Advertisement

Stem Cells in the Treatment of Stroke

  • Klaudia Urbaniak Hunter
  • Chester Yarbrough
  • Joseph Ciacci
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 671)

Abstract

Stroke is an often devastating insult resulting in neurological deficit lasting greater than 24 hours. In the United States, stroke is the third leading cause of death. In those who do not succumb, any outcome from total recovery over a period of weeks to months to persistent profound neurological deficits is possible. Present treatment centers on the decision to administer tissue plasminogen activator, subsequent medical stabilization and early intervention with rehabilitation and risk factor management. The advent of stem cell therapy presents an exciting new frontier for research in stroke treatment, with the potential to cause a paradigm shift from symptomatic control and secondary prevention to reconstitution of neural networks and prevention of neuronal cell death after neurologic injury.

Keywords

Stem Cell Umbilical Cord Blood Bone Marrow Stromal Cell Stem Cell Therapy Subventricular Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med 1995; 333(24):1581–7.CrossRefGoogle Scholar
  2. 2.
    Broderick J, Brott T, Kothari R et al. The Greater Cincinnati/Northern Kentucky Stroke Study: preliminary first-ever and total incidence rates of stroke among blacks. Stroke 1998; 29(2):415–21.PubMedGoogle Scholar
  3. 3.
    Modan B, Wagener DK. Some epidemiological aspects of stroke: mortality/morbidity trends, age, sex, race, socioeconomic status. Stroke 1992; 23(9):1230–6.PubMedGoogle Scholar
  4. 4.
    Bonita R, Anderson CS, Broad JB et al. Stroke incidence and case fatality in Australasia. A comparison of the Auckland and Perth population-based stroke registers. Stroke 1994; 25(3):552–7.PubMedGoogle Scholar
  5. 5.
    Cheng XM, Ziegler DK, Lai YH et al. Stroke in China, 1986 through 1990. Stroke 1995; 26(11):1990–4.PubMedGoogle Scholar
  6. 6.
    Stegmayr B, Asplund K, Kuulasmaa K et al. Stroke incidence and mortality correlated to stroke risk factors in the WHO MONICA Project. An ecological study of 18 populations. Stroke 1997; 28(7):1367–74.PubMedGoogle Scholar
  7. 7.
    Sudlow CL, Warlow CP. Comparing stroke incidence worldwide: what makes studies comparable? Stroke 1996; 27(3):550–8.PubMedGoogle Scholar
  8. 8.
    Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol 2004; 3(9):528–36.CrossRefPubMedGoogle Scholar
  9. 9.
    Patel AT, Duncan PW, Lai SM et al. The relation between impairments and functional outcomes poststroke. Arch Phys Med Rehabil 2000; 81(10):1357–63.CrossRefPubMedGoogle Scholar
  10. 10.
    Jorgensen HS, Nakayama H, Raaschou HO et al. Outcome and time course of recovery in stroke. Part II: Time course of recovery. The Copenhagen Stroke Study. Arch Phys Med Rehabil 1995; 76(5):406–12.CrossRefPubMedGoogle Scholar
  11. 11.
    Jorgensen HS, Nakayama H, Raaschou HO et al. Outcome and time course of recovery in stroke. Part I: Outcome. The Copenhagen Stroke Study. Arch Phys Med Rehabil 1995; 76(5):399–405.CrossRefPubMedGoogle Scholar
  12. 12.
    Langhorne P, Legg L. Evidence behind stroke rehabilitation. J Neurol Neurosurg Psychiatry 2003; 74(Suppl 4):iv18–iv21.PubMedGoogle Scholar
  13. 13.
    Teasell RW, Kalra L. What’s new in stroke rehabilitation. Stroke 2004; 35(2):383–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature 2006; 441(7097):1094–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Gage FH. Mammalian neural stem cells. Science 2000; 287(5457):1433–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Haas S, Weidner N, Winkler J. Adult stem cell therapy in stroke. Curr Opin Neurol 2005; 18(1):59–64.CrossRefPubMedGoogle Scholar
  17. 17.
    Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 2004; 10(Suppl):S42–50.CrossRefGoogle Scholar
  18. 18.
    Arvidsson A, Collin T, Kirik D et al. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 2002; 8(9):963–70.CrossRefPubMedGoogle Scholar
  19. 19.
    Goings GE, Sahni V, Szele FG. Migration patterns of subventricular zone cells in adult mice change after cerebral cortex injury. Brain Res 2004; 996(2):213–26.CrossRefPubMedGoogle Scholar
  20. 20.
    Soares S, Sotelo C. Adult neural stem cells from the mouse subventricular zone are limited in migratory ability compared to progenitor cells of similar origin. Neuroscience 2004; 128(4):807–17.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang RL, Zhang L, Zhang ZG et al. Migration and differentiation of adult rat subventricular zone progenitor cells transplanted into the adult rat striatum. Neuroscience 2003; 116(2):373–82.CrossRefPubMedGoogle Scholar
  22. 22.
    Zawada WM, Zastrow DJ, Clarkson ED et al. Growth factors improve immediate survival of embryonic dopamine neurons after transplantation into rats. Brain Res 1998; 786(1–2):96–103.CrossRefPubMedGoogle Scholar
  23. 23.
    Komitova M, Mattsson B, Johansson BB et al. Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke 2005; 36(6):1278–82.CrossRefPubMedGoogle Scholar
  24. 24.
    Dahlqvist P, Zhao L, Johansson IM et al. Environmental enrichment alters nerve growth factor-induced gene A and glucocorticoid receptor messenger RNA expression after middle cerebral artery occlusion in rats. Neuroscience 1999; 93(2):527–35.CrossRefPubMedGoogle Scholar
  25. 25.
    Dobrossy MD, Dunnett SB. Environmental enrichment affects striatal graft morphology and functional recovery. Eur J Neurosci 2004; 19(1):159–68.CrossRefPubMedGoogle Scholar
  26. 26.
    Emsley JG, Mitchell BD, Kempermann G et al. Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors and stem cells. Prog Neurobiol 2005; 75(5):321–41.CrossRefPubMedGoogle Scholar
  27. 27.
    Gobbo OL, O’Mara SM. Impact of enriched-environment housing on brain-derived neurotrophic factor and on cognitive performance after a transient global ischemia. Behav Brain Res 2004; 152(2):231–41.CrossRefPubMedGoogle Scholar
  28. 28.
    Hagg T. Molecular regulation of adult CNS neurogenesis: an integrated view. Trends Neurosci 2005; 28(11):589–95.CrossRefPubMedGoogle Scholar
  29. 29.
    Pham TM, Ickes B, Albeck D et al. Changes in brain nerve growth factor levels and nerve growth factor receptors in rats exposed to environmental enrichment for one year. Neuroscience 1999; 94(1):279–86.CrossRefPubMedGoogle Scholar
  30. 30.
    Griesbach GS, Hovda DA, Molteni R et al. Voluntary exercise following traumatic brain injury: brain-derived neurotrophic factor upregulation and recovery of function. Neuroscience 2004; 125(1):129–39.CrossRefPubMedGoogle Scholar
  31. 31.
    van Praag H, Christie BR, Sejnowski TJ et al. Running enhances neurogenesis, learning and long-term potentiation in mice. Proc Natl Acad Sci USA 1999; 96(23):13427–31.CrossRefPubMedGoogle Scholar
  32. 32.
    Ying Z, Roy RR, Edgerton VR et al. Exercise restores levels of neurotrophins and synaptic plasticity following spinal cord injury. Exp Neurol 2005; 193(2):411–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Metcalf D. Long-term effects of whole-body irradiation on lymphocyte homeostasis in the mouse. Radiat Res 1959; 10(3):313–22.CrossRefPubMedGoogle Scholar
  34. 34.
    Scheffler B, Horn M, Blumcke I et al. Marrow-mindedness: a perspective on neuropoiesis. Trends Neurosci 1999; 22(8):348–57.CrossRefPubMedGoogle Scholar
  35. 35.
    Steindler DA. Redefining cellular phenotypy based on embryonic, adult and cancer stem cell biology. Brain Pathol 2006; 16(2):169–80.CrossRefPubMedGoogle Scholar
  36. 36.
    Bain G, Kitchens D, Yao M et al. Embryonic stem cells express neuronal properties in vitro. Dev Biol 1995; 168(2):342–57.CrossRefPubMedGoogle Scholar
  37. 37.
    Gottlieb DI, Huettner JE. An in vitro pathway from embryonic stem cells to neurons and glia. Cells Tissues Organs 1999; 165(3–4):165–72.CrossRefPubMedGoogle Scholar
  38. 38.
    Jones-Villeneuve EM, Rudnicki MA, Harris JF et al. Retinoic acid-induced neural differentiation of embryonal carcinoma cells. Mol Cell Biol 1983; 3(12):2271–9.PubMedGoogle Scholar
  39. 39.
    Daadi MM, Maag AL, Steinberg GK. Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS ONE 2008; 3(2):e1644.CrossRefGoogle Scholar
  40. 40.
    Bjornson CR, Rietze RL, Reynolds BA et al. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999; 283(5401):534–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Dezawa M, Kanno H, Hoshino M et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 2004; 113(12):1701–10.PubMedGoogle Scholar
  42. 42.
    Mezey E, Chandross KJ, Harta G et al. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000; 290(5497):1779–82.CrossRefPubMedGoogle Scholar
  43. 43.
    Kelly S, Bliss TM, Shah AK et al. Transplanted human fetal neural stem cells survive, migrate and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA 2004; 101(32):11839–44.CrossRefPubMedGoogle Scholar
  44. 44.
    Takagi Y, Nishimura M, Morizane A et al. Survival and differentiation of neural progenitor cells derived from embryonic stem cells and transplanted into ischemic brain. J Neurosurg 2005; 103(2):304–10.CrossRefPubMedGoogle Scholar
  45. 45.
    Hayashi J, Takagi Y, Fukuda H et al. Primate embryonic stem cell-derived neuronal progenitors transplanted into ischemic brain. J Cereb Blood Flow Metab 2006; 26(7):906–14.CrossRefPubMedGoogle Scholar
  46. 46.
    Ikeda R, Kurokawa MS, Chiba S et al. Transplantation of neural cells derived from retinoic acid-treated cynomolgus monkey embryonic stem cells successfully improved motor function of hemiplegic mice with experimental brain injury. Neurobiol Dis 2005; 20(1):38–48.CrossRefPubMedGoogle Scholar
  47. 47.
    Hicks AU, Hewlett K, Windle V et al. Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke. Neuroscience 2007; 146(1):31–40.CrossRefPubMedGoogle Scholar
  48. 48.
    Wei L, Cui L, Snider BJ et al. Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol Dis 2005; 19(1–2):183–93.CrossRefGoogle Scholar
  49. 49.
    Andrews PW, Damjanov I, Simon D et al. Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab Invest 1984; 50(2):147–62.PubMedGoogle Scholar
  50. 50.
    Pleasure SJ, Lee VM. NTera 2 cells: a human cell line which displays characteristics expected of a human committed neuronal progenitor cell. J Neurosci Res 1993; 35(6):585–602.CrossRefPubMedGoogle Scholar
  51. 51.
    Kleppner SR, Robinson KA, Trojanowski JQ et al. Transplanted human neurons derived from a teratocarcinoma cell line (NTera-2) mature, integrate and survive for over 1 year in the nude mouse brain. J Comp Neurol 1995; 357(4):618–32.CrossRefPubMedGoogle Scholar
  52. 52.
    Borlongan CV, Tajima Y, Trojanowski JQ et al. Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp Neurol 1998; 149(2):310–21.CrossRefPubMedGoogle Scholar
  53. 53.
    Bang OY, Lee JS, Lee PH et al. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 2005; 57(6):874–82.CrossRefPubMedGoogle Scholar
  54. 54.
    Chen J, Li Y, Wang L et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001; 32(4):1005–11.PubMedGoogle Scholar
  55. 55.
    Chen J, Sanberg PR, Li Y et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 2001; 32(11):2682–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Shen LH, Li Y, Chen J et al. Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab 2007; 27(1):6–13.CrossRefPubMedGoogle Scholar
  57. 57.
    Willing AE, Lixian J, Milliken M et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res 2003; 73(3):296–307.CrossRefPubMedGoogle Scholar
  58. 58.
    Thored P, Arvidsson A, Cacci E et al. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 2006; 24(3):739–47.CrossRefPubMedGoogle Scholar
  59. 59.
    Mattsson B, Sorensen JC, Zimmer J et al. Neural grafting to experimental neocortical infarcts improves behavioral outcome and reduces thalamic atrophy in rats housed in enriched but not in standard environments. Stroke 1997; 28(6):1225–31; discussion 31–2.PubMedGoogle Scholar
  60. 60.
    Nishino H, Borlongan CV. Restoration of function by neural transplantation in the ischemic brain. Prog Brain Res 2000; 127:461–76.CrossRefPubMedGoogle Scholar
  61. 61.
    Riolobos AS, Heredia M, de la Fuente JA et al. Functional recovery of skilled forelimb use in rats obliged to use the impaired limb after grafting of the frontal cortex lesion with homotopic fetal cortex. Neurobiol Learn Mem 2001; 75(3):274–92.CrossRefPubMedGoogle Scholar
  62. 62.
    Korecka JA, Verhaagen J, Hol EM. Cell-replacement and gene-therapy strategies for Parkinson’s and Alzheimer’s disease. Regen Med 2007; 2(4):425–46.CrossRefPubMedGoogle Scholar
  63. 63.
    Mendez I, Dagher A, Hong M et al. Simultaneous intrastriatal and intranigral fetal dopaminergic grafts in patients with Parkinson disease: a pilot study. Report of three cases. J Neurosurg 2002; 96(3):589–96.CrossRefPubMedGoogle Scholar
  64. 64.
    Mendez I, Hong M, Smith S et al. Neural transplantation cannula and microinjector system: experimental and clinical experience. Technical note. J Neurosurg 2000; 92(3):493–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Mendez I, Sanchez-Pernaute R, Cooper O et al. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain 2005; 128(Pt 7):1498–510.CrossRefPubMedGoogle Scholar
  66. 66.
    Kondziolka D, Steinberg GK, Wechsler L et al. Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg 2005; 103(1):38–45.CrossRefPubMedGoogle Scholar
  67. 67.
    Kondziolka D, Wechsler L, Goldstein S et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology 2000; 55(4):565–9.PubMedGoogle Scholar
  68. 68.
    Dass B, Olanow CW, Kordower JH. Gene transfer of trophic factors and stem cell grafting as treatments for Parkinson’s disease. Neurology 2006; 66(10 Suppl 4):S89–103.Google Scholar
  69. 69.
    Tuszynski MH, U HS, Alksne J et al. Growth factor gene therapy for Alzheimer disease. Neurosurg Focus 2002; 13(5):e5.CrossRefPubMedGoogle Scholar
  70. 70.
    Tuszynski MH, Thal L, Pay M et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 2005; 11(5):551–5.CrossRefPubMedGoogle Scholar
  71. 71.
    Hill WD, Hess DC, Martin-Studdard A et al. SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol 2004; 63(1):84–96.PubMedGoogle Scholar
  72. 72.
    Newman MB, Willing AE, Manresa JJ et al. Stroke-induced migration of human umbilical cord blood cells: time course and cytokines. Stem Cells Dev 2005; 14(5):576–86.CrossRefPubMedGoogle Scholar
  73. 73.
    Castro RF, Jackson KA, Goodell MA et al. Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 2002; 297(5585):1299.CrossRefPubMedGoogle Scholar
  74. 74.
    Li Y, Chen J, Chen XG et al. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 2002; 59(4):514–23.PubMedGoogle Scholar
  75. 75.
    Roybon L, Ma Z, Asztely F et al. Failure of transdifferentiation of adult hematopoietic stem cells into neurons. Stem Cells 2006; 24(6):1594–604.CrossRefPubMedGoogle Scholar
  76. 76.
    Wagers AJ, Sherwood RI, Christensen JL et al. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 2002; 297(5590):2256–9.CrossRefPubMedGoogle Scholar
  77. 77.
    Kurozumi K, Nakamura K, Tamiya T et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 2005; 11(1):96–104.CrossRefPubMedGoogle Scholar
  78. 78.
    Borlongan CV, Lind JG, Dillon-Carter O et al. Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brain Res 2004; 1010(1–2):108–16.CrossRefPubMedGoogle Scholar
  79. 79.
    Chen J, Zhang ZG, Li Y et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 2003; 92(6):692–9.CrossRefPubMedGoogle Scholar
  80. 80.
    Bicknese AR, Goodwin HS, Quinn CO et al. Human umbilical cord blood cells can be induced to express markers for neurons and glia. Cell Transplant 2002; 11(3):261–4.PubMedGoogle Scholar
  81. 81.
    Fu YS, Shih YT, Cheng YC et al. Transformation of human umbilical mesenchymal cells into neurons in vitro. J Biomed Sci 2004; 11(5):652–60.CrossRefPubMedGoogle Scholar
  82. 82.
    Goodwin HS, Bicknese AR, Chien SN et al. Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat and neural markers. Biol Blood Marrow Transplant 2001; 7(11):581–8.CrossRefPubMedGoogle Scholar
  83. 83.
    Zhao ZM, Lu SH, Zhang QJ et al. (The preliminary study on in vitro differentiation of human umbilical cord blood cells into neural cells). Zhonghua Xue Ye Xue Za Zhi 2003; 24(9):484–7.PubMedGoogle Scholar
  84. 84.
    Borlongan CV, Hadman M, Sanberg CD et al. Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 2004; 35(10):2385–9.CrossRefPubMedGoogle Scholar
  85. 85.
    Taguchi A, Soma T, Tanaka H et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest 2004; 114(3):330–8.PubMedGoogle Scholar
  86. 86.
    Bhattacharya N. Placental umbilical cord blood transfusion: a new method of treatment of patients with diabetes and microalbuminuria in the background of anemia. Clin Exp Obstet Gynecol 2006; 33(3):164–8.PubMedGoogle Scholar
  87. 87.
    Bhattacharya N, Mukherijee K, Chettri MK et al. A study report of 174 units of placental umbilical cord whole blood transfusion in 62 patients as a rich source of fetal hemoglobin supply in different indications of blood transfusion. Clin Exp Obstet Gynecol 2001; 28(1):47–52.PubMedGoogle Scholar
  88. 88.
    Fasouliotis SJ, Schenker JG. Human umbilical cord blood banking and transplantation: a state of the art. Eur J Obstet Gynecol Reprod Biol 2000; 90(1):13–25.CrossRefPubMedGoogle Scholar
  89. 89.
    Szabolcs P, Park KD, Reese M et al. Coexistent naive phenotype and higher cycling rate of cord blood T-cells as compared to adult peripheral blood. Exp Hematol 2003; 31(8):708–14.CrossRefPubMedGoogle Scholar
  90. 90.
    Fukuda H, Masuzaki H, Ishimaru T. Interleukin-6 and interleukin-1 receptor antagonist in amniotic fluid and cord blood in patients with preterm, premature rupture of the membranes. Int J Gynaecol Obstet 2002; 77(2):123–9.CrossRefPubMedGoogle Scholar
  91. 91.
    Huang J, Upadhyay UM, Tamargo RJ. Inflammation in stroke and focal cerebral ischemia. Surg Neurol 2006; 66(3):232–45.CrossRefPubMedGoogle Scholar
  92. 92.
    George TJ, Sugrue MW, George SN et al. Factors associated with parameters of engraftment potential of umbilical cord blood. Transfusion 2006; 46(10):1803–12.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Klaudia Urbaniak Hunter
    • 1
  • Chester Yarbrough
    • 2
  • Joseph Ciacci
    • 3
  1. 1.Department of Radiation OncologyUniversity of MichiganAnn ArborUSA
  2. 2.Department of Neurological Surgery Barnes-Jewish HospitalWashington University School of MedicineSt LouisUSA
  3. 3.Division of NeurosurgeryUCSD Medical CenterSan DiegoUSA

Personalised recommendations