Skip to main content

The Structural Basis of Cardiac Dysfunction in Human Heart Failure

  • Chapter
  • First Online:
Molecular Defects in Cardiovascular Disease

Abstract

In this chapter we describe the structural alterations observed in failing human myocardium. We review the current literature and compare these reports with our own findings. One of the earliest significant structural changes is the occurrence of myocyte hypertrophy and a significant degree of reactive fibrosis, which are the major factors causing diastolic dysfunction. Furthermore, we describe equivalents of systolic dysfunction: the ultrastructural changes indicating myocyte degeneration characterized by the reduction of myofilaments, an increase in cytoplasm, and the occurrence of small mitochondria with less cristae. The cytoskeleton: the microtubuli showed densification and desmin was augmented and irregularly arranged, most probably a mechanism compensatory for reduced cellular stability because of loss of sarcomeres. The remaining sarcomeres showed less elements of the sarcomeric skeleton, i.e., of titin, α-actinin, and myomesin, which contributes to sarcomeric instability. Membrane damage leads to ionic imbalance and is caused by either loss or increase of the membrane proteins dystrophin, the vinculin–talin–­integrin complex, and of spectrin. The gap junctional protein connexin 43 of the intercalated disc is likewise reduced and represents the basis of defects of the excitation–contraction coupling. In the extracellular space, an accumulation of blood borne cells indicates a process of chronic low-grade inflammation, which is injurious to the sarcolemma of the myocyte. These different processes involving the interstitium as well as almost all cellular components of the cardiomyocytes will finally lead to myocyte death, either autophagic or oncotic but less apoptotic. It is postulated that fibrosis and myocyte hypertrophy combined with loss of sarcomeres are the structural equivalent of diastolic dysfunction. Systolic dysfunction occurs at a later stage of ­progression to heart failure and is caused by damage of the various ­components of the myocytes in addition to cellular hypertrophy and ­fibrosis. In conclusion, the development of heart failure is a multifactorial event involving the extracellular matrix and almost all cellular components of the myocytes. Therefore; fibrosis as well as myocyte degeneration and cell death are the structural factors determining cardiac dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999;79:215–62.

    PubMed  CAS  Google Scholar 

  2. Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev. 2007;87:1285–342.

    Article  PubMed  CAS  Google Scholar 

  3. Creemers EE, Pinto YM. Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res. 2011;89:265–72.

    Article  PubMed  CAS  Google Scholar 

  4. Villari B, Hess OM, Piscione F, Vassalli G, Weber KT, Chiariello M. Heart function in chronic pressure overload caused by aortic stenosis: the role of collagen tissue. Cardiologia. 1994;39:411–20.

    PubMed  CAS  Google Scholar 

  5. Weber KT, Sun Y, Tyagi SC, et al. Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol. 1994;26:279–92.

    Article  PubMed  CAS  Google Scholar 

  6. Brower GL, Gardner JD, Forman MF, et al. The relationship between myocardial extracellular matrix remodeling and ventricular function. Eur J Cardiothorac Surg. 2006;30:604–10.

    Article  PubMed  Google Scholar 

  7. Konstam MA, Udelson JE, Anand IS, et al. Ventricular remodeling in heart failure: a credible surrogate endpoint. J Card Fail. 2003;9:350–3.

    Article  PubMed  Google Scholar 

  8. Hein S, Arnon E, Kostin S, et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation. 2003;107:984–91.

    Article  PubMed  Google Scholar 

  9. Heling A, Zimmermann R, Kostin S, et al. Increased expression of cytoskeletal, linkage, and extracellular proteins in failing human myocardium. Circ Res. 2000;86:846–53.

    PubMed  CAS  Google Scholar 

  10. Risteli J, Risteli L. Analysing connective tissue metabolites in human serum. Biochemical, physiological and methodological aspects. J Hepatol. 1995;22(2 Suppl):77–81.

    PubMed  CAS  Google Scholar 

  11. Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol. 2010;225:631–7.

    Article  PubMed  CAS  Google Scholar 

  12. Teekakirikul P, Eminaga S, Toka O, et al. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-beta. J Clin Invest. 2010;120:3520–9.

    Article  PubMed  CAS  Google Scholar 

  13. de Cavanagh EM, Ferder M, Inserra F, et al. Angiotensin II, mitochondria, cytoskeletal, and extracellular matrix connections: an integrating viewpoint. Am J Physiol Heart Circ Physiol. 2009;296:H550–8.

    Article  PubMed  Google Scholar 

  14. Levick SP, Melendez GC, Plante E, et al. Cardiac mast cells: the centrepiece in adverse myocardial remodelling. Cardiovasc Res. 2011;89:12–9.

    Article  PubMed  CAS  Google Scholar 

  15. Polyakova V, Hein S, Kostin S. Matrix metalloproteinases and their tissue inhibitors in pressure-­overloaded human myocardium during heart failure progression. J Am Coll Cardiol. 2004;44:1609–18.

    Article  PubMed  CAS  Google Scholar 

  16. Polyakova V, Loeffler I, Hein S, et al. Fibrosis in endstage human heart failure: Severe changes in collagen metabolism and MMP/TIMP profiles. Int J Cardiol. (2010), doi:10.1016/j.ijcard.2010.04.053 in press.

    Google Scholar 

  17. Schaper J, Froede R, Hein S, et al. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation. 1991;83:504–14.

    PubMed  CAS  Google Scholar 

  18. Terman A, Kurz T, Gustafsson B, et al. The involvement of lysosomes in myocardial aging and disease. Curr Cardiol Rev. 2008;4:107–15.

    Article  PubMed  CAS  Google Scholar 

  19. Maloyan A, Sayegh J, Osinska H, et al. Manipulation of death pathways in desmin-related cardiomyopathy. Circ Res. 2010;106:1524–32.

    Article  PubMed  CAS  Google Scholar 

  20. Scholz D, Diener W, Schaper J. Altered nucleus/cytoplasm relationship and degenerative structural changes in human dilated cardiomyopathy. Cardioscience. 1994;5:127–38.

    PubMed  CAS  Google Scholar 

  21. Soonpa MH, Field LJ. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res. 1998;83:15–26.

    Google Scholar 

  22. Schwarz F, Schaper J, Kittstein D, et al. Reduced volume fraction of myofibrils in myocardium of patients with decompensated pressure overload. Circulation. 1981;63:1299–304.

    Article  PubMed  CAS  Google Scholar 

  23. Schwarz F, Schaper J, Kittstein D, et al. Quantitative ultrastructural findings of the myocardium in the failing heart. I. Aortic valve insufficiency. Z Kardiol. 1981;70:729–32.

    PubMed  CAS  Google Scholar 

  24. Maron BJ, Ferrans VJ, Roberts WC. Myocardial ultrastructure in patients with chronic aortic valve ­disease. Am J Cardiol. 1975;35:725–39.

    Article  PubMed  CAS  Google Scholar 

  25. Braunwald E, Bristow MR. Congestive heart failure: fifty years of progress. Circulation. 2000;102(20 Suppl 4):IV14–23.

    PubMed  CAS  Google Scholar 

  26. Granzier H, Labeit S. Structure-function relations of the giant elastic protein titin in striated and smooth muscle cells. Muscle Nerve. 2007;36:740–55.

    Article  PubMed  CAS  Google Scholar 

  27. Obermann WM, Gautel M, Steiner F, et al. The structure of the sarcomeric M band: localization of defined domains of myomesin, M-protein, and the 250-kD carboxy-terminal region of titin by immunoelectron microscopy. J Cell Biol. 1996;134:1441–53.

    Article  PubMed  CAS  Google Scholar 

  28. Van Der Ven PF, Obermann WM, Weber K, et al. Myomesin, M-protein and the structure of the sarcomeric M-band. Adv Biophys. 1996;33:91–9.

    Article  Google Scholar 

  29. Granzier HL, Radke MH, Peng J, et al. Truncation of titin’s elastic PEVK region leads to cardiomyopathy with diastolic dysfunction. Circ Res. 2009;105:557–64.

    Article  PubMed  CAS  Google Scholar 

  30. Tskhovrebova L, Trinick J. Roles of titin in the structure and elasticity of the sarcomere. J Biomed Biotechnol. 2010;2010:612482.

    Article  PubMed  Google Scholar 

  31. LeWinter MM, Granzier H. Cardiac titin: a multifunctional giant. Circulation. 2010;121:2137–45.

    Article  PubMed  Google Scholar 

  32. Hein S, Scholz D, Fujitani N, et al. Altered expression of titin and contractile proteins in failing human ­myocardium. J Mol Cell Cardiol. 1994;26:1291–306.

    Article  PubMed  CAS  Google Scholar 

  33. Person V, Kostin S, Suzuki K, et al. Antisense oligonucleotide experiments elucidate the essential role of titin in sarcomerogenesis in adult rat cardiomyocytes in long-term culture. J Cell Sci. 2000;113(Pt 21):3851–9.

    PubMed  CAS  Google Scholar 

  34. Sjoblom B, Salmazo A, Djinovic-Carugo K. Alpha-actinin structure and regulation. Cell Mol Life Sci. 2008;65:2688–701.

    Article  PubMed  CAS  Google Scholar 

  35. Kostin S, Hein S, Arnon E, et al. The cytoskeleton and related proteins in the human failing heart. Heart Fail Rev. 2000;5:271–80.

    Article  PubMed  CAS  Google Scholar 

  36. Hein S, Block T, Zimmermann R, et al. Deposition of nonsarcomeric alpha-actinin in cardiomyocytes from patients with dilated cardiomyopathy or chronic pressure overload. Exp Clin Cardiol. 2009;14:e68–75.

    PubMed  CAS  Google Scholar 

  37. Obermann WM, Gautel M, Weber K, et al. Molecular structure of the sarcomeric M band: mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J. 1997;16:211–20.

    Article  PubMed  CAS  Google Scholar 

  38. Furst DO, Obermann WM, van der Ven PF. Structure and assembly of the sarcomeric M band. Rev Physiol Biochem Pharmacol. 1999;138:163–202.

    Article  PubMed  CAS  Google Scholar 

  39. Fukuzawa A, Lange S, Holt M, et al. Interactions with titin and myomesin target obscurin and obscurin-like 1 to the M-band: implications for hereditary myopathies. J Cell Sci. 2008;121(Pt 11):1841–51.

    Article  PubMed  CAS  Google Scholar 

  40. Barefield D, Sadayappan S. Phosphorylation and function of cardiac myosin binding protein-C in health and disease. J Mol Cell Cardiol. 2010;48:866–75.

    Article  PubMed  CAS  Google Scholar 

  41. Gt C. by Cooper, G. Cardiocyte adaptation to chronically altered load. Annu Rev Physiol. 1987;49:501–18.

    Article  Google Scholar 

  42. Gt C. Cytoskeletal networks and the regulation of cardiac contractility: microtubules, hypertrophy, and cardiac dysfunction. Am J Physiol Heart Circ Physiol. 2006;291:H1003–14.

    Article  Google Scholar 

  43. Tsutsui H, Ishihara K, Cooper GT. Cytoskeletal role in the contractile dysfunction of hypertrophied myocardium. Science. 1993;260:682–7.

    Article  PubMed  CAS  Google Scholar 

  44. Tsutsui H, Tagawa H, Kent RL, et al. Role of microtubules in contractile dysfunction of hypertrophied cardiocytes. Circulation. 1994;90:533–55.

    PubMed  CAS  Google Scholar 

  45. Tagawa H, Wang N, Narishige T. Cytoskeletal mechanics in pressure-overload cardiac hypertrophy. Circ Res. 1997;80:281–9.

    PubMed  CAS  Google Scholar 

  46. Scholz D, Baicu CF, Tuxworth WJ, et al. Microtubule-dependent distribution of mRNA in adult cardiocytes. Am J Physiol Heart Circ Physiol. 2008;294:H1135–44.

    Article  PubMed  CAS  Google Scholar 

  47. Hein S, Kostin S, Heling A, et al. The role of the cytoskeleton in heart failure. Cardiovasc Res. 2000;45:273–8.

    Article  PubMed  CAS  Google Scholar 

  48. Goldfarb LG, Dalakas MC. Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J Clin Invest. 2009;119:1806–13.

    Article  PubMed  CAS  Google Scholar 

  49. Anastasi G, Cutroneo G, Gaeta R, et al. Dystrophin-glycoprotein complex and vinculin-talin-integrin ­system in human adult cardiac muscle. Int J Mol Med. 2009;23:149–59.

    PubMed  Google Scholar 

  50. Ervasti JM, Campbell KP. Membrane organization of the dystrophin-glycoprotein complex. Cell. 1991;66:1121–31.

    Article  PubMed  CAS  Google Scholar 

  51. Le Rumeur E, Winder SJ, Hubert JF. Dystrophin: more than just the sum of its parts. Biochim Biophys Acta. 2010;1804:1713–22.

    PubMed  Google Scholar 

  52. Kaprielian RR, Severs NJ. Dystrophin and the cardiomyocyte membrane cytoskeleton in the healthy and failing heart. Heart Fail Rev. 2000;5:221–38.

    Article  PubMed  CAS  Google Scholar 

  53. Kostin S, Scholz D, Shimada T, et al. The internal and external protein scaffold of the T-tubular system in cardiomyocytes. Cell Tissue Res. 1998;294:449–60.

    Article  PubMed  CAS  Google Scholar 

  54. Prochniewicz E, Henderson D, Ervasti JM, et al. Dystrophin and utrophin have distinct effects on the structural dynamics of actin. Proc Natl Acad Sci USA. 2009;106:7822–7.

    Article  PubMed  CAS  Google Scholar 

  55. Kawada T, Masui F, Tezuka A, et al. A novel scheme of dystrophin disruption for the progression of advanced heart failure. Biochim Biophys Acta. 2005;1751:73–81.

    PubMed  CAS  Google Scholar 

  56. Toyo-Oka T, Kawada T, Nakata J, et al. Translocation and cleavage of myocardial dystrophin as a common pathway to advanced heart failure: a scheme for the progression of cardiac dysfunction. Proc Natl Acad Sci USA. 2004;101:7381–5.

    Article  PubMed  Google Scholar 

  57. Towbin JA. The role of cytoskeletal proteins in cardiomyopathies. Curr Opin Cell Biol. 1998;10:131–9.

    Article  PubMed  CAS  Google Scholar 

  58. Towbin JA, Bowles KR, Bowles NE. Etiologies of cardiomyopathy and heart failure. Nat Med. 1999;5:266–7.

    Article  PubMed  CAS  Google Scholar 

  59. Geiger B, Tokuyasu KT, Dutton AH, et al. Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proc Natl Acad Sci USA. 1980;77:4127–31.

    Article  PubMed  CAS  Google Scholar 

  60. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69:11–25.

    Article  PubMed  CAS  Google Scholar 

  61. Schwartz MA. Transmembrane signalling by integrins. Trends Cell Biol. 1992;2:304–8.

    Article  PubMed  CAS  Google Scholar 

  62. Wolfenson H, Henis YI, Geiger B, et al. The heel and toe of the cell’s foot: a multifaceted approach for understanding the structure and dynamics of focal adhesions. Cell Motil Cytoskeleton. 2009;66:1017–29.

    Article  PubMed  CAS  Google Scholar 

  63. Arber S, Hunter JJ, Ross Jr J, et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell. 1997;88:393–403.

    Article  PubMed  CAS  Google Scholar 

  64. Zolk O, Caroni P, Bohm M. Decreased expression of the cardiac LIM domain protein MLP in chronic human heart failure. Circulation. 2000;101:2674–7.

    PubMed  CAS  Google Scholar 

  65. Vasile VC, Will ML, Ommen SR, et al. Identification of a metavinculin missense mutation, R975W, associated with both hypertrophic and dilated cardiomyopathy. Mol Genet Metab. 2006;87:169–74.

    Article  PubMed  CAS  Google Scholar 

  66. Vasile VC, Edwards WD, Ommen SR, et al. Obstruc­tive hypertrophic cardiomyopathy is associated with reduced expression of vinculin in the ­intercalated disc. Biochem Biophys Res Commun. 2006;349:709–15.

    Article  PubMed  CAS  Google Scholar 

  67. Bito V, Heinzel FR, Biesmans L, et al. Crosstalk between L-type Ca2+ channels and the sarcoplasmic reticulum: alterations during cardiac remodelling. Cardiovasc Res. 2008;77:315–24.

    Article  PubMed  CAS  Google Scholar 

  68. He J, Conklin MW, Foell JD, et al. Reduction in density of transverse tubules and L-type Ca2+ channels in canine tachycardia-induced heart failure. Cardiovasc Res. 2001;49:298–307.

    Article  PubMed  CAS  Google Scholar 

  69. Heinzel FR, Bito V, Biesmans L, et al. Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium. Circ Res. 2008;102:338–46.

    Article  PubMed  CAS  Google Scholar 

  70. Louch WE, Mork HK, Sexton J, et al. T-tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction. J Physiol. 2006;574:519–33.

    Article  PubMed  CAS  Google Scholar 

  71. Song LS, Sobie EA, McCulle S, et al. Orphaned ­ryanodine receptors in the failing heart. Proc Natl Acad Sci USA. 2006;103:4305–10.

    Article  PubMed  CAS  Google Scholar 

  72. Lyon AR, MacLeod KT, Zhang Y, et al. Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc Natl Acad Sci USA. 2009;106:6854–9.

    Article  PubMed  CAS  Google Scholar 

  73. Wei S, Guo A, Chen B, et al. T-tubule remodeling ­during transition from hypertrophy to heart failure. Circ Res. 2010;107:520–31.

    Article  PubMed  CAS  Google Scholar 

  74. Takeshima H, Komazaki S, Nishi M, et al. Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell. 2000;6:11–22.

    PubMed  CAS  Google Scholar 

  75. Kawada T, Hemmi C, Fukuda S, et al. Sarcolemmal fragility secondary to the degradation of dystrophin in dilated cardiomyopathy, as estimated by electron microscopy. Exp Clin Cardiol. 2003;8:67–70.

    PubMed  CAS  Google Scholar 

  76. Rodriguez M, Cai WJ, Kostin S, et al. Ischemia depletes dystrophin and inhibits protein synthesis in the canine heart: mechanisms of myocardial ischemic injury. J Mol Cell Cardiol. 2005;38:723–33.

    Article  PubMed  CAS  Google Scholar 

  77. Li J, Radice GL. A new perspective on intercalated disc organization: implications for heart disease. Dermatol Res Pract. 2010;2010:207835.

    PubMed  Google Scholar 

  78. Severs NJ. The cardiac gap junction and intercalated disc. Int J Cardiol. 1990;26:137–73.

    Article  PubMed  CAS  Google Scholar 

  79. Kostin S, Dammer S, Hein S, et al. Connexin 43 expression and distribution in compensated and ­decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc Res. 2004;62:426–36.

    Article  PubMed  CAS  Google Scholar 

  80. Kostin S. Zonula occludens-1 and connexin 43 expression in the failing human heart. J Cell Mol Med. 2007;11:892–5.

    Article  PubMed  Google Scholar 

  81. Devaux B, Scholz D, Hirche A, et al. Upregulation of cell adhesion molecules and the presence of low grade inflammation in human chronic heart failure. Eur Heart J. 1997;18:470–9.

    PubMed  CAS  Google Scholar 

  82. Kania G, Blyszczuk P, Eriksson U. Mechanisms of cardiac fibrosis in inflammatory heart disease. Trends Cardiovasc Med. 2009;19:247–52.

    Article  PubMed  CAS  Google Scholar 

  83. Valen G. Innate immunity and remodelling. Heart Fail Rev. 2011;16:71–8.

    Article  PubMed  CAS  Google Scholar 

  84. Maisch B, Richter A, Sandmoller A, et al. Inflam­matory dilated cardiomyopathy (DCMI). Herz. 2005;30:535–44.

    Article  PubMed  Google Scholar 

  85. Kostin S, Pool L, Elsasser A, et al. Myocytes die by multiple mechanisms in failing human hearts. Circ Res. 2003;92:715–24.

    Article  PubMed  CAS  Google Scholar 

  86. Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol. 2010;72:19–44.

    Article  PubMed  CAS  Google Scholar 

  87. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995;146:3–15.

    PubMed  CAS  Google Scholar 

  88. De Meyer GR, De Keulenaer GW, Martinet W. Role of autophagy in heart failure associated with aging. Heart Fail Rev. 2010;15:423–30.

    Article  PubMed  Google Scholar 

  89. Guerra S, Leri A, Wang X, et al. Myocyte death in the failing human heart is gender dependent. Circ Res. 1999;85:856–66.

    PubMed  CAS  Google Scholar 

  90. Meredith Jr JE, Fazeli B, Schwartz MA. The ­extracellular matrix as a cell survival factor. Mol Biol Cell. 1993;4:953–61.

    PubMed  CAS  Google Scholar 

  91. Saetersdal T, Larsen TH, Dalen H. The beta1 integrin subunit is not a specific component of the costamere domain in human myocardial cells. Histochem J. 2002;34:323–9.

    Article  PubMed  CAS  Google Scholar 

  92. Schwartz MA. Remembrance of dead cells past: discovering that the extracellular matrix is a cell survival factor. Mol Biol Cell. 2010;21:499–500.

    Article  PubMed  CAS  Google Scholar 

  93. Ding B, Price RL, Goldsmith EC, et al. Left ventricular hypertrophy in ascending aortic stenosis mice: anoikis and the progression to early failure. Circulation. 2000;101:2854–62.

    PubMed  CAS  Google Scholar 

  94. Piot C, Croisille P, Staat P, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008;359:473–81.

    Article  PubMed  CAS  Google Scholar 

  95. Hein S, Schaper J. Remodeling from compensated hypertrophy to heart failure. In: Greenberg B, editor. Cardiac remodeling mechanisms and treatment. New York/London: Taylor&Francis; 2006. p. 103–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jutta Schaper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hein, S., Kostin, S., Schaper, J. (2011). The Structural Basis of Cardiac Dysfunction in Human Heart Failure. In: Dhalla, N., Nagano, M., Ostadal, B. (eds) Molecular Defects in Cardiovascular Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7130-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7130-2_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7129-6

  • Online ISBN: 978-1-4419-7130-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics