raman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Raman, K., Chandra, N. (2011). Systems Biology of Tuberculosis: Insights for Drug Discovery. In: Dubitzky, W., Southgate, J., Fuß, H. (eds) Understanding the Dynamics of Biological Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7964-3_5

Download citation

Publish with us

Policies and ethics