Skip to main content

Tumour-Specific Synthetic Lethality: Targeting BRCA Dysfunction in Ovarian Cancer

  • Chapter
  • First Online:
Emerging Therapeutic Targets in Ovarian Cancer
  • 558 Accesses

Abstract

The inheritance of mutations in either BRCA1 or BRCA2 genes is associated with an estimated lifetime risk of developing ovarian cancer of up to 40–50% for BRCA1 mutation carriers and 10–20% for BRCA2 carriers The analysis of BRCA1 and BRCA2 function in DNA repair is leading to new approaches to antitumour therapy for such patients, including the use of poly(ADP)-ribose polymerase (PARP) inhibitors. Such novel agents are selectively lethal to cells lacking functional BRCA1 or BRCA2, with minimal toxicity to cells with normal BRCA function. Early clinical trials have confirmed this finding and shown that PARP inhibitors are well tolerated with substantial antitumour efficacy in ovarian cancer patients with BRCA mutations. The increased understanding of BRCA dysfunction, particularly in high-grade serous ovarian cancers has now led to the testing of these novel therapeutics in broader groups of women with this disease. The stage is now set for this tumour-specific synthetic lethal approach to have a positive impact on women in the gynae-oncology clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yap TA, Carden CP, Kaye SB (2009). Beyond chemotherapy: targeted therapies in ovarian cancer. Nat Rev Cancer 9:167–81.

    Article  PubMed  CAS  Google Scholar 

  2. Hoeijmakers JH (2001). Genome maintenance mechanisms for preventing cancer. Nature 411:366–74.

    Article  PubMed  CAS  Google Scholar 

  3. van Gent DC, Hoeijmakers JH, Kanaar R (2001). Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2:196–206.

    Article  PubMed  Google Scholar 

  4. Takata M, et al (1998). Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. Embo J 17:5497–508.

    Article  PubMed  CAS  Google Scholar 

  5. Rothkamm K, Kruger I, Thompson LH, Lobrich M (2003). Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23:5706–15.

    Article  PubMed  CAS  Google Scholar 

  6. Stark JM, Pierce AJ, Oh J, Pastink A, Jasin M (2004). Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol Cell Biol 24:9305–16.

    Article  PubMed  CAS  Google Scholar 

  7. Elliott B, Richardson C, Jasin M (2005). Chromosomal translocation mechanisms at intronic alu elements in mammalian cells. Mol Cell 17:885–94.

    Article  PubMed  CAS  Google Scholar 

  8. Wooster R, Weber BL (2003). Breast and ovarian cancer. N Engl J Med 348:2339–47.

    Article  PubMed  CAS  Google Scholar 

  9. Gudmundsdottir K, Ashworth A (2006). The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 25:5864–74.

    Article  PubMed  CAS  Google Scholar 

  10. Scully R, et al. (1997). Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88:265–75.

    Article  PubMed  CAS  Google Scholar 

  11. Wu LC, et al. (1996). Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet 14:430–40.

    Article  PubMed  CAS  Google Scholar 

  12. Shen SX, et al. (1998). A targeted disruption of the murine Brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene 17:3115–24.

    Article  PubMed  CAS  Google Scholar 

  13. Xu X, et al. (1999). Centrosome amplification and a defective G2–M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 3:389–95.

    Article  PubMed  CAS  Google Scholar 

  14. Patel KJ, et al. (1998). Involvement of Brca2 in DNA repair. Mol Cell 1:347–57.

    Article  PubMed  CAS  Google Scholar 

  15. Tutt A, et al. (2001). Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. Embo J 20:4704–16.

    Article  PubMed  CAS  Google Scholar 

  16. Kraakman-van der Zwet M, et al. (2002). Brca2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol Cell Biol 22:669–79.

    Article  PubMed  CAS  Google Scholar 

  17. Yu VP, et al. (2000). Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. Genes Dev 14:1400–6.

    PubMed  CAS  Google Scholar 

  18. Yuan SS, et al. (1999). BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer Res 59:3547–51.

    PubMed  CAS  Google Scholar 

  19. Esashi F, Galkin VE, Yu X, Egelman EH, West SC (2007). Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2. Nat Struct Mol Biol 14:468–74.

    Article  PubMed  CAS  Google Scholar 

  20. Davies OR, Pellegrini L (2007). Interaction with the BRCA2 C terminus protects RAD51-DNA filaments from disassembly by BRC repeats. Nat Struct Mol Biol 14:475–83.

    PubMed  Google Scholar 

  21. Lord CJ, Ashworth A (2007). RAD51, BRCA2 and DNA repair: a partial resolution. Nat Struct Mol Biol 14:461–2.

    Article  PubMed  CAS  Google Scholar 

  22. Yang H, et al. (2002). BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science 297:1837–48.

    Article  PubMed  CAS  Google Scholar 

  23. Chambon P, Weill JD, Mandel P (1963). Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 11:39–43.

    Article  PubMed  CAS  Google Scholar 

  24. Ame JC, Spenlehauer C, de Murcia G (2004). The PARP superfamily. Bioessays 26:882–93.

    Article  PubMed  CAS  Google Scholar 

  25. Otto H, et al. (2005). In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics 6:139.

    Article  PubMed  CAS  Google Scholar 

  26. Sugimura K, Takebayashi S, Taguchi H, Takeda S, Okumura K (2008). PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA. J Cell Biol 183:1203–12.

    Article  PubMed  CAS  Google Scholar 

  27. Dobzhansky T (1946). Genetics of natural populations. XIII. Recombination and variability in populations of Drosophila pseudoobscura. Genetics 31:269–90.

    Google Scholar 

  28. Kaelin WG Jr (2005). The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5:689–98.

    Article  PubMed  CAS  Google Scholar 

  29. Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH (1997). Integrating genetic approaches into the discovery of anticancer drugs. Science 278:1064–68.

    Article  PubMed  CAS  Google Scholar 

  30. Ooi SL, et al. (2006). Global synthetic-lethality analysis and yeast functional profiling. Trends Genet 22:56–63.

    Article  PubMed  CAS  Google Scholar 

  31. Iorns E, Lord CJ, Turner N, Ashworth A (2007). Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov 6:556–68.

    Article  PubMed  CAS  Google Scholar 

  32. Fong PC, et al. (2009). Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–34.

    Article  Google Scholar 

  33. Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, Scott C, Weitzel JN, Oaknin A, Loman N, Lu K, Schmutzler RK, Matulonis U, Wickens M, Tutt A (2010). A multicentre phase II study of the oral PARP inhibitor olaparib (AZD2281; KU-0059436) in BRCA1 or BRCA2 mutation carriers with recurrent ovarian cancer. Lancet 376(9737):245–51.

    Article  PubMed  CAS  Google Scholar 

  34. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK, Wardley A, Mitchell G, Earl H, Wickens M, Carmichael J (2010). Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376(9737):235–44.

    Article  PubMed  CAS  Google Scholar 

  35. Noel G, Giocanti N, Fernet M, Megnin-Chanet F, Favaudon V (2003). Poly(ADP-ribose) polymerase (PARP-1) is not involved in DNA double-strand break recovery. BMC Cell Biol 4:7.

    Article  PubMed  Google Scholar 

  36. Haber JE (1999). DNA recombination: the replication connection. Trends Biochem Sci 24:271–75.

    Article  PubMed  CAS  Google Scholar 

  37. Moynahan ME, Chiu JW, Koller BH, Jasin M (1999). Brca1 controls homology-directed DNA repair. Mol Cell 4:511–18.

    Article  PubMed  CAS  Google Scholar 

  38. Moynahan ME, Pierce AJ, Jasin M (2001). BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 7:263–72.

    Article  PubMed  CAS  Google Scholar 

  39. Hochegger H, et al. (2006). Parp-1 protects homologous recombination from interference by Ku and Ligase IV in vertebrate cells. Embo J 25:1305–14.

    Article  PubMed  CAS  Google Scholar 

  40. Farmer H, et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–21.

    Article  PubMed  CAS  Google Scholar 

  41. Bryant HE, et al. (2005). Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–17.

    Article  PubMed  CAS  Google Scholar 

  42. McCabe N, et al. (2006). Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 66:8109–15.

    Article  PubMed  CAS  Google Scholar 

  43. Gallmeier E, Kern SE (2005). Absence of specific cell killing of the BRCA2-deficient human cancer cell line CAPAN1 by poly(ADP-ribose) polymerase inhibition. Cancer Biol Ther 4:703–6.

    Article  PubMed  CAS  Google Scholar 

  44. Boulton S, Kyle S, Durkacz BW (1999). Interactive effects of inhibitors of poly(ADP-ribose) polymerase and DNA-dependent protein kinase on cellular responses to DNA damage. Carcinogenesis 20:199–203.

    Article  PubMed  CAS  Google Scholar 

  45. Symington LS (2005). Focus on recombinational DNA repair. EMBO Rep 6:512–17.

    Article  PubMed  CAS  Google Scholar 

  46. Arnaudeau C, Lundin C, Helleday T (2001). DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J Mol Biol 307:1235–45.

    Article  PubMed  CAS  Google Scholar 

  47. Lomonosov M, Anand S, Sangrithi M, Davies R, Venkitaraman AR (2003). Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein. Genes Dev 17:3017–22.

    Article  PubMed  CAS  Google Scholar 

  48. Turner N, Tutt A, Ashworth A (2004). Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4:814–19.

    Article  PubMed  CAS  Google Scholar 

  49. Ashworth A (2008). A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol 26:3785–90.

    Article  PubMed  CAS  Google Scholar 

  50. Ford D, Easton DF, Bishop DT, Narod SA, Goldgar DE (1994). Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet 343:692–95.

    Article  PubMed  CAS  Google Scholar 

  51. Moslehi R, et al. (2000). BRCA1 and BRCA2 mutation analysis of 208 Ashkenazi Jewish women with ovarian cancer. Am J Hum Genet 66:1259–72.

    Article  PubMed  CAS  Google Scholar 

  52. Ford D, et al. (1998). Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet 62:676–89.

    Article  PubMed  CAS  Google Scholar 

  53. Domchek SM, Weber BL (2006). Clinical management of BRCA1 and BRCA2 mutation carriers. Oncogene 25:5825–31.

    Article  PubMed  CAS  Google Scholar 

  54. Pal T, Permuth-Wey J, Kapoor R, Cantor A, Sutphen R (2007). Improved survival in BRCA2 carriers with ovarian cancer. Fam Cancer 6:113–19.

    Article  PubMed  CAS  Google Scholar 

  55. Cass I, et al. (2003). Improved survival in women with BRCA-associated ovarian carcinoma. Cancer 97:2187–95.

    Article  PubMed  CAS  Google Scholar 

  56. Tan DS, et al. (2008). “BRCAness” syndrome in ovarian cancer: a case–control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutations. J Clin Oncol 26:5530–36.

    Article  PubMed  Google Scholar 

  57. Foulkes WD (2003). Re: Potential for bias in studies on efficacy of prophylactic surgery for BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 95:1344, author reply 1344.

    PubMed  Google Scholar 

  58. Turner NC, Reis-Filho JS (2006). Basal-like breast cancer and the BRCA1 phenotype. Oncogene 25:5846–53.

    Article  PubMed  CAS  Google Scholar 

  59. Baldwin RL, et al. (2000). BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study. Cancer Res 60:5329–33.

    PubMed  CAS  Google Scholar 

  60. Press JZ, et al. (2008). Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Cancer 8:17.

    Article  PubMed  CAS  Google Scholar 

  61. Jacinto FV, Esteller M (2007). Mutator pathways unleashed by epigenetic silencing in human cancer. Mutagenesis 22:247–53.

    Article  PubMed  CAS  Google Scholar 

  62. Turner NC, et al. (2007). BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 26:2126–32.

    Article  PubMed  CAS  Google Scholar 

  63. Hughes-Davies L, et al. (2003). EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 115:523–35.

    Article  PubMed  CAS  Google Scholar 

  64. Taniguchi T, et al. (2003). Disruption of the Fanconi anemia – BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med 9:568–74.

    Article  PubMed  CAS  Google Scholar 

  65. Tutt A, Ashworth A (2008). Can genetic testing guide treatment in breast cancer? Eur J Cancer 44:2774–80.

    Article  PubMed  CAS  Google Scholar 

  66. Alvarez S, et al. (2005). A predictor based on the somatic genomic changes of the BRCA1/BRCA2 breast cancer tumors identifies the non-BRCA1/BRCA2 tumors with BRCA1 promoter hypermethylation. Clin Cancer Res 11:1146–53.

    PubMed  CAS  Google Scholar 

  67. Lord CJ, McDonald S, Swift S, Turner NC, Ashworth A (2008). A high-throughput RNA interference screen for DNA repair determinants of PARP inhibitor sensitivity. DNA Repair (Amst) 7:2010–19.

    Article  CAS  Google Scholar 

  68. Turner NC, et al. (2008). A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. Embo J 27:1368–77.

    Article  PubMed  CAS  Google Scholar 

  69. Hedenfalk I, et al. (2001). Gene-expression profiles in hereditary breast cancer. N Engl J Med 344:539–48.

    Article  PubMed  CAS  Google Scholar 

  70. Hedenfalk IA (2002). Gene expression profiling of hereditary and sporadic ovarian cancers reveals unique BRCA1 and BRCA2 signatures. J Natl Cancer Inst 94:960–1.

    PubMed  Google Scholar 

  71. Jazaeri AA, et al. (2002). Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers. J Natl Cancer Inst 94:990–1000.

    PubMed  CAS  Google Scholar 

  72. Wessels LF, et al. (2002). Molecular classification of breast carcinomas by comparative genomic hybridization: a specific somatic genetic profile for BRCA1 tumors. Cancer Res 62:7110–17.

    PubMed  CAS  Google Scholar 

  73. Bosken CH, Wei Q, Amos CI, Spitz MR (2002). An analysis of DNA repair as a determinant of survival in patients with non-small-cell lung cancer. J Natl Cancer Inst 94:1091–99.

    PubMed  Google Scholar 

  74. Plummer ER, et al. (2005). Temozolomide pharmacodynamics in patients with metastatic melanoma: DNA damage and activity of repair enzymes O6-alkylguanine alkyltransferase and poly(ADP-ribose) polymerase-1. Clin Cancer Res 11:3402–9.

    Article  PubMed  CAS  Google Scholar 

  75. Newlands ES, Stevens MF, Wedge SR, Wheelhouse RT, Brock C (1997). Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev 23:35–61.

    Article  PubMed  CAS  Google Scholar 

  76. Plummer R, et al. (2006). First and final report of a phase II study of the poly(ADP-ribose) polymerase (PARP) inhibitor, AG014699, in combination with temozolomide (TMZ) in patients with metastatic malignant melanoma. J Clin Oncol. 24(18S):(June 20 Supplement): 8013.2006 ASCO Annual Meeting Proceedings Part I.

    Google Scholar 

  77. O’Shaughnessy J, et al. (2009). Efficacy of BSI-201, a PARP inhibitor, in combination with gemcitabine/carboplatin in triple-negative breast cancer: results of a phase II study. J Clin Oncol 27(18s):(suppl; abstr 3).

    Google Scholar 

  78. Foulkes WD (2006). BRCA1 and BRCA2: chemosensitivity, treatment outcomes and prognosis. Fam Cancer 5:135–42.

    Article  PubMed  CAS  Google Scholar 

  79. Kopetz S, et al. (2008). First in human phase I study of BSI-201, a small molecule inhibitor of poly ADP-ribose polymerase (PARP) in subjects with advanced solid tumors. J Clin Oncol. 26(15S):(May 20 Supplement), 3577.2008 ASCO Annual Meeting Proceedings (Post-Meeting Edition).

    Google Scholar 

  80. Fong PC, Yap TA, Boss DS, Carden CP, Mergui-Roelvink M, Gourly C, de Greve J, Lubinski J, Shanley S, Messiou C, A’hern R, Tutt A, Ashworth A, Stone J, Carmichael J, Schellens JHM, de Bono JS, Kaye SB (2009). Poly(ADP)-ribose polymerase (PARP) inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol 28(15):2512–9.

    Article  CAS  Google Scholar 

  81. Edwards SL, et al. (2008). Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451:1111–15.

    Article  PubMed  CAS  Google Scholar 

  82. Rottenberg S, et al. (2008). High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci USA 105:17079–84.

    Article  PubMed  Google Scholar 

  83. Goggins M, et al. (1996). Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res 56:5360–64.

    PubMed  CAS  Google Scholar 

  84. Spain BH, Larson CJ, Shihabuddin LS, Gage FH, Verma IM (1999). Truncated BRCA2 is cytoplasmic: implications for cancer-linked mutations. Proc Natl Acad Sci USA 96:13920–25.

    Article  PubMed  CAS  Google Scholar 

  85. Loh VM Jr, et al. (2005). Phthalazinones. Part 1: the design and synthesis of a novel series of potent inhibitors of poly(ADP-ribose)polymerase. Bioorg Med Chem Lett 15:2235–38.

    Article  PubMed  CAS  Google Scholar 

  86. Tutt AN, et al. (2005). Exploiting the DNA repair defect in BRCA mutant cells in the design of new therapeutic strategies for cancer. Cold Spring Harb Symp Quant Biol 70:139–48.

    Article  PubMed  CAS  Google Scholar 

  87. Sakai W, et al. (2008). Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451:1116–20.

    Article  PubMed  CAS  Google Scholar 

  88. Lord CJ, Garrett MD, Ashworth A (2006). Targeting the double-strand DNA break repair pathway as a therapeutic strategy. Clin Cancer Res 12:4463–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Tutt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yap, T.A., Kaye, S.H., Ashworth, A., Tutt, A. (2011). Tumour-Specific Synthetic Lethality: Targeting BRCA Dysfunction in Ovarian Cancer. In: Kaye, S., Brown, R., Gabra, H., Gore, M. (eds) Emerging Therapeutic Targets in Ovarian Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7216-3_6

Download citation

Publish with us

Policies and ethics