Skip to main content

Bacterial Biosorption: A Technique for Remediation of Heavy Metals

  • Chapter
  • First Online:
Microbes and Microbial Technology

Abstract

Bacterial biosorption can be used for the removal of pollutants from waters contaminated with pollutants that are not easily biodegradable, such as metals and dyes. A variety of biomaterials are known to bind these pollutants including bacteria, fungi, algae, and certain industrial and agricultural wastes. Biosorbents are less costly and more effective alternatives for the removal of metallic elements, especially heavy metals, from aqueous solution. In this chapter, the sorption abilities of bacterial biomass toward metal ions are emphasized. The appropriate conditions for immobilizing bacteria for maximum biosorption and the mechanism(s) involved are highlighted. The properties of cell wall constituents, such as peptidoglycan, and the role of functional groups, such as carboxyl, amine, and phosphonate, are discussed on the basis of their biosorption potentials. Binding mechanisms as well as the parameters influencing passive uptake of pollutants are analyzed. A detailed description of isotherm and kinetic models and the importance of mechanistic modeling are presented. To enhance biosorption capacity, biomass modifications through chemical methods and genetic engineering are needed for the effective removal of metal. For continuous treatment of effluents, a packed column configuration is suggested and the factors influencing its performance are discussed. The chapter also highlights the necessity for examination of biosorbents within real-world situations, as competition between solutes and water quality may affect biosorption performance. Thus, this chapter reviews the achievements and current status of biosorption technology and provides insights into this research frontier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, G. S., Bhuptawat, H. K., and Chaudhari, S. 2006. Biosorption of aqueous chromium(VI) by Tamarindus indica seeds. Bioresour. Technol. 97:949–956.

    Article  CAS  Google Scholar 

  • Akar, T., Tunali, S., and Kiran, I. 2005. Botrytis cinerea as a new fungal biosorbent for removal of Pb(II) from aqueous solutions. Biochem. Eng. J. 25:227–235.

    Article  CAS  Google Scholar 

  • Akar, T., Kaynak, Z., Ulusoy, S., Yuvaci, D., Ozsari, G., and Akar S. T. 2009. Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: biosorption characteristics in batch and dynamic flow mode. J. Hazard. Mater. 163:1134–1141.

    Article  CAS  Google Scholar 

  • Aksu, Z. 2005. Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40:997–1026.

    Article  CAS  Google Scholar 

  • Aksu, Z., and Gönen, F. 2004. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem. 39:599–613.

    Article  CAS  Google Scholar 

  • Aksu, Z., Acikel, U., Kabasakal, E., and Tezer, S. 2002. Equilibrium modelling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge. Water Res. 36:3063–3073.

    Article  CAS  Google Scholar 

  • Al-Rub, F. A. A. 2006. Biosorption of zinc on palm tree leaves: equilibrium, kinetics, and thermodynamics studies. Sep. Sci. Technol. 41:3499–3515.

    Article  CAS  Google Scholar 

  • Amarasinghe, B. M. W. P. K., and Williams, R. A. 2007. Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J. 132:299–309.

    Article  CAS  Google Scholar 

  • Antizar-Ladislao, A., and Galil, N. I. (2004). Biosorption of phenol and chlorophenols by acclimated residential biomass under bioremediation conditions in a sandy aquifer. Water. Res. 38:267–276.

    Article  CAS  Google Scholar 

  • Apiratikul, R., and Pavasant, P. 2008. Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour. Technol. 99:2766–2777.

    Article  CAS  Google Scholar 

  • Arica, M. A., Kacar, Y., and Genc, O. 2001. Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads: preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresour. Technol. 80:121–129.

    Article  CAS  Google Scholar 

  • Arica, M. A., Bayremoglu, G., Yilmaz, M., Bektas, S., and Genc, O. 2004. Biosorption of Hg2+, Cd2+ and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. J. Hazard. Mater. B109:191–199.

    Article  CAS  Google Scholar 

  • Aydin, H., Bulut, Y., and Yerlikaya, C. 2008. Removal of copper (II) fromaqueous solution by adsorption onto low-cost adsorbents. J. Environ. Manage. 87:37–45.

    Article  CAS  Google Scholar 

  • Bae, W., Mulchandani, A., and Chen, W. 2002. Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation, J. Inorg. Biochem. 88:223–227.

    Article  CAS  Google Scholar 

  • Bae, W., Wu, C. H., Kostal, J., Mulchandani, A., and Chen, W. 2003. Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl. Environ. Microbiol. 69:3176–3180.

    Article  CAS  Google Scholar 

  • Baral, S. S., Das, S. N., and Rath, P. 2006. Hexavalent chromium removal fromaqueous solution by adsorption on treated sawdust. Biochem. Eng. J. 31:216–222.

    Article  CAS  Google Scholar 

  • Baral, S. S., Das, S. N., Rath, P., Roy Chaudhury, P. G., and Swamy, Y. V. 2007. Removal of Cr(VI) from aqueous solution using waste weed, Salvinia cucullata. Chem. Ecol. 23:105–117.

    Article  CAS  Google Scholar 

  • Basha, S., Murthy, Z. V. P., and Jha, B. 2008. Sorption of Hg(II) from aqueous solutions onto Carica papaya: application of isotherms. Ind. Eng. Chem. Res. 47:980–986.

    Article  CAS  Google Scholar 

  • Beolchini, F., Pagnanelli, F., Toro, L., and Vegliò, F. 2003. Biosorption of copper by Sphaerotilus natans immobilised in polysulfone matrix: equilibrium and kinetic analysis. Hydrometallurgy. 70:101–112.

    CAS  Google Scholar 

  • Beolchini, F., Pagnanelli, F., Toro, L., and Vegliò, F. 2006. Ionic strength effect on copper biosorption by Sphaerotilus natans: equilibrium study and dynamic modelling in membrane reactor. Water. Res. 40:144–152.

    Article  CAS  Google Scholar 

  • Beveridge, T. J. 1989. Role of cellular design in bacterial metal accumulation and mineralization. Annu. Rev. Microbiol. 43:147–171.

    Article  CAS  Google Scholar 

  • Beveridge, T. J. 2001. Use of the Gram stain in microbiology. Biotech. Histochem. 76:111–8.

    Article  CAS  Google Scholar 

  • Bueno, B. Y. M., Torem, M. L., Molina, F., and de Mesquita. L. M. S. 2008. Biosorption of lead(II), chromium(III) and copper(II) by R. opacus: equilibrium and kinetic studies. Miner. Eng. 21:65–75.

    Article  CAS  Google Scholar 

  • Cabuk, A., Akar, T., Tunali, S., and Gedikli, S. 2007. Biosorption of Pb(II) by industrial strain of Saccharomyces cerevisiae immobilized on the biomatrix of cone biomass of Pinus nigra: equilibrium and mechanism analysis. Chem. Eng. J. 131:293–300.

    Article  CAS  Google Scholar 

  • Calfa, B. A., and Torem, M. L. 2008. On the fundamentals of Cr(III) removal from liquid streams by a bacterial strain. Miner. Eng. 21:48–54.

    Article  CAS  Google Scholar 

  • Cayllahua, J. E. B., de Carvalho, R. J., and Torem. M. L. 2009. Evaluation of equilibrium, kinetic and thermodynamic parameters for biosorption of nickel(II) ions onto bacteria strain, Rhodococcus opacus. Miner. Eng. 22:1318–1325.

    Article  CAS  Google Scholar 

  • Chen, S. L., Kim, E., Shuler, M. L., and Wilson, D. B. 1998. Hg removal by genetically engineered Escherichia coli in a hollow fiber bioreactor. Biotechnol. Prog. 14:667–671.

    Article  CAS  Google Scholar 

  • Chen, X. C.,Wang, Y. P., Lin, Q., Shi, J. Y., Wu, W. X., and Chen, Y. X. 2005. Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloid. Surf. B Physicochem. Eng. Aspect. 46:101–107.

    CAS  Google Scholar 

  • Chen, G., Zeng, G., Tang, L., Du, C., Jiang, X., Huang, G., Liu, H., and Shen, G. 2008. Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresour. Technol. 99:7034–7040.

    Article  CAS  Google Scholar 

  • Choi, S. B., and Yun, Y. S. 2004. Lead biosorption by waste biomass of Corynebacterium glutamicum generated from lysine fermentation process. Biotechnol. Lett. 26:331–336.

    Article  CAS  Google Scholar 

  • Choudhary, S., and Sar, P. 2009. Characterization of a metal resistant Pseudomonas sp. isolated from uranium mine for its potential in heavy metal (Ni2+, Co2+, Cu2+, and Cd2+) sequestration. Bioresour. Technol. 100:2482–2492.

    Article  CAS  Google Scholar 

  • Chu, K. H. 2004. Improved fixed bed models for metal biosorption. Chem. Eng. J. 97:233–239.

    Article  CAS  Google Scholar 

  • Chubar, N., Behrends, T., and Cappellen, P. V. 2008. Gram-negative bacterium Shewanella putrefaciens. Colloid. Surf. B Physicochem. Eng. Aspect. 65:126–133

    CAS  Google Scholar 

  • Cossich, E. S., da Silva, E. A., Tavares, C. R. G., Filho, L. C., and Ravagnani, T. M. K. 2004. Biosorption of chromium(III) by biomass of seaweed Sargassum sp. in a fixed-bed column. Adsorption 10:129–138.

    Article  CAS  Google Scholar 

  • Davis, T. A., Volesky, B., and Vieira, R. H. S. F. 2000. Sargassum seaweed as biosorbent for heavy metals. Water Res. 34:4270–4278.

    Article  CAS  Google Scholar 

  • Davis, T. A., Volesky, B., and Mucci, A. 2003. A review of the biochemistry heavy metal biosorption by brown algae. Water Res. 37:4311–4330.

    Article  CAS  Google Scholar 

  • de Vargas, I., Macaskie, L. E., and Guibal, E. 2004. Biosorption of palladium and platinum by sulfate-reducing bacteria. J. Chem. Technol. Biotechnol. 79:49–56.

    Article  CAS  Google Scholar 

  • Deng, L., Su, Y., Su, H., Wang, X., and Zhu, X. 2006. Biosorption of copper (II) and lead (II) fromaqueous solutions by nonliving green algae Cladophora fascicularis: equilibrium, kinetics and environmental effects. Adsorption 12:267–277.

    Article  CAS  Google Scholar 

  • Deng, X., Yi, X., and Liu, G. 2008. Cadmium removal from aqueous solution by gene-modified Escherichia coli JM109. J. Hazard. Mater. 139:340–344.

    Article  CAS  Google Scholar 

  • Djeribi, R., and Hamdaoui, O. 2008. Sorption of copper(II) from aqueous solutions by cedar sawdust and crushed brick. Desalination 225:95–112.

    Article  CAS  Google Scholar 

  • Dundar, M., Nuhoglu, C., and Nuhoglu, Y. 2008. Biosorption of Cu(II) ions onto the litter of natural trembling poplar forest. J. Hazard. Mater. 151:86–95.

    Article  CAS  Google Scholar 

  • Dursun, A. Y. 2006. A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger. Biochem. Eng. J. 28:187–195.

    Article  CAS  Google Scholar 

  • Flemming, H. C., and Wingender, J. 2001. Relevance of microbial extracellular polymeric substances (EPSs) – Part I: structural and ecological aspects. Water. Sci. Technol. 43:1–8.

    CAS  Google Scholar 

  • Gabr, R. M., Hassan, S. H. A., and Shoreit A. A. M. 2008. Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int. Biodeterior. Biodegradation 62:195–203.

    Article  CAS  Google Scholar 

  • Gokhale, S. V., Jyoti, K. K., and Lele, S. S. 2008. Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour. Technol. 99:3600–3608.

    Article  CAS  Google Scholar 

  • Green-Ruiz, C. 2006. Mercury(II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary. Bioresour. Technol. 97:1907–1911.

    Article  CAS  Google Scholar 

  • Green-Ruiz, C., Rodriguez-Tirado, V., and Gomez-Gil, B. 2008. Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects. Bioresour. Technol. 99:3864–3870.

    Article  CAS  Google Scholar 

  • Grill, E. 1987. Phytochelatins, the heavy metal binding peptides of plants: characterization and sequence determination. Experientia. Suppl. 52:317–322.

    CAS  Google Scholar 

  • Guo, X. Y., Zhang, A. Z., and Shan, X. Q. 2008. Adsorption of metal ions on lignin. J. Hazard. Mater. 151:134–142.

    Article  CAS  Google Scholar 

  • Gupta, V. K., and Rastogi, A. 2008. Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. J. Hazard. Mater. 152:407–414.

    Article  CAS  Google Scholar 

  • Gutnick, D. L., and Bach. H. 2000. Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations. Appl. Microbiol. Biotechnol. 54:451–461.

    Article  CAS  Google Scholar 

  • Hanif, M. A., Nadeem, R., Bhatti, H. N., Ahmad, N. R., and Ansari, T. M. 2007. Ni(II) biosorption by Cassia fistula (Golden Shower) biomass. J. Hazard. Mater. B139:345–355.

    Article  CAS  Google Scholar 

  • Hasan, S. H., and Srivastava, P. 2009. Batch and continuous biosorption of Cu2+ by immobilized biomass of Arthrobacter sp. J. Environ. Manage. 90:3313–3321.

    Article  CAS  Google Scholar 

  • Hasan, S. H., Srivastava, P., and Talat, M. 2009. Biosorption of Pb(II) from water using biomass of Aeromonas hydrophila: Central composite design for optimization of process variables. J. Hazard. Mater. 15:1155–1162.

    Article  CAS  Google Scholar 

  • Ho, Y. 2006. Isotherms for the sorption of lead onto peat: comparison of linear and non-linear methods. Pol. J. Environ Stud. 15:81–86.

    CAS  Google Scholar 

  • Ho, Y. S., and McKay, G. 2002. Application of kinetic models to the sorption of copper(II) on to peat. Adsorp. Sci. Technol. 20:797–815.

    Article  CAS  Google Scholar 

  • Ho, Y., and Ofomaja, A. E. 2006. Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent. Biochem. Eng. J. 30:117–123.

    Article  CAS  Google Scholar 

  • Huang, C. C., Su, C. C., Hsieh, J. L., Tseng, C. P., Lin, P. L., and Chang, J. S. 2003. Polypeptides for heavy-metal biosorption: capacity and specificity of two heterogeneous MerP proteins. Enzyme Microb. Technol. 33:379–385.

    Article  CAS  Google Scholar 

  • Hu, H. T., and Wang, H. N. 2003. Heavy metal treatment in water by biosorption. Environ. Protect. Xinjiang. 25:22–25.

    Article  CAS  Google Scholar 

  • Igwe, J. C., and Abia, A. A. 2007. Equilibrium sorption isotherm studies of Cd(II), Pb(II) and Zn(II) ions detoxification from waste water using unmodified and EDTA modified maize husk. Electron. J. Biotechnol. 10:536–548.

    Google Scholar 

  • Iqbal, M., Saeed, A., and Zafar, S. I. 2007. Hybrid biosorbent: an innovative matrix to enhance the biosorption of Cd(II) from aqueous solution. J. Hazard. Mater. 148:47–55.

    Article  CAS  Google Scholar 

  • Isik, M. 2008. Biosorption of Ni(II) from aqueous solutions by living and non-living ureolytic mixed culture. Colloids Surf. B Biointerfaces 62:97–104.

    Article  CAS  Google Scholar 

  • Jansson-Charrier, M., Guibal, E., Roussy, J., Surjous, R., and LeCloirec, P. 1996. Dynamic removal of uranium by chitosan: influence of operating parameters. Water Sci. Technol. 34:169–177.

    CAS  Google Scholar 

  • Javed, M. A., Bhatti, H. N., Hanif, M. A., and Nadeem, R. 2007. Kinetic, equilibrium modeling of Pb(II) and Co(II) sorption onto rose waste biomass. Sep. Sci. Technol. 42:3641–3656.

    Article  CAS  Google Scholar 

  • Jian-hua, P., Rui-xia, L., and Hong-xiao, T. 2007. Surface reaction of Bacillus cereus biomass and its biosorption for lead and copper ions. J. Environ. Sci. 19:403–408.

    Article  Google Scholar 

  • Kang, S. Y., Lee, J. U., and Kim, K. W. 2007. Biosorption of Cr(III) and Cr(VI) onto the cell surface of Pseudomonas aeruginosa. Biochem. Eng. J. 36:54–58.

    Article  CAS  Google Scholar 

  • Kao, W. C., Chiu, Y. P., Chang, C. C., and Chang, J. S. 2006. Localization effect on the metal biosorption capability of recombinant mammalian and fish metallothioneins in Escherichia coli. Biotechnol. Prog. 22:1256–1264.

    Article  CAS  Google Scholar 

  • Kao, W., Huang, C., and Chang, J. 2008. Biosorption of nickel, chromium and zinc by MerP-expressing recombinant Escherichia coli. J. Hazard. Mater. 158:100–106.

    Article  CAS  Google Scholar 

  • Kao, W. C., Wu, J. Y., Chang, C. C., and Chang J. S. 2009. Cadmium biosorption by polyvinyl alcohol immobilized recombinant Escherichia coli. J. Hazard. Mater. 169:651–658.

    Article  CAS  Google Scholar 

  • Kapoor, A., and Viraraghavan, T. 1997. Heavy metal biosorption sites in Aspergillus niger. Bioresour. Technol. 61:221–227.

    Article  CAS  Google Scholar 

  • Kazy, S. K., Das, S. K., and Sar, P. 2006. Lanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterization. J. Ind. Microbiol. Biotech. 33:773–83.

    Article  CAS  Google Scholar 

  • Kiran, B., and Kaushik, A. 2008. Chromium binding capacity of Lyngbya putealis exopolysaccharides. Biochem. Eng. J. 38:47–54.

    Article  CAS  Google Scholar 

  • Kiran, I., Akar, T., and Tunali, S. 2005. Biosorption of Pb(II) and Cu(II) from aqueous solutions by pretreated biomass of Neurospora crassa. Process Biochem. 40:3550–3558.

    Article  CAS  Google Scholar 

  • Kratochvil, D., and Volesky, B. 1998. Advances in the biosorption of heavy metals. TIBTECH. 16:291–300.

    CAS  Google Scholar 

  • Kratochvil, D., and Volesky, B. 2000. Multicomponent biosorption in fixed beds. Water Res. 34:3186–3196.

    Article  CAS  Google Scholar 

  • Kumar, R., Bishnoi, N. R., Garima, and Bishnoi, K. 2008. Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem. Eng. J. 135:202–208.

    Article  CAS  Google Scholar 

  • Kuyucak, N., and Volesky, B. 1989. Desorption of cobalt-laden algal biosorbent. Biotechnol. Bioeng. 33:815–822.

    Article  CAS  Google Scholar 

  • Langley, S., and Beveridge, T. J. 1999. Effect of O-side-chainlipopolysaccharide chemistry on metal binding. Appl. Environ. Microbiol. 65:489–498.

    CAS  Google Scholar 

  • Lin, C. C., and Lai, Y. T. 2006. Adsorption and recovery of lead(II) from aqueous solutions by immobilized Pseudomonas aeruginosa PU21 beads. J. Hazard. Mater. 137:99–105.

    Article  CAS  Google Scholar 

  • Liu, H. L., Chen, B. Y., Lan, Y. W., and Cheng, Y. C. 2004. Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans. Chem. Eng. J. 97:195–201.

    Article  CAS  Google Scholar 

  • Liu, R., Ma, W., Jia, C., Wang, L., and Li, H. 2007. Effect of pH on biosorption of boron onto cotton cellulose. Desalination 207:257–267.

    Article  CAS  Google Scholar 

  • Lloyd, J. R. 2002. Bioremediation of metals: the application of microorganisms that make and break minerals. Microbiol. Today 29:67–69.

    Google Scholar 

  • Loukidou, M. X., Karapantsios, T. D., Zouboulis, A. I., and Matis, K. A. 2004. Diffusion kinetic study of chromium (VI) biosorption by Aeromonas caviae. Ind. Eng. Chem. Res. 242:93–104.

    CAS  Google Scholar 

  • Lu, S., and Gibb, S. W. 2008. Copper removal from wastewater using spent-grain as biosorbent. Bioresour. Technol. 99:1509–1517.

    Article  CAS  Google Scholar 

  • Lu, W. B., Shi, J. J., Wang, C. H., and Chang, J. S. 2006. Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp J1 possessing high heavy-metal resistance. J. Hazard. Mater. 134:80–86.

    Article  CAS  Google Scholar 

  • Ma, W., and Tobin, J. M. (2004). Determination and modeling of effects of pH on peat biosorption of chromium, copper and cadmium. Biochem. Eng. J. 18:33–40.

    Article  CAS  Google Scholar 

  • Mack, C. L., Wilhelmi, B., Duncan, J. R., and Burgess, J. E. 2008. A kinetic study of the recovery of platinum ions from an artificial aqueous solution by immobilized Saccharomyces cerevisiae biomass. Miner. Eng. 21:31–37.

    Article  CAS  Google Scholar 

  • Madigan, M. T., Martinko, J. M., and Parker, J. 2000. Brock biology of microorganisms. Upper Saddle River, NJ: Pearson Prentice Hall.

    Google Scholar 

  • Malkoc, E., and Nuhoglu, Y. 2005. Investigations of nickel (II) removal from aqueous solutions using tea factory waste. J. Hazard. Mater. B127:120–128.

    Article  CAS  Google Scholar 

  • Mann, H. 1990. Removal and recovery of heavy metals by biosorption. In: Volesky B, ed. Biosorption of heavy metals, pp.93–137. Boca Raton: CRC press.

    Article  CAS  Google Scholar 

  • Miretzky, P., Munoz, C., and Carrillo-Chavez, A. 2008. Experimental binding of lead to a low cost on biosorbent: Nopal (Opuntia streptacantha). Bioresour. Technol. 99:1211–1217.

    Article  CAS  Google Scholar 

  • Mishra, S., and Doble, M. 2008. Novel chromium tolerant microorganisms: isolation, characterization and their biosorption capacity. Ecotoxicol. Environ. Saf. 71:874–879.

    Article  CAS  Google Scholar 

  • Moat, A. G., Foster, J. W., and Spector, M. P. 2002. Microbial physiology. New York: Wiley-Liss.

    Book  Google Scholar 

  • Mondal, P., Majumder, C.B., and Mohanty, B., 2008. Growth of three bacteria in arsenic solution and their application for arsenic removal from wastewater. J. Basic. Microbiol. 48:1–5.

    Book  Google Scholar 

  • Muraleedharan, T. R., Iyengar, L., and Venkobachar, C. 1991. Biosorption: an attractive alternative for metal removal and recovery. Curr. Sci. 61:379–385.

    CAS  Google Scholar 

  • Muraleedharan, T., Philip, R., Iyengar, L. L., and Venkobachar, C. 1994. Application studies of biosorption for monazite processing industry effluents. Bioresour. Technol. 49:179–186.

    Article  CAS  Google Scholar 

  • Naja, G., and Volesky, B. 2006. Behavior of the mass transfer zone in a biosorption column. Environ. Sci. Technol. 40:3996–4003.

    Article  CAS  Google Scholar 

  • Nakajima, A., and Tsuruta, T. 2004. Competitive biosorption of thorium and uranium by Micrococcus luteus. J. Radioanal. Nucl. Chem. 260:13–18.

    Article  CAS  Google Scholar 

  • Namasivayam, C., and Sureshkumar, M. V. 2008. Removal of chromium(VI) from water and wastewater using surfactant modified coconut coirpith as biosorbent. Bioresour. Technol. 99:2218–2225.

    Article  CAS  Google Scholar 

  • Nasreen, K., Muhammad, I., Iqbal, Z. S., and Javed, I. 2008. Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(III). J. Environ. Sci. 20:231–239.

    Article  Google Scholar 

  • Ofomaja, A. E., and Ho, Y. 2007. Effect of pH on cadmium biosorption by coconut copra meal. J. Hazard. Mater. B139:356–362.

    Article  CAS  Google Scholar 

  • O’Mahony, T., Guibal, E., and Tobin, J. M. 2002. Reactive dye biosorption by Rhizopus arrhizus biomass. Enzyme Microb. Technol. 31:456–463.

    Article  Google Scholar 

  • Ozdemir, G., and Baysal, S. H. 2004. Chromium and aluminum biosorption on Chryseomonas luteola TEM05. Appl. Microbiol. Biotechnol. 64:599–603.

    Article  CAS  Google Scholar 

  • Ozdemir, S., Kilinc, E., Poli, A., Nicolaus, B., and Guvena, K. 2009. Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sp. decanicus and Geobacillus thermoleovorans sub.sp. stromboliensis: equilibrium, kinetic and thermodynamic studies. Chem. Eng. J. 152:195–206.

    Article  CAS  Google Scholar 

  • Öztürk, A. 2007. Removal of nickel from aqueous solution by the bacterium Bacillus thuringiensis. J. Hazard. Mater. 147:518–523.

    Article  CAS  Google Scholar 

  • Öztürk, A., Artan, T., and Ayar, A. 2004. Biosorption of nickel(II) and copper(II) ions from aqueous solution by Streptomyces coelicolor A3(2). Colloid. Surf. B Physicochem. Eng. Aspect. 34:105–111.

    Google Scholar 

  • Padmavathy, V. 2008. Biosorption of nickel(II) ions by baker’s yeast: kinetic, thermodynamic and desorption studies. Bioresour. Technol. 99:3100–3109.

    Article  CAS  Google Scholar 

  • Pamukoglu, M. Y., and Kargi, F. 2007. Effects of operating parameters on kinetics of copper(II) ion biosorption onto pre-treated powdered waste sludge (PWS). Enzyme Microb. Technol. 42:76–82.

    Article  CAS  Google Scholar 

  • Parvathi, K., Nagendran, R., and Nareshkumar, R. 2007. Lead biosorption onto waste beer yeast by-product, a means to decontaminate effluent generated from battery manufacturing industry. Electron. J. Biotechnol. 10:1–14.

    Article  CAS  Google Scholar 

  • Pasavant, P., Apiratikul, R., Sungkhum, V., Suthiparinyanont, P., Wattanachira, S., and Marhaba, T. F. 2006. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresour. Technol. 97:2321–2329.

    Google Scholar 

  • Pazirandeh, M., Wells, B. M., and Ryan, R. L. 1998. Development of bacterium-based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif. Appl. Environ. Microbiol. 64:4068–4072.

    CAS  Google Scholar 

  • Pollmann, K., Raff, J., Merroun, M., Fahmy, K., and Selenska-Pobell, S. 2006. Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol. Adv. 24:58–68.

    Article  CAS  Google Scholar 

  • Popuri, S. R., Jammala, A., Reddy, K. V. N. S., and Abburi, K. 2007. Biosorption of hexavalent chromium using tamarind (Tamarindus indica) fruit shell – a comparative study. Electron. J. Biotechnol. 10:358–367.

    Article  CAS  Google Scholar 

  • Prakasham, R. S., Merrie, J. S., Sheela, R., Saswathi, N., and Ramakrishna, S. V. 1999. Biosorption of chromium VI by free and immobilized Rhizopus arrhizus. Environ. Pollut. 104:421–427.

    Article  CAS  Google Scholar 

  • Preetha, B., and Viruthagiri, T. 2007. Batch and continuous biosorption of chromium(VI) by Rhizopus arrhizus. Separat. Purific. Technol. 57:126–133.

    Article  CAS  Google Scholar 

  • Prescott, L. M., Harley, J. P., and Klein, D. A. 2002. Microbiology. London: McGraw-Hill Science/Engineering/Math.

    Google Scholar 

  • Pulsawat, W., Leksawasdi, N., Rogers, P. L., and Foster, L. J. R. 2003. Anions effects on biosorption of Mn(II) by extracellular polymeric substance (EPS) from Rhizobium etli. Biotech. Lett. 25(15):1267–1270.

    Article  CAS  Google Scholar 

  • Puranik, P. R., and Paknikar, K. M. 1999. Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: characterization studies. Biotechnol. Prog. 15:228–237.

    Article  CAS  Google Scholar 

  • Quintelas, C., Zélia Rocha, Z., Silva, B., Fonseca, B., Figueiredo, H., and Tavares, T. 2009. Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin. Chem. Eng. J. 149:319–324.

    Article  CAS  Google Scholar 

  • Rahaman, M. S., Basu, A., and Islam, M. R. 2008. The removal of As(III) and As(V) from aqueous solutions by waste materials. Bioresour. Technol. 99:2815–2823.

    Article  CAS  Google Scholar 

  • Saeed, A., and Iqbal, M. 2003. Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum). Water Res. 37:3472–3480.

    Article  CAS  Google Scholar 

  • Sag, Y., and Aktay, Y. 2002. Kinetic studies on sorption of Cr(VI) and Cu(II) ions by chitin, chitosan, and Rhizopus arrhizus. Biochem. Eng. J. 12:143–153.

    Article  CAS  Google Scholar 

  • Sag, Y., Akeael, B., and Kutsal, T. 2002. Ternary biosorption equilibria of Cr(VI), Cu(II) and Cd(II) on Rhizopus arrhizus. Sep. Sci. Technol. 37(2):279–309.

    Article  CAS  Google Scholar 

  • Åžahin, Y., and Öztürk, A. 2005. Biosorption of chromium(VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Process Biochem. 40:1895–1901.

    Article  CAS  Google Scholar 

  • Samuelson, P.,Wernérus, H., Svedberg, M., and StÃ¥hl, S. 2000. Staphylococcal surface display of metal-binding polyhistidyl peptides. Appl. Environ. Microbiol. 66:1243–1248.

    Article  CAS  Google Scholar 

  • Schiewer, S., and Patil, S. B. 2008. Pectin-rich fruit wastes as biosorbents for heavy metal removal: equilibrium and kinetics. Bioresour. Technol. 99:1896–1903.

    Article  CAS  Google Scholar 

  • Schiewer, S., and Volesky, B. 2000. Biosorption Processes for Heavy Metal Removal. In: D. E. Lovley, ed. Environmental microbe–metal interactions, pp. 329–362. Washington, DC: ASM Press.

    Google Scholar 

  • Selatnia, A., Bakhti, M. Z., Madani, A., Kertous, L., and Mansouri, Y. 2004a. Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy. 75:11–24.

    CAS  Google Scholar 

  • Selatnia, A., Boukazoula, A., Kechid, N., Bakhti, M. Z., and Chergui, A. 2004b. Biosorption of Fe3+ from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Process Biochem. 39:1643–1651.

    Article  CAS  Google Scholar 

  • Selatnia, A., Boukazoula, A., Kechid, N., Bakhti, M. Z., Chergui, A., and Kerchich, Y. 2004c. Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochem. Eng. J. 19:127–135.

    Article  CAS  Google Scholar 

  • Shaker, M. A. 2007. Thermodynamic profile of some heavy metal ions adsorption onto biomaterial surfaces. Am. J. Appl. Sci. 4:605–612.

    Article  CAS  Google Scholar 

  • Sharma, P., Kumari, P., Srivastava, M. M., and Srivastava, S. 2006. Romoval of cadmium from aqueous system by shelled Moringa oleifera Lam. Seed powder. Bioresour. Technol. 97:299–305.

    Article  CAS  Google Scholar 

  • Shevchuk, I. A., and Klimenko, N. I. 2009. Biological features of sorption of U (VII) and strontium ions by Bacillus polymyxa IMV 8910 cells. J. Water Chem. Technol. 31:324–328.

    Article  Google Scholar 

  • Silva, R. M. P., Rodríguez, A. A., Montes De Oca, J. M. G., and Moreno, D. C. 2009. Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresour. Technol. 100:1533–1538

    Article  CAS  Google Scholar 

  • Site, A. D. 2001. Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J. Phys. Chem. 30:187–439.

    Google Scholar 

  • Sleytr, U., and Beveridge, T. 1999. Bacterial S-layers. Trends. Microbiol. 7:253–260.

    Article  CAS  Google Scholar 

  • Sleytr, U., Györvary, E., and Pum, D. 2003. Crystallization of S-layer protein lattices on surfaces and interfaces. Progr. Org. Coating. 47:279–287.

    Article  CAS  Google Scholar 

  • Sobeck, D. C., and Higgins, M. J. 2002. Examination of three theories for mechanisms of cation-induced bioflocculation. Water Res. 36(3):527–538.

    Article  CAS  Google Scholar 

  • Solisio, C., Lodi, A., Converti, A., and Borghi, M. D. 2000. The effect of acid pre-treatment on the biosorption of chromium(III) by Sphaerotilus natans from industrial wastewater. Water Res. 34:3171–3178.

    Article  CAS  Google Scholar 

  • Tan, H. K. S., and Spinner, I. H. 1994. Multicomponent ion exchange column dynamics. Can. J. Chem. Eng. 72:330–341.

    Article  CAS  Google Scholar 

  • Tunali, S., Çabuk, A., and Akar, T. 2006. Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem. Eng. J. 115:203–211.

    Article  CAS  Google Scholar 

  • Tuzen, M., Saygi, K. O., Usta, C., and Soylak, M. 2008. Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. Bioresour. Technol. 99:1563–1570.

    Article  CAS  Google Scholar 

  • Urrutia, M. M. 1997. General Bacterial Sorption Processes. In: J. Wase and C. Forster (eds). Biosorbents for metal ions, pp. 39–66. London: CRC Press.

    Google Scholar 

  • Uslu, G., and Tanyol, M. 2006. Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead(II) and copper(II) ions onto Pseudomonas putida: effect of temperature. J. Hazard. Mater. 135:87–93.

    Article  CAS  Google Scholar 

  • Uzel, A., and Ozdemir, G. 2009. Metal biosorption capacity of the organic solvent tolerant Pseudomonas fluorescens TEM08. Bioresour. Technol. 100:542–548.

    Article  CAS  Google Scholar 

  • van Hullebusch, E. D., Zandvoort, M. H., and Lens, P. N. L. 2003. Metal immobilisation by biofilms: mechanisms and analytical tools. Rev. Environ. Sci. Biotechnol. 2:9–33.

    Article  Google Scholar 

  • Veglio, F., and Beolchini, F. 1997. Removal of metals by biosorption: a review. Hydrometallurgy. 44:301–316.

    Article  CAS  Google Scholar 

  • Vijaya, Y., Popuri, S. R., Boddu, V. M., and Krishnaiah, A. 2008. Modified chitosan and calcium. Carbohyd. Poly. 72:261–271.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K., and Yun, Y. S. 2008a. Bacterial biosorbents and biosorption. Biotechnol. Adv. 26:266–291.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K., and Yun, Y. S. 2008b. Biosorption of C.I. Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp. Dyes Pigm. 76:726–732.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K., Jegan, J., Palanivelu, K., and Velan, M. 2004. Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column. J. Hazard. Mater. 113:223–230.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K., Jegan, J., Palanivelu, K., and Velan, M. 2005. Batch and column removal of copper from aqueous solution using a brown marine alga Turbinaria ornata. Chem. Eng. J. 106:177–184.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K., Palanivelu, K., and Velan, M. 2006. Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresour. Technol. 97:1411–1419.

    Article  CAS  Google Scholar 

  • Vilar, V. J. P., Botelho, C. M. S., and Boaventura, R. A. R. 2008. Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: kinetics and equilibrium. Bioresour. Technol. 99:750–762.

    Article  CAS  Google Scholar 

  • Volesky, B. 1987. Biosorbents for metal recovery. TIBTECH. 5:96–101.

    CAS  Google Scholar 

  • Volesky, B. 2001. Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–216.

    Article  CAS  Google Scholar 

  • Volesky, B., Weber, J., and Park, J. M. 2003. Continuous-flow metal biosorption in a regenerable Sargassum column. Water Res. 37:297–306.

    Article  CAS  Google Scholar 

  • Vullo, D. L., Ceretti, H. M., Ramírez, S., and Zalts, A. 2003. Metal retention in calcium alginate (Retencio´n de metales en gel de alginato de calcio). VI Society of Environmental Toxicology and Chemistry Latinoamerican Annual Meeting (SETAC), Buenos Aires, Argentina.

    Google Scholar 

  • Vullo, D. L., Ceretti, H. M., Daniel, M. A., Ramirez, S. A. M., and Zalts, A. 2008. Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresour. Technol. 99:5574–5581.

    Article  CAS  Google Scholar 

  • Wang, J. L. 2002. Microbial immobilization techniques and water pollution technology. Beijing: Science Press. 233–248.

    Google Scholar 

  • Wang, X., Qin, Y., and Li, Z. 2006a. Biosorption of zinc from aqueous solutions by rice bran: kinetics and equilibrium studies. Sep. Sci. Technol. 41:747–756.

    Article  CAS  Google Scholar 

  • Wang, X., Xia, S., Chen, L., Zhao, J., Chovelon, J., and Nicole, J. 2006b. Biosorption of cadmium(I1) and lead(I1) ions from aqueous solutions onto dried activated sludge. J. Environ. Sci. 18:840–844.

    Article  CAS  Google Scholar 

  • Won, S. W., and Yun, Y. S. 2008. Biosorptive removal of Reactive Yellow 2 using waste biomass from lysine fermentation process. Dyes Pigm. 76:502–507.

    Article  CAS  Google Scholar 

  • Xiangliang, P., Jianlong, W., and Daoyong, Z. 2005. Biosorption of Pb(II) by Pleurotus ostreatus immobilized in calcium alginate gel. Process. Biochem. 40:2799–28803.

    Article  CAS  Google Scholar 

  • Xie, S., Yang, J., Chen, C., Zhang, X., Wang, Q., and Zhang, C. 2008. Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. J. Environ. Radioact. 99:126–133.

    Article  CAS  Google Scholar 

  • Xu, H., Liu, Y., and Tay, J. H. 2006. Effect of pH on nickel biosorption by aerobic granular sludge. Bioresour. Technol. 97:359–363.

    Article  CAS  Google Scholar 

  • Yan, Z., Xuliang, F., Zhilong, Y., Yahong, L., and Weimin, C. 2008. Biosorption of Cu(II) on extracellular polymers from Bacillus sp. F19. J. Environ. Sci. 20:1288–1293.

    Article  Google Scholar 

  • Yang, J., and Volesky, B. 1996. Intraparticle diffusivity of Cd ions in a new biosorbent material. J. Chem. Technol. Biotechnol. 66:355–364.

    Article  CAS  Google Scholar 

  • Yee, N., and Fein, J. B. 2001. Cd adsorption onto bacterial surfaces: a universal adsorption edge? Geochim. Cosmochim. Acta. 65:2037–2042.

    Article  CAS  Google Scholar 

  • Yilmaz, E. I., and Ensari, N. Y. 2005. Cadmium biosorption by Bacillus circulans strain EB1. World J. Microbiol. Biotechnol. 21:777–779.

    Article  CAS  Google Scholar 

  • Yu, J., Tong, M. S., and Li, X. B. 2007. A simple method to prepare poly(amic acid)-modified biomass for enhancement of lead and cadmium adsorption. Biochem. Eng. J. 33:126–133.

    Article  CAS  Google Scholar 

  • Zamil, S., Ahmad, S. S., Choi, M. H., Park, J. Y., and Yoon S. C. 2009. Correlating metal ionic characteristics with biosorption capacity of Staphylococcus saprophyticus BMSZ711 using QICAR model. Bioresour. Technol. 100:1895–1902.

    Article  CAS  Google Scholar 

  • Zhao, M., Duncan, R., and Van Hille, R. P. 1999. Removal and recovery of zinc from solution and electroplating effluent using Azolla filiculoides. Water Res. 33:1516–1522.

    Article  CAS  Google Scholar 

  • Zhao, X. W., Zhou, M. H., Li, Q. B., Lu, Y. H., He, N., Sun, D. H., and Deng, X. 2005. Simultaneous mercury bioaccumulation and cell propagation by genetically engineered Escherichia coli. Process Biochem. 40:1611–1616.

    Article  CAS  Google Scholar 

  • Zhou, M., Liu, Y., Zeng, G., Li. X., Xu, W., and Fan, T. 2007. Kinetic and equilibrium studies of Cr (VI) biosorption by dead Bacillus licheniformis biomass. World J. Microbiol. Biotechnol. 23:43–48.

    Article  CAS  Google Scholar 

  • Ziagova, M., Dimitriadis, G., Aslanidou, D., Papaioannou, X., Tzannetaki, E. L., and Liakopoulou-Kyriakides, M. 2007. Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresour. Technol. 98:2859–2865.

    Article  CAS  Google Scholar 

  • Zouboulis, A. I., Rousou, E. G., Matis, K. A., and Hancock, I. C. 1999. Removal of toxic metals from aqueous mixtures: Part 1. Biosorption. J. Chem. Tech. Biotechnol. 74:429–436.

    Article  CAS  Google Scholar 

  • Zouboulis, A. I., Loukidou, M. X., and Matis, K. A. 2004. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem. 39:909–916.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ansari, M.I., Masood, F., Malik, A. (2011). Bacterial Biosorption: A Technique for Remediation of Heavy Metals. In: Ahmad, I., Ahmad, F., Pichtel, J. (eds) Microbes and Microbial Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7931-5_12

Download citation

Publish with us

Policies and ethics