Skip to main content

The Coronary Circulation

  • Chapter
  • First Online:
Snapshots of Hemodynamics

Abstarct

The relations between arterial pressure and flow in the coronary bed are under the influence of the humoral-nervous systems, and under local control, i.e., autoregulation. There is also the mechanical effect of the contracting cardiac muscle on coronary flow. Several other mutual interactions of smaller magnitude between the coronary vasculature and the cardiac muscle exist, which will be discussed below. The quantitative contribution of humoral and nervous control will not be discussed here. For a comprehensive description of coronary hemodynamics see refs. [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman JIE, Spaan JAE. Pressure-flow relations in the coronary circulation. Physiol Rev 1990;70:331–390.

    PubMed  CAS  Google Scholar 

  2. Spaan JA. Coronary blood flow. 1991, Dordrecht, Kluwer.

    Book  Google Scholar 

  3. Westerhof N, Boer C, Lamberts RR, Sipkema P. Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev 2006;86:1263–308.

    Article  PubMed  CAS  Google Scholar 

  4. Dankelman J, Spaan JAE, van der Ploeg CPB, Vergroesen I. Dynamic response of the coronary circulation to a rapid change in perfusion in the anaesthetised goat. J Physiol (Lond) 1989;419:703–715.

    CAS  Google Scholar 

  5. Vergroesen I, Noble MIM, Wieringa PA, Spaan JAE. Quantification of O2 consumption and arterial pressure as independent determinants of coronary flow. Am J Physiol 1987;252:H545–H553.

    PubMed  CAS  Google Scholar 

  6. Drake-Holland AJ, Laird JD, Noble MIM, Spaan JAE, Vergroesen I. Oxygen and coronary vascular resistance during autoregulation and metabolic vasodilation in the dog. J Physiol 1984;348:285–300.

    PubMed  CAS  Google Scholar 

  7. Kuo L, Davis MJ, Chilian WM. Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation. Circulation 1995;92:518–525.

    Article  PubMed  CAS  Google Scholar 

  8. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev 2008;88:1009–1086.

    Article  PubMed  CAS  Google Scholar 

  9. Bellamy RF. Diastolic coronary artery pressure-flow relations in the dog. Circ Res 1978;43:92–101.

    Article  PubMed  CAS  Google Scholar 

  10. Van Dijk LC, Krams R, Sipkema P, Westerhof N. Changes in coronary pressure-flow relation after transition from blood to Tyrode. Am J Physiol 1988;255:H476–H482.

    PubMed  Google Scholar 

  11. Sherman IA. Interfacial tension effects in the microvasculature. Microvasc Res 1981;22:296–307.

    Article  PubMed  CAS  Google Scholar 

  12. Sipkema P, Westerhof N. Mechanics of a thin walled collapsible microtube. Ann Biomed Eng 1989;17(3):203–217.

    Article  PubMed  CAS  Google Scholar 

  13. Spaan JA. Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ Res 1985;56:293–309.

    Article  PubMed  CAS  Google Scholar 

  14. Gregg DE, Green HD. Registration and interpretation of normal phasic inflow into the left coronary artery by an improved differential manometric method. Am J Physiol 1940;130:114–125.

    Google Scholar 

  15. Krams R, van Haelst, ACTA, Sipkema P, Westerhof N. Can coronary systolic-diastolic flow differences be predicted by left ventricular pressure of by time-varying intramyocardial elastance? Basic Res Cardiol 1989;84:149–159.

    Article  PubMed  CAS  Google Scholar 

  16. Downey JM, Kirk ES. Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res 1975;36:753–760.

    Article  PubMed  CAS  Google Scholar 

  17. Spaan JA, Breuls NPW, Laird JD. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res 1981;49:584–593.

    Article  PubMed  CAS  Google Scholar 

  18. Willemsen MJ, Duncker DJ, Krams R, Dijkman M, Lamberts RR, Sipkema P, Westerhof N. Decrease in coronary vascular volume in systole augments cardiac contraction. Am J Physiol 2001;281:H731–H737.

    CAS  Google Scholar 

  19. Sipkema P, Takkenberg JJM, Zeeuwe PEM, Westerhof N. Left coronary pressure-flow ­relations of the beating and arrested rabbit heart at different ventricular volumes. Cardiovasc Res 1998;40:88–95.

    Article  PubMed  CAS  Google Scholar 

  20. Vis MA, Bovendeerd PH, Sipkema P, Westerhof N. Effect of ventricular contraction, pressure, and wall stretch on vessels at different locations in the wall. Am J Physiol 1997;272:H2963–H2975.

    PubMed  CAS  Google Scholar 

  21. Mihailescu LS, Abel FL. Intramyocardial pressure gradients in working and nonworking isolated cat hearts. Am J Physiol 1994;266:H1233–H1241.

    PubMed  CAS  Google Scholar 

  22. Westerhof N. Physiological Hypothesis. Intramyocardial pressure. Basic Res Cardiol 1990;85:105–119.

    Article  PubMed  CAS  Google Scholar 

  23. Yada T, Hiramatsu O, Kimura A, Goto M, Ogasawara Y, Tsujioka K, Yamamori S, Ohno K, Hosaka H, Kajiya F. In vivo observation of subendocardial microvessels in the beating porcine heart using a needle-probe videomicroscope with a CCD camera. Circ Res 1993;72:939–946.

    Article  PubMed  CAS  Google Scholar 

  24. Vis MA, Sipkema P, Westerhof N. Compression of intramyocardial arterioles during cardiac contraction is attenuated by accompanying venules. Am J Physiol 1997;273:H1002–H1011.

    Google Scholar 

  25. Chilian WM. Microvascular pressures and resistances in the left ventricular subendocardium and subepicardium. Circ Res 1991;69:561–570.

    Article  PubMed  CAS  Google Scholar 

  26. Bassingthwaighte JB, King RB, Roger SA. Fractal nature of regional myocardial blood flow heterogeneity. Circ Res 1989;65:578–590.

    Article  PubMed  CAS  Google Scholar 

  27. Lamberts RR, van Rijen MH, Sipkema P, Fransen P, Sys SU, Westerhof N. Increased coronary perfusion augments cardiac contractility in the rat through stretch-activated ion channels. Am J Physiol 2002;282:H1334–H1340.

    CAS  Google Scholar 

  28. Brutsaert DL. Cardiac endothelial-myocardial signaling: Its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 2003;83:59–115.

    PubMed  CAS  Google Scholar 

  29. Ten Velden GHM, Westerhof N, Elzinga G. Left ventricular energetics: heat loss and temperature distribution in the canine myocardium. Circ Res 1982;50:63–73.

    Article  PubMed  Google Scholar 

  30. Hoffman JIE, Buckberg JD. Myocardial supply:demand ratio – a critical review. Am J Cardiol 1978;41:327–332.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolaas Westerhof .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer US

About this chapter

Cite this chapter

Westerhof, N., Stergiopulos, N., Noble, M.I.M. (2010). The Coronary Circulation. In: Snapshots of Hemodynamics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6363-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6363-5_18

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6362-8

  • Online ISBN: 978-1-4419-6363-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics