Skip to main content

Practical Aspects of Monitoring Spinal Motor Systems

  • Chapter
  • First Online:
Intraoperative Neurophysiological Monitoring

Abstract

This chapter concerns practical aspects of monitoring spinal motor systems (monitoring of cranial motor nerves is discussed in Chap. 11). It discusses techniques for stimulation of the motor cortex and the spinal cord, and for recording of transcranial motor evoked potentials (Tc-MEP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Digitimer D185: 1000V maximum voltage output (set by user); 1.5 A maximum current output, Risetime of 0.1A per microsecond, 50 μS pulse duration, 1–9 pulses with user defined interpulse interval, Reversible output polarity switch, User defined trigger facilities permit integration with popular EMG recording equipment. Digitimer Ltd, 37 Hydeway, Welwyn Garden City, Hertfordshire, AL7 3BE, England

  2. 2.

    AD-TECH Medical Instrument Corporation 1901 William Street Racine WI 53404 USA.

References

  1. Brown RH and CL Nash (1979) Current status of spinal cord monitoring. Spine 4:466–78.

    Article  CAS  PubMed  Google Scholar 

  2. Nuwer MR, EG Dawson, LG Carlson et al (1995) Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: Results of a large multicenter study. Electroenceph Clin Neurophys 96:6–11.

    Article  CAS  Google Scholar 

  3. Leppanen R, R Madigan, C Sears et al (1999) Intraoperative collision studies demonstrate descending spinal cord stimulation evoked potentials and ascending somatosensory evoked potentials are medicated through common pathways. J Clin Neurophysiol 16:170.

    Google Scholar 

  4. Deletis V and AB Camargo (2001) Interventional neurophysiological mapping and monitoring during spinal cord procedures. Stereotact Funct Neurosurg 77:25–8.

    Article  CAS  PubMed  Google Scholar 

  5. Deletis V and JL Shils (2004) Neurophysiology in Neurosurgery. Amsterdam: Academic Press.

    Google Scholar 

  6. Sala F, MJ Krzan and V Deletis (2002) Intraoperative neurophysiological monitoring in pediatric neurosurgery: Why, when, how? Childs Nerv Syst. 18:264–87.

    PubMed  Google Scholar 

  7. Sala F, P Lanteri and A Bricolo (2004) Motor evoked potential monitoring for spinal cord and brain stem surgery. Adv Tech Stand Neurosurg 29:133–69.

    CAS  PubMed  Google Scholar 

  8. Maguire J, S Wallace, R Madiga et al (1995) Evaluation of intrapedicular screw position using intraoperative evoked electromyography. Spine 20:1068–74.

    Article  CAS  PubMed  Google Scholar 

  9. Leppanen R, J Maguire, S Wallace et al (1995) Intraoperative lower extremity reflex muscle activity as an adjunct to conventional somatosensory-evoked potentials and descending neurogenic monitoring in idiopathic scoliosis. Spine 20:1872–7.

    Article  CAS  PubMed  Google Scholar 

  10. Deletis V (2002) Intraoperative neurophysiology and methodologies used to monitor the functional integrity of the motor system, in Neurophysiology in Neurosurgery, V Deletis and JL Shils, Editors. Academic Press: Amsterdam. 25–51.

    Chapter  Google Scholar 

  11. Kuypers HGJM (1981) Anatomy of the descending pathways, in Handbook of physiology – the nervous system, JM Brookhart and VB Mountcastle, Editors. American Physiological Society: Bethesda, MD. 597–666.

    Google Scholar 

  12. Merton PA and HB Morton (1980) Electrical stimulation of human motor and visual cortex through the scalp. J Physiol 305:9–10P.

    Google Scholar 

  13. Marsden CD, PA Merton and HB Morton (1983) Direct electrical stimulation of corticospinal pathways through the intact scalp in human subjects. Adv Neurol 39:387–91.

    CAS  PubMed  Google Scholar 

  14. Barker AT, R Jalinous and IL Freeston (1985) Non-invasive magnetic stimulation of the human motor cortex. Lancet 1:1106–7.

    Article  CAS  PubMed  Google Scholar 

  15. Gualtierotti T and AS Patterson (1954) Electrical stimualtion of the unexpeosed cerebral cortex. J Physiol 125:278–91.

    CAS  PubMed  Google Scholar 

  16. Sloan T (2002) Anesthesia and motor evoked potential monitoring, in Neurophysiology in Neurosurgery, V Deletis and JL Shils, Editors. Elsevier Science: Amsterdam. 451–74.

    Chapter  Google Scholar 

  17. Sloan TB and EJ Heyer (2002) Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol 19:430–43.

    Article  PubMed  Google Scholar 

  18. Daube J and C Harper (1989) Surgical monitoring of cranial and peripheral nerves, in Neuromonitoring in Surgery, J Desmedt, Editor. Elsevier Science Publishers: Amesterdam. 115–38.

    Google Scholar 

  19. Tabaraud F, JM Boulesteix, D Moulies et al (1993) Monitoring of the motor pathway during spinal surgery. Spine 18:546–50.

    Article  CAS  PubMed  Google Scholar 

  20. Burke D, R Hicks, J Stephen et al (1992) Assessment of corticospinal and somatosensory conduction simultaneously during scoliosis surgery. Electroenceph Clin Neurophysiol 85:388–96.

    Article  CAS  PubMed  Google Scholar 

  21. MacDonald D (2006) Intraoperative motor evoked potential monitoring: Overview and update. J Clin Monit Comput 20:347–77.

    Article  PubMed  Google Scholar 

  22. Edmonds HL, MPJ Paloheimo, MH Backmann et al (1989) Transcranial magnetic motor evoked potentials (tc MMEP) for functional monitoring of motor pathways during scoliosis surgery. Spine 14:683–6.

    Article  PubMed  Google Scholar 

  23. Rivet D, D O’Brien, T Park et al (2004) Distance of the motor cortex from the coronal suture as a function of age. Pediatr Neurosurg 40:215–9.

    Article  PubMed  Google Scholar 

  24. MacDonald D, L Streletz, Z Al-Zayed et al (2004) Intraoperative neurophysiologic ­discovery of uncrossed sensory and motor ­pathways in a patient with horizontal gaze palsy and scoliosis. Clin Neurophysiol. 115:576–82.

    Article  CAS  PubMed  Google Scholar 

  25. Møller AR, B Langguth, D De Ridder et al (2010) Textbook of Tinnitus. New York: Springer.

    Google Scholar 

  26. Sloan TB and JN Rogers (1996) Inhalational anesthesia alters the optimal interstimulus interval for multipulse transcranial motor evoked potentials in the baboon. J Neurosurg Anesth 8:346.

    Google Scholar 

  27. Amassian VE, GJ Quirk and M Stewart (1990) A comparison of corticospinal activation by magnetic coil and electrical stimulation of monkey motor cortex. Electroenceph Clin Neurophys 77:390–401.

    Article  CAS  Google Scholar 

  28. Kitagawa H and AR Møller (1994) Conduction pathways and generators of magnetic evoked spinal cord potentials: A study in monkeys. Electroenceph Clin Neurophys 93:57–67.

    Article  CAS  Google Scholar 

  29. Edgeley SA, JA Eyre, R Lemon et al (1990) Excitation of the corticospinal tract by electromagnetic and electrical stimulation of the scalp in the macaque monkey. J Physiol 425:301–20.

    Google Scholar 

  30. Amassian VE, L Eberle, PJ Maccabee et al (1992) Modelling magnetic coil excitation of human cerebral cortex with a peripheral nerve immersed in a brain-shaped volume conductor: The significance of fiber bending in excitation. Electroenceph Clin Neurophysiol 85:291–301.

    Article  CAS  PubMed  Google Scholar 

  31. Werhahn KJ, JKY Fong, BU Meyer et al (1994) The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseous muscle. Electroenceph Clin Neurophysiol 93:138–46.

    Article  CAS  PubMed  Google Scholar 

  32. Schmid UD, AR Møller and J Schmid (1992) Transcranial magnetic stimulation of the facial nerve: Intraoperative study on the effect of stimulus parameters on the excitation site in man. Muscle and Nerve 15:829–36.

    Article  CAS  PubMed  Google Scholar 

  33. Krammer MJ, S Wolf, DB Schul et al (2009) Significance of intraoperative motor function monitoring using transcranial electrical motor evoked potentials (MEP) in patients with spinal and cranial lesions near the motor pathways. Br J Neurosurg 23:48–55.

    Article  PubMed  Google Scholar 

  34. Yingling C and J Gardi (1992) Intraoperative monitoring of facial and cochlear nerves during acoustic neuroma surgery. Otolaryngol Clin North Am 25:413–48.

    CAS  PubMed  Google Scholar 

  35. Møller AR and PJ Jannetta (1984) Preservation of facial function during removal of acoustic neuromas: Use of monopolar constant ­voltage stimulation and EMG. J Neurosurg 61:757–60.

    Article  PubMed  Google Scholar 

  36. Prass R and H Lueders (1985) Constant-current versus constant-voltage stimulation. J Neurosurg 62:622–3.

    CAS  PubMed  Google Scholar 

  37. Stecker MM (2005) Transcranial electric stimulation of motor pathways: A theoretical analysis. Comput Biol Med 35:133–55.

    Article  PubMed  Google Scholar 

  38. Rattay F (1987) Ways to approximate current-distance relations for electrical stimulated fibres. J Theor Biol 125:339–49.

    Article  CAS  PubMed  Google Scholar 

  39. Nowak LG and J Bullier (1998) Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements. Exp Brain Res 118:477–88.

    Article  CAS  PubMed  Google Scholar 

  40. Novak K, AB De Camargo, M Neuwirth et al (2004) The refractory period of fast conducting corticospinal tract axons in man and its implications for intraoperative monitoring of motor evoked potentials. Clin Neurophysiol 115:1931–41.

    Article  PubMed  Google Scholar 

  41. Journée HL (2004) The Biological Interface and Hardware of Electrical Stimulation., in Neurophysiology in Neurosurgery, V Deletis and JL Shils, Editors. Academic Press: Amsterdam. 128–31.

    Google Scholar 

  42. Hausmann ON, K Min, N Boos et al (2002) Transcranial electrical stimulation: Significance of fast versus slow charge delivery for intra-operative monitoring. Clin Neurophysiol 113:1532–5.

    Article  PubMed  Google Scholar 

  43. Szelényi A, Joksimovic B and V Seifert (2007) Intraoperative risk of seizures associated with transient direct cortical stimulation in patients with symptomatic epilepsy. J Clin Neurophysiol 24:39–43.

    Article  PubMed  Google Scholar 

  44. MacDonald DB (2002) Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol 19:416–29.

    Article  PubMed  Google Scholar 

  45. Schieber MH, (2007) Comparative anatomy and physiology of the corticospinal system., in Handb Clin Neurol. 15–37.

    Article  Google Scholar 

  46. Day BL, PD Thompson, JPR Dick et al (1987) Different sites of action of electrical and magnetic stimulation of the human brain. Neurosci Lett 75:101–6.

    Article  CAS  PubMed  Google Scholar 

  47. Kernel D and CP Wu (1967) Responses of the pyramidal tract to stimulation of the baboon’s motor cortex. J Physiol (Lond) 191:653–72.

    Google Scholar 

  48. Katayama Y, T Tsubokawa, S Maejima et al (1988) Corticospinal direct response in humans: Identification of the motor cortex during ­intracranial surgery under general anesthesia. J Neurol Neurosurg Psych iat 51:50–9.

    Article  CAS  Google Scholar 

  49. Amassian VE, M Stewart, GJ Quirk et al (1987) Physiologic basis of motor effects of a transient stimulus to cerebral cortex. Neurosurg. 20:74–93.

    CAS  Google Scholar 

  50. Tsubokawa T (1987) Clinical value of ­multi-modality spinal cord evoked potentials for prognosis of spinal cord injury, in Thoracic and Lumbar Spine and Spinal Cord Injuries, RP Vigouroux and P Harris, Editors. Springer-Verlag: New York. 65–92.

    Google Scholar 

  51. Deletis V (1993) Intraoperative monitoring of the functional integrety of the motor pathways, in Advances in neurology: Electrical and magnetic stimulation of the brain, O Devinsky, A Beric and M Dogali, Editors. Raven Press: New York. 201–14.

    Google Scholar 

  52. Deletis V, Z Rodi and VE Amassian (2001) Neurophysiological mechanisms underlying motor evoked potentials (MEPs) elicited by a train of electrical stimuli: Part 2. Relationship between epidurally and muscle recorded MEPs in man. Clin Neurophysiol 112:445–52.

    Article  CAS  PubMed  Google Scholar 

  53. Tamaki T, H Takano and K Takakuwa (1985) Spinal cord monitoring: Basic principles and experimental aspects. Cent Nerv Syst Trauma 2:137–49.

    CAS  PubMed  Google Scholar 

  54. Patton HC and VE Amassian (1960) The pyramidal tract: Its excitation and functions, in Handbook of Physiology and Neurophysiology, Vol 11. American Physiology Society: Washington, D.C. 837–61.

    Google Scholar 

  55. Kothbauer KF (2002) Motor evoked potential monitoring for intramedullary spinal cord tumor surgery, in Neurophysiology in Neurosurgery, V Deletis and JL Shils, Editors. Academic Press: Amsterdam. 73–92.

    Chapter  Google Scholar 

  56. Deletis V and F Sala (2008) Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: A review focus on the corticospinal tracts. Clin Neurophysiol 119:248–64.

    Article  PubMed  Google Scholar 

  57. Calancie B, W Harris, JG Broton et al (1998) “Threshold-level” multipulse transcranial ­electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: Description of method and comparison to ­somatosensory evoked potential monitoring. J Neurosurg 90:457–70.

    Google Scholar 

  58. Machida M, MC Weinstein, T Yamada et al (1985) Spinal cord monitoring: Electrophsysiological measures of sensory and motor function during spinal surgery. Spine 10:407–13.

    Article  CAS  PubMed  Google Scholar 

  59. Owen JH, KH Bridwell, R Grubb et al (1991) The clinical application of neurogenic motor evoked potentials to monitor spinal cord function during surgery. Spine 16:S385–90.

    Article  CAS  PubMed  Google Scholar 

  60. Koyanagi I, Y Iwasaki, T Isy et al (1993) Spinal cord evoked potential monitoring after spinal cord stimualtion durong surgery of spinal cord tumors. Neurosurgery 33:451–60.

    Article  CAS  PubMed  Google Scholar 

  61. Kai Y, JH Owen, LG Lenke et al (1993) Use of sciatic neurogenic motor evoked potentials versus spinal potentials to predict early-onset neurologic deficits when intervention is still possible during overdistraction. Spine 18:1134–9.

    Article  CAS  PubMed  Google Scholar 

  62. Toleikis JR, JP Skelly, AO Carlvin et al (2000) Spinally elicited peripheral nerve responses are sensory rather than motor. Clin Neurophysiol 111:736–42.

    Article  CAS  PubMed  Google Scholar 

  63. Minahan RE, JP Sepkuly, RP Lesser et al (2001) Anterior spinal cord injury with preserved neurogenic “motor”-evoked potentials. Clin Neurophysiol 112:1442–50.

    Article  CAS  PubMed  Google Scholar 

  64. Leppanen R (2006) Intraoperative applications of the H-reflex and Fresponse: A tutorial. J Clin Monit Comput 20:267–304.

    Article  PubMed  Google Scholar 

  65. Møller AR (2006) Neural plasticity and disorders of the nervous system. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  66. Thomsen K, FB Christensen, SP Eiskjaer et al (1997) The effect of pedicle screw instrumentation on functional outcome and fusion rates in posterolateral lumbar spinal fusions: A prospective randomized clinical study. Spine 22: 2813–22.

    Article  CAS  PubMed  Google Scholar 

  67. Calancie B, N Lebwohl, P Madsen et al (1992) Intraoperative evoked EMG monitoring in an animal model. A new technique for evaluating pedicle screw placement. Spine 17:1229–35.

    Article  CAS  PubMed  Google Scholar 

  68. Bose B, LR Wierzbowski and AK Sestokas (2002) Neurophysiologic monitoring of spinal nerve root function during instrumented posterior lumbar spine surgery. Spine 27:1444–50.

    Article  PubMed  Google Scholar 

  69. Toleikis JR, JP Skelly, AO Carlvin et al (2000) The usefulness of electrical stimulation for assessing pedicle screw placements. J Spin Disord 13:283–9.

    Article  CAS  Google Scholar 

  70. Toleikis JR, (2002) Neurophysiological monitoring during pedicle screw placement, in Neurophysiology in Neurosurgrey, V Deletis and JL Shils, Editors. Elsevier: Amsterdam. 231–64.

    Chapter  Google Scholar 

  71. Calancie B, P Madsen and N Lebwohl (1994) Stimulus evoked EMG monitoring during transpedicular lumbosacral spine instrumentation. Spine 19:2780–86.

    Article  CAS  PubMed  Google Scholar 

  72. Kretchmann HJ and W Weinrich (1999) Neurofunctional systems. Thieme: New York.

    Google Scholar 

  73. Shils JL, M Tagliati and RL Alterman (2002) Neurophysiological monitoring during neurosurgery for movement disorders, in Neurophysiology in Neurosurgery, V Deletis and JL Shils, Editors. Academic Press: Amsterdam. 405–48.

    Chapter  Google Scholar 

  74. Yingling C (1994) Intraoperative monitoring in skull base surgery, in Neurotology, RK Jackler and DE Brackmann, Editors. 1994, Mosby: St. Louis. 967–1002.

    Google Scholar 

  75. Mills KR, C McLeod, J Sheffy et al (1993) The optimal current direction for excitation of human cervical motor roots with a double coil magnetic stimulator. Electroenceph Clin Neurophysiol 89:138–44.

    Article  CAS  PubMed  Google Scholar 

  76. Kimura J, A Mitsudome, T Yamada et al (1984) Stationary peaks from moving source in far-field recordings. Electroenceph Clin Neurophys 58:351–61.

    Article  CAS  Google Scholar 

  77. Lueders H, RP Lesser, JR Hahn et al (1983) Subcortical somatosensory evoked potentials to median nerve stimulation. Brain 106:341–72.

    Article  PubMed  Google Scholar 

  78. Schmid UD, AR Møller and J Schmid (1992) The excitation site of the trigeminal nerve to transcranial magnetic stimulation varies and lies proximal or distal to the foramen ovale: An intraoperative electrophysiological study in man. Neurosci Lett 141:265–8.

    Article  CAS  PubMed  Google Scholar 

  79. Sloan T and D Angell, (1993) Differential effect of isoflurane on motor evoked potentials elicited by transcortical electric or magnetic stimulation, in Handbook of Spinal Cord Monitoring, SS Jones et al, Editors. Kluwer Academic Publishers: Hingham, MA. 362–7.

    Google Scholar 

  80. Yamada H, EE Transfeldt, T Tamaki et al (1994) The effects of volatile anesthetics on the relative amplitudes and latencies of spinal and muscle potentials evoked by transcranial magnetic stimulation. Spine 19:1512–7.

    Article  CAS  PubMed  Google Scholar 

  81. Sloan T, (1996) Evoked potentials, in A Textbook of Neuroanesthesia with Neurosurgical and Neuroscience Perspectives, MS Albin, Editor. McGraw-Hill: New York. 221–76.

    Google Scholar 

  82. Glassman SD, CB Shields, RD Linden et al (1993) Anesthetic effects on motor evoked potentials in dogs. Spine 18:1083–9.

    Article  CAS  PubMed  Google Scholar 

  83. Loughnan B, S Anderson, M Hetreed et al (1989) Effects of halothane on motor evoked potential recorded in the extradural space. Br J Anaesth 63:561–4.

    Article  CAS  PubMed  Google Scholar 

  84. Mavroudakis N, A Vandesteene and E Brunko (1994) Spinal and brain-stem SEPs and H reflex during enflurane anesthesia. Electroencephalogr clin Neurophysiol 92:82–5.

    Article  CAS  PubMed  Google Scholar 

  85. Hicks R, I Woodforth, M Crawford et al (1992) Some effects of isoflurane on I waves of the motor evoked potential. Br J Anaesth 69:130–6.

    Article  CAS  PubMed  Google Scholar 

  86. Taniguchi M, J Schram and C Cedzich, (1991) Recording of myogenic motor evoked potential (mMEP) under general anesthesia, in Intraoperative Neurophysiological Monitoring, J Schramm and AR Møller, Editors. Springer Verlag: Berlin. 72–87.

    Google Scholar 

  87. Amassian VE, M Stewart, GJ Quirk et al (1987) Physiological basis of motor effects on a transient stimulation to cerebral cortex. Neurosurgery 20:74–93.

    CAS  PubMed  Google Scholar 

  88. Møller AR (2003) Sensory Systems: Anatomy and Physiology. Amsterdam: Academic Press.

    Google Scholar 

  89. Taylor BA, ME Fennelly, A Taylor et al (1993) Temporal summation – the key to motor evoked potential spinalo cord monitoring in humans. J Neurology 56:104–6.

    CAS  Google Scholar 

  90. Neuloh G and J Schramm (2002) Intraoperative neurophysiological mapping and monioring for supratentorial procedures, in Neurophysiology in Neurosurgery, J Deletis and JL Shils, Editors. Elsevier: Amsterdam. 339–401.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aage R. Møller PhD (DMedSci) .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Møller, A.R. (2011). Practical Aspects of Monitoring Spinal Motor Systems. In: Intraoperative Neurophysiological Monitoring. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7436-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7436-5_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7435-8

  • Online ISBN: 978-1-4419-7436-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics