Skip to main content

Retroactivity as a Criterion to Define Modules in Signaling Networks

  • Chapter
  • First Online:
Design and Analysis of Biomolecular Circuits

Abstract

The concept of modularity has been widely studied in the context of molecular biology. Since engineering sciences are used to work in a modular manner, it is tempting to approach the definition of biological modules from an engineering perspective. From a system-theoretical point of view an interesting criterion might be the definition of modules where both the input signals and the output signals are unidirectional, that is, there is no retroactivity. In this chapter, we review the applicability of this concept to biological networks. We start describing which biochemical situations can lead to absence of retroactivity. Then, we show how this concept can be automatized into an algorithm to decompose biochemical networks into modules so that the retroactivity among the modules is minimized. This decomposition facilitates the analysis of complex models because the modules can, to some degree, be studied separately. We complement this analysis with a consideration of retroactivity in signal transduction processes using a domain-oriented description. Finally, we explore the interplay between retroactivity and thermodynamics in the domain-oriented description, and show how the binding site phosphorylation is a mechanism that is able to realize unidirectional signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We coined the term retroactivity in [22, 23] as a translation of the German word Rückwirkung, that can be more accurately translated by the longer expression ‘backwards effect’.

  2. 2.

    This section summarizes the work described in [23, 24]. Some portions of the text and figures are reproduced, with permission from Elsevier and Oxford University Press, respectively.

References

  1. Alon U (2007) An introduction to systems biology: design principles of biological circuits. Chapman&Hall/CRC, London, UK

    Google Scholar 

  2. Blüthgen N, Bruggeman FJ, Legewie S, Herzel H, Westerhoff HV, Kholodenko BN (2006) Effects of sequestration on signal transduction cascades. FEBS J 273(5):895–906

    Article  Google Scholar 

  3. Borisov NM, Markevich NI, Hoek JB, Kholodenko BN (2005) Signaling through receptors and scaffolds: independent interactions reduce combinatorial complexity. Biophys J 89(2):951–966. doi:10.1529/biophysj.105.060533, http://dx.doi.org/10.1529/biophysj.105.060533

    Google Scholar 

  4. Borisov NM, Markevich NI, Hoek JB, Kholodenko BN (2006) Trading the micro-world of combinatorial complexity for the macro-world of protein interaction domains. Biosystems 83(2–3):152–166. doi:10.1016/j.biosystems.2005.03.006, http://dx.doi.org/10.1016/j.biosystems.2005.03.006

    Google Scholar 

  5. Conzelmann H (2009) Mathematical modeling of biochemical signal transduction pathways in mammalian cells: a domain-oriented approach to reduce combinatorial complexity. PhD thesis, University of Stuttgart, Germany

    Google Scholar 

  6. Conzelmann H, Gilles ED (2008) Functional proteomics: methods and protocols. In: Thompson JD et al. (ed) Dynamic pathway modeling of signal transduction networks – A domain-oriented approach. Humana Press, NYC, US, pp 557–576

    Google Scholar 

  7. Conzelmann H, Saez-Rodriguez J, Sauter T, Bullinger E, Allgoewer F, Gilles ED (2004) Reduction of mathematical models of signal transduction networks: simulation-based approach applied to egf receptor signaling. Syst Biol 1(1):159–169. doi:10.1049/sb:20045011

    Article  Google Scholar 

  8. Conzelmann H, Saez-Rodriguez J, Sauter T, Kholodenko BN, Gilles ED (2006) A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks. BMC Bioinformatics 7:34. doi:10.1186/1471-2105-7-34, http://dx.doi.org/10.1186/1471-2105-7-34

  9. Famili I, Palsson BO (2003) The convex basis of the left null space of the stoichiometric matrix leads to the definition of metabolically meaningful pools. Biophys J 85:16–26

    Article  Google Scholar 

  10. Feret J, Danos V, Krivine J, Harmer R, Fontana W (2009) Internal coarse-graining of molecular systems. Proc Natl Acad Sci U S A 106(16):6453–6458. doi:10.1073/pnas.0809908106

    Article  Google Scholar 

  11. Gilles ED (1998) Network theory for chemical processes. Chem Eng Technol 21(2):121–132

    Article  MathSciNet  Google Scholar 

  12. Hartwell L, Hopfield J, Leibler S, Murray A (1999) From molecular to modular cell biology. Nature 402(6761-supp):C47–C52

    Google Scholar 

  13. Heinrich R, Schuster S (1996) The regulation of cellular systems. Chapman & Hall, NYC, USA

    MATH  Google Scholar 

  14. Klamt S, Saez-Rodriguez J, Lindquist J, Simeoni L, Gilles ED (2006) A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics 7:56. doi:10.1186/1471-2105-7-34

    Article  Google Scholar 

  15. Koschorreck M, Conzelmann H, Ebert S, Ederer M, Gilles ED (2007) Reduced modeling of signal transduction – A modular approach. BMC Bioinformatics 8(1):336. doi:10.1186/1471-2105-8-336, http://dx.doi.org/10.1186/1471-2105-8-336

    Google Scholar 

  16. Lauffenburger DA (2000) Cell signaling pathways as control modules: complexity for simplicity? Proc Natl Acad Sci U S A 97(10):5031–5033

    Article  Google Scholar 

  17. Mathworks (2006) Matlab. http://www.mathworks.com/

  18. Mirschel S, Steinmetz K, Rempel M, Ginkel M, Gilles ED (2009) Promot: modular modeling for systems biology. Bioinformatics 25(5):687–689. doi:10.1093/bioinformatics/btp029

    Article  Google Scholar 

  19. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci U S A 103(23):8577–8582. doi:10.1073/pnas.0601602103, http://dx.doi.org/10.1073/pnas.0601602103

  20. Oda K, Matsuoka Y, Funahashi A, Kitano H (2005) A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 1:2005.0010

    Google Scholar 

  21. Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300(5618):445–452. doi:10.1126/science.1083653, http://dx.doi.org/10.1126/science.1083653

    Google Scholar 

  22. Saez-Rodriguez J, Kremling A, Conzelmann H, Bettenbrock K, Gilles ED (2004) Modular analysis of signal transduction networks. IEEE Contr Syst Mag 24(4):35–52. doi:10.1109/MCS.2004.1316652

    Article  MathSciNet  Google Scholar 

  23. Saez-Rodriguez J, Kremling A, Gilles ED (2005) Dissecting the puzzle of life: modularization of signal transduction networks. Comput Chem Eng 29(3):619–629. doi:10.1016/j.compchemeng.2004.08.035

    Article  Google Scholar 

  24. Saez-Rodriguez J, Gayer S, Ginkel M, Gilles ED (2008) Automatic decomposition of kinetic models of signaling networks minimizing the retroactivity among modules. Bioinformatics 24(16):i213–i219. doi:10.1093/bioinformatics/btn289, http://bioinformatics.oxfordjournals.org/cgi/content/abstract/24/16/i213

    Google Scholar 

  25. Sauro HM (2008) Modularity defined. Mol Syst Biol 4:166. doi:10.1038/msb.2008.3

    Google Scholar 

  26. Sauro HM, Kholodenko BN (2004) Quantitative analysis of signaling networks. Prog Biophys Mol Biol 86(1):5–43, doi:10.1016/j.pbiomolbio.2004.03.002

    Article  Google Scholar 

  27. Schoeberl B, Eichler-Jonsson C, Gilles E, Müller G (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20(4):370–375

    Article  Google Scholar 

  28. Schuster S, Schuster R (1989) A generalization of Wegscheider’s condition. Implications for properties of steady states and for quasi-steady-state approximation. J Math Chem 3(1):25–42. doi:10.1007/BF01171883, http://dx.doi.org/10.1007/BF01171883

    Google Scholar 

  29. Segel IH (1993) Enzyme kinetics. Behavior and analysis of rapid equilibrium and steady-State enzyme systems. Wiley, Berlin, Germany

    Google Scholar 

  30. Segel LA (1988) On the validity of the steady state assumption of enzyme kinetics. Bull Math Biol 50(6):579–593

    MathSciNet  MATH  Google Scholar 

  31. Smith LP, Bergmann FT, Chandran D, Sauro HM (2009) Antimony: a modular model definition language. Bioinformatics 25(18):2452–2454. doi:10.1093/bioinformatics/btp401

    Article  Google Scholar 

  32. Sontag ED (1998) Mathematical control theory, 2nd edn. Springer, Berlin and Heidelberg, Germany

    MATH  Google Scholar 

  33. Vecchio DD, Ninfa AJ, Sontag ED (2008) Modular cell biology: retroactivity and insulation. Mol Syst Biol 4:161. doi:10.1038/msb4100204

    Google Scholar 

Download references

Acknowledgments

We thank Eduardo Sontag for useful discussions. The work described here was supported by DFG (FOR521) and the German Ministry of Research and Education BMBF (SysTec Initative, HepatoSys, DYNAMO Consortium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Saez-Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Saez-Rodriguez, J., Conzelmann, H., Ederer, M., Gilles, E.D. (2011). Retroactivity as a Criterion to Define Modules in Signaling Networks. In: Koeppl, H., Setti, G., di Bernardo, M., Densmore, D. (eds) Design and Analysis of Biomolecular Circuits. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6766-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6766-4_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6765-7

  • Online ISBN: 978-1-4419-6766-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics