In Vivo Imaging of Cellular Transplants

  • Justin Chan
  • Jayant P. Menon
  • Rohit Mahajan
  • Rahul Jandial
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 671)


We will talk about the techniques of in vivo imaging currently used in today’s research and biomedical field, giving a general view of how each technique works and examples of practical applications of each technique. We will cover fluorescent (BL/CL), PET, SPECT and quantum dot imaging. Afterwards, we will cover how in vivo imaging is used in a biomedical sense; more specifically we will see how researchers studying cancer and neurodegenerative disease employ in vivo imaging.


Reporter Probe Multiphoton Microscopy Brain Repair Pinhole SPECT Cellular Transplant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ntziachristos V. Fluorescence molecular imaging. Annu Rev Biomed Eng 2006; 8:1–33.CrossRefPubMedGoogle Scholar
  2. 2.
    Roda A, Pasini P, Mirasoli M et al. Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol 2004; 22(6):295–303.CrossRefPubMedGoogle Scholar
  3. 3.
    Fishell G, Blazeski R, Godement P et al. Optical microscopy. 3. Tracking fluorescently labeled neurons in developing brain. FASEB J 1995; 9(5):324–34.PubMedGoogle Scholar
  4. 4.
    Lucignani G, Ottobrini L, Martelli C et al. Molecular imaging of cell-mediated cancer immunotherapy. Trends Biotechnol 2006; 24(9):410–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Medintz I, Uyeda H, Goldman E et al. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005; 4(6):435–46.CrossRefPubMedGoogle Scholar
  6. 6.
    Xu Y, Piston D, Johnson C. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci USA 1999; 96(1):151–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Frangioni J. Self-illuminating quantum dots light the way. Nat Biotechnol 2006; 24(3):326–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Ballou B, Lagerholm B, Ernst L et al. Noninvasive imaging of quantum dots in mice. Bioconjug Chem 2004; 15(1):79–86.CrossRefPubMedGoogle Scholar
  9. 9.
    Chatziioannou A, Cherry S, Shao Y et al. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 1999; 40(7):1164–75.PubMedGoogle Scholar
  10. 10.
    Surti S, Karp J, Perkins A et al. Imaging performance of A-PET: a small animal PET camera. IEEE Trans Med Imaging 2005; 24(7):844–52.CrossRefPubMedGoogle Scholar
  11. 11.
    Acton P, Kung H. Small animal imaging with high resolution single photon emission tomography. Nucl Med Biol 2003; 30(8):889–95.CrossRefPubMedGoogle Scholar
  12. 12.
    Green M, Seidel J, Vaquero J et al. High resolution PET, SPECT and projection imaging in small animals. Comput Med Imaging Graph 2001; 25(2):79–86.CrossRefPubMedGoogle Scholar
  13. 13.
    Ishizu K, Mukai T, Yonekura Y et al. Ultra-high resolution SPECT system using four pinhole collimators for small animal studies. J Nucl Med 1995; 36(12):2282–7.PubMedGoogle Scholar
  14. 14.
    Weber D, Ivanovic M. Pinhole SPECT: ultra-high resolution imaging for small animal studies. J Nucl Med 1995; 36(12):2287–9.PubMedGoogle Scholar
  15. 15.
    Yang Y, Tai Y, Siegel S et al. Optimization and performance evaluation of the microPET II scanner for in vivo small-animal imaging. Phys Med Biol 2004; 49(12):2527–45.CrossRefPubMedGoogle Scholar
  16. 16.
    Beekman F, van der Have F, Vastenhouw B et al. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med 2005; 46(7):1194–200.PubMedGoogle Scholar
  17. 17.
    Eck S, Alavi J, Alavi A et al. Treatment of advanced CNS malignancies with the recombinant adenovirus H5.010RSVTK: a phase I trial. Hum Gene Ther 1996; 7(12):1465–82.CrossRefPubMedGoogle Scholar
  18. 18.
    Shand N, Weber F, Mariani L et al. A phase 1-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European-Canadian Study Group. Hum Gene Ther 1999; 10(14):2325–35.CrossRefPubMedGoogle Scholar
  19. 19.
    Alauddin M, Shahinian A, Gordon E et al. Preclinical evaluation of the penciclovir analog 9-(4-((18) F)fluoro-3-hydroxymethylbutyl)guanine for in vivo measurement of suicide gene expression with PET. J Nucl Med 2001; 42(11):1682–90.PubMedGoogle Scholar
  20. 20.
    Germano I, Fable J, Gultekin S et al. Adenovirus/herpes simplex-thymidine kinase/ganciclovir complex: preliminary results of a phase I trial in patients with recurrent malignant gliomas. J Neurooncol 2003; 65(3):279–89.CrossRefPubMedGoogle Scholar
  21. 21.
    Gambhir S, Barrio J, Wu L et al. Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 1998; 39(11):2003–11.PubMedGoogle Scholar
  22. 22.
    Hoehn M, Wiedermann D, Justicia C et al. Cell tracking using magnetic resonance imaging. J Physiol 2007; 584(Pt 1):25–30.CrossRefPubMedGoogle Scholar
  23. 23.
    Wu A, Senter P. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 2005; 23(9):1137–46.CrossRefPubMedGoogle Scholar
  24. 24.
    Kenanova V, Wu A. Tailoring antibodies for radionuclide delivery. Expert Opin Drug Deliv 2006; 3(1):53–70.CrossRefPubMedGoogle Scholar
  25. 25.
    Dubey P, Su H, Adonai N et al. Quantitative imaging of the T-cell antitumor response by positron-emission tomography. Proc Natl Acad Sci USA 2003; 100(3):1232–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Koehne G, Doubrovin M, Doubrovina E et al. Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol 2003; 21(4):405–13.CrossRefPubMedGoogle Scholar
  27. 27.
    Adonai N, Nguyen K, Walsh J et al. Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci USA 2002; 99(5):3030–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Botti C, Negri D, Seregni E et al. Comparison of three different methods for radiolabelling human activated T-lymphocytes. Eur J Nucl Med 1997; 24(5):497–504.PubMedGoogle Scholar
  29. 29.
    Daldrup-Link H, Meier R, Rudelius M et al. In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging. Eur Radiol 2005; 15(1):4–13.CrossRefPubMedGoogle Scholar
  30. 30.
    Schimmelpfennig C, Schulz S, Arber CJ et al. Ex vivo expanded dendritic cells home to T-cell zones of lymphoid organs and survive in vivo after allogeneic bone marrow transplantation. Am J Pathol 2005; 167(5):1321–31.PubMedGoogle Scholar
  31. 31.
    Edinger M, Cao Y, Verneris M et al. Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood 2003; 101(2):640–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Trachtenberg J, Chen B, Knott G et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 2002; 420(6917):788–94.CrossRefPubMedGoogle Scholar
  33. 33.
    Grutzendler J, Kasthuri N, Gan W. Long-term dendritic spine stability in the adult cortex. Nature 2002; 420(6917):812–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Davalos D, Grutzendler J, Yang G et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005; 8(6):752–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308(5726):1314–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Misgeld T, Kerschensteiner M. In vivo imaging of the diseased nervous system. Nat Rev Neurosci 2006; 7(6):449–63.CrossRefPubMedGoogle Scholar
  37. 37.
    Kirik D, Breysse N, Björklund T et al. Imaging in cell-based therapy for neurodegenerative diseases. Eur J Nucl Med Mol Imaging 2005; 32(Suppl 2):S417–34.CrossRefGoogle Scholar
  38. 38.
    Gusella J, Wexler N, Conneally P et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 1983; 306(5940):234–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Brooks D. PET studies on the function of dopamine in health and Parkinson’s disease. Ann N Y Acad Sci 2003; 991:22–35.CrossRefPubMedGoogle Scholar
  40. 40.
    Koepp M, Gunn R, Lawrence A et al. Evidence for striatal dopamine release during a video game. Nature 1998; 393(6682):266–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Freed C, Greene P, Breeze R et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001; 344(10):710–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Gaura V, Bachoud-Lévi A, Ribeiro M et al. Striatal neural grafting improves cortical metabolism in Huntington’s disease patients. Brain 2004; 127(Pt 1):65–72.CrossRefPubMedGoogle Scholar
  43. 43.
    Holländer H, Mehraein P. (On the mechanics of myelin sphere formation in Wallerian degeneration. Intravital microscopic studies of single degenerating motor fibers of the frog). Z Zellforsch Mikrosk Anat 1966; 72(2):276–80.CrossRefPubMedGoogle Scholar
  44. 44.
    Williams P, Hall S. Prolonged in vivo observations of normal peripheral nerve fibres and their acute reactions to crush and deliberate trauma. J Anat 1971; 108(Pt 3):397–408.PubMedGoogle Scholar
  45. 45.
    Pan Y, Misgeld T, Lichtman J et al. Effects of neurotoxic and neuroprotective agents on peripheral nerve regeneration assayed by time-lapse imaging in vivo. J Neurosci 2003; 23(36):11479–88.PubMedGoogle Scholar
  46. 46.
    Bhatt D, Otto S, Depoister B et al. Cyclic AMP-induced repair of zebrafish spinal circuits. Science 2004; 305(5681):254–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Zhang S, Boyd J, Delaney K et al. Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. J Neurosci 2005; 25(22):5333–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 2004; 5(5):347–60.CrossRefPubMedGoogle Scholar
  49. 49.
    Miller D, Khan O, Sheremata W et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2003; 348(1):15–23.CrossRefPubMedGoogle Scholar
  50. 50.
    Hell S. Toward fluorescence nanoscopy. Nat Biotechnol 2003; 21(11):1347–55.CrossRefPubMedGoogle Scholar
  51. 51.
    Ntziachristos V, Ripoll J, Wang L et al. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 2005; 23(3):313–20.CrossRefPubMedGoogle Scholar
  52. 52.
    Hao FZ, Konstantin M, George S, Lihong VW. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nature Biotechnology 2006; 24(7):848–51CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Justin Chan
    • 1
  • Jayant P. Menon
    • 2
    • 3
  • Rohit Mahajan
    • 4
  • Rahul Jandial
    • 5
  1. 1.UCSD School of MedicineSan DiegoUSA
  2. 2.Division of NeurosurgeryUCSD Medical CenterSan DiegoUSA
  3. 3.UCSD Jacobs School of EngineeringLa JollaUSA
  4. 4.College of MedicineUniversity of ToledoToledoUSA
  5. 5.Division of Neurosurgery City of Hope Comprehensive CancerCenter & Beckman Research InstituteDuarteUSA

Personalised recommendations