The Coronary Circulation

  • Nicolaas Westerhof
  • Nikolaos Stergiopulos
  • Mark I. M. Noble


The relations between arterial pressure and flow in the coronary bed are under the influence of the humoral-nervous systems, and under local control, i.e., autoregulation. There is also the mechanical effect of the contracting cardiac muscle on coronary flow. Several other mutual interactions of smaller magnitude between the coronary vasculature and the cardiac muscle exist, which will be discussed below. The quantitative contribution of humoral and nervous control will not be discussed here. For a comprehensive description of coronary hemodynamics see refs. [1–3].


Coronary Flow Fractional Flow Reserve Reactive Hyperemia Cardiac Contraction Coronary Vascular Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hoffman JIE, Spaan JAE. Pressure-flow relations in the coronary circulation. Physiol Rev 1990;70:331–390.PubMedGoogle Scholar
  2. 2.
    Spaan JA. Coronary blood flow. 1991, Dordrecht, Kluwer.CrossRefGoogle Scholar
  3. 3.
    Westerhof N, Boer C, Lamberts RR, Sipkema P. Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev 2006;86:1263–308.PubMedCrossRefGoogle Scholar
  4. 4.
    Dankelman J, Spaan JAE, van der Ploeg CPB, Vergroesen I. Dynamic response of the coronary circulation to a rapid change in perfusion in the anaesthetised goat. J Physiol (Lond) 1989;419:703–715.Google Scholar
  5. 5.
    Vergroesen I, Noble MIM, Wieringa PA, Spaan JAE. Quantification of O2 consumption and arterial pressure as independent determinants of coronary flow. Am J Physiol 1987;252:H545–H553.PubMedGoogle Scholar
  6. 6.
    Drake-Holland AJ, Laird JD, Noble MIM, Spaan JAE, Vergroesen I. Oxygen and coronary vascular resistance during autoregulation and metabolic vasodilation in the dog. J Physiol 1984;348:285–300.PubMedGoogle Scholar
  7. 7.
    Kuo L, Davis MJ, Chilian WM. Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation. Circulation 1995;92:518–525.PubMedCrossRefGoogle Scholar
  8. 8.
    Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev 2008;88:1009–1086.PubMedCrossRefGoogle Scholar
  9. 9.
    Bellamy RF. Diastolic coronary artery pressure-flow relations in the dog. Circ Res 1978;43:92–101.PubMedCrossRefGoogle Scholar
  10. 10.
    Van Dijk LC, Krams R, Sipkema P, Westerhof N. Changes in coronary pressure-flow relation after transition from blood to Tyrode. Am J Physiol 1988;255:H476–H482.PubMedGoogle Scholar
  11. 11.
    Sherman IA. Interfacial tension effects in the microvasculature. Microvasc Res 1981;22:296–307.PubMedCrossRefGoogle Scholar
  12. 12.
    Sipkema P, Westerhof N. Mechanics of a thin walled collapsible microtube. Ann Biomed Eng 1989;17(3):203–217.PubMedCrossRefGoogle Scholar
  13. 13.
    Spaan JA. Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ Res 1985;56:293–309.PubMedCrossRefGoogle Scholar
  14. 14.
    Gregg DE, Green HD. Registration and interpretation of normal phasic inflow into the left coronary artery by an improved differential manometric method. Am J Physiol 1940;130:114–125.Google Scholar
  15. 15.
    Krams R, van Haelst, ACTA, Sipkema P, Westerhof N. Can coronary systolic-diastolic flow differences be predicted by left ventricular pressure of by time-varying intramyocardial elastance? Basic Res Cardiol 1989;84:149–159.PubMedCrossRefGoogle Scholar
  16. 16.
    Downey JM, Kirk ES. Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res 1975;36:753–760.PubMedCrossRefGoogle Scholar
  17. 17.
    Spaan JA, Breuls NPW, Laird JD. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res 1981;49:584–593.PubMedCrossRefGoogle Scholar
  18. 18.
    Willemsen MJ, Duncker DJ, Krams R, Dijkman M, Lamberts RR, Sipkema P, Westerhof N. Decrease in coronary vascular volume in systole augments cardiac contraction. Am J Physiol 2001;281:H731–H737.Google Scholar
  19. 19.
    Sipkema P, Takkenberg JJM, Zeeuwe PEM, Westerhof N. Left coronary pressure-flow ­relations of the beating and arrested rabbit heart at different ventricular volumes. Cardiovasc Res 1998;40:88–95.PubMedCrossRefGoogle Scholar
  20. 20.
    Vis MA, Bovendeerd PH, Sipkema P, Westerhof N. Effect of ventricular contraction, pressure, and wall stretch on vessels at different locations in the wall. Am J Physiol 1997;272:H2963–H2975.PubMedGoogle Scholar
  21. 21.
    Mihailescu LS, Abel FL. Intramyocardial pressure gradients in working and nonworking isolated cat hearts. Am J Physiol 1994;266:H1233–H1241.PubMedGoogle Scholar
  22. 22.
    Westerhof N. Physiological Hypothesis. Intramyocardial pressure. Basic Res Cardiol 1990;85:105–119.PubMedCrossRefGoogle Scholar
  23. 23.
    Yada T, Hiramatsu O, Kimura A, Goto M, Ogasawara Y, Tsujioka K, Yamamori S, Ohno K, Hosaka H, Kajiya F. In vivo observation of subendocardial microvessels in the beating porcine heart using a needle-probe videomicroscope with a CCD camera. Circ Res 1993;72:939–946.PubMedCrossRefGoogle Scholar
  24. 24.
    Vis MA, Sipkema P, Westerhof N. Compression of intramyocardial arterioles during cardiac contraction is attenuated by accompanying venules. Am J Physiol 1997;273:H1002–H1011.Google Scholar
  25. 25.
    Chilian WM. Microvascular pressures and resistances in the left ventricular subendocardium and subepicardium. Circ Res 1991;69:561–570.PubMedCrossRefGoogle Scholar
  26. 26.
    Bassingthwaighte JB, King RB, Roger SA. Fractal nature of regional myocardial blood flow heterogeneity. Circ Res 1989;65:578–590.PubMedCrossRefGoogle Scholar
  27. 27.
    Lamberts RR, van Rijen MH, Sipkema P, Fransen P, Sys SU, Westerhof N. Increased coronary perfusion augments cardiac contractility in the rat through stretch-activated ion channels. Am J Physiol 2002;282:H1334–H1340.Google Scholar
  28. 28.
    Brutsaert DL. Cardiac endothelial-myocardial signaling: Its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 2003;83:59–115.PubMedGoogle Scholar
  29. 29.
    Ten Velden GHM, Westerhof N, Elzinga G. Left ventricular energetics: heat loss and temperature distribution in the canine myocardium. Circ Res 1982;50:63–73.PubMedCrossRefGoogle Scholar
  30. 30.
    Hoffman JIE, Buckberg JD. Myocardial supply:demand ratio – a critical review. Am J Cardiol 1978;41:327–332.PubMedCrossRefGoogle Scholar

Copyright information

© Springer US 2010

Authors and Affiliations

  • Nicolaas Westerhof
    • 1
  • Nikolaos Stergiopulos
    • 2
  • Mark I. M. Noble
    • 3
  1. 1.Departments of Physiology and Pulmonology ICaR-VUVU University Medical CenterAmsterdamthe Netherlands
  2. 2.Laboratory of Hemodynamics and Cardiovascular TechnologySwiss Federal Institute of TechnologyLausanneSwitzerland
  3. 3.Cardiovascular MedicineAberdeen UniversityAberdeenScotland

Personalised recommendations